3941 lines
109 KiB
C
3941 lines
109 KiB
C
/* Perform the semantic phase of parsing, i.e., the process of
|
||
building tree structure, checking semantic consistency, and
|
||
building RTL. These routines are used both during actual parsing
|
||
and during the instantiation of template functions.
|
||
|
||
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
|
||
Free Software Foundation, Inc.
|
||
Written by Mark Mitchell (mmitchell@usa.net) based on code found
|
||
formerly in parse.y and pt.c.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but
|
||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "cp-tree.h"
|
||
#include "c-common.h"
|
||
#include "tree-inline.h"
|
||
#include "tree-mudflap.h"
|
||
#include "except.h"
|
||
#include "toplev.h"
|
||
#include "flags.h"
|
||
#include "rtl.h"
|
||
#include "expr.h"
|
||
#include "output.h"
|
||
#include "timevar.h"
|
||
#include "debug.h"
|
||
#include "diagnostic.h"
|
||
#include "cgraph.h"
|
||
#include "tree-iterator.h"
|
||
#include "vec.h"
|
||
#include "target.h"
|
||
|
||
/* There routines provide a modular interface to perform many parsing
|
||
operations. They may therefore be used during actual parsing, or
|
||
during template instantiation, which may be regarded as a
|
||
degenerate form of parsing. */
|
||
|
||
static tree maybe_convert_cond (tree);
|
||
static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
|
||
static void emit_associated_thunks (tree);
|
||
static tree finalize_nrv_r (tree *, int *, void *);
|
||
|
||
|
||
/* Deferred Access Checking Overview
|
||
---------------------------------
|
||
|
||
Most C++ expressions and declarations require access checking
|
||
to be performed during parsing. However, in several cases,
|
||
this has to be treated differently.
|
||
|
||
For member declarations, access checking has to be deferred
|
||
until more information about the declaration is known. For
|
||
example:
|
||
|
||
class A {
|
||
typedef int X;
|
||
public:
|
||
X f();
|
||
};
|
||
|
||
A::X A::f();
|
||
A::X g();
|
||
|
||
When we are parsing the function return type `A::X', we don't
|
||
really know if this is allowed until we parse the function name.
|
||
|
||
Furthermore, some contexts require that access checking is
|
||
never performed at all. These include class heads, and template
|
||
instantiations.
|
||
|
||
Typical use of access checking functions is described here:
|
||
|
||
1. When we enter a context that requires certain access checking
|
||
mode, the function `push_deferring_access_checks' is called with
|
||
DEFERRING argument specifying the desired mode. Access checking
|
||
may be performed immediately (dk_no_deferred), deferred
|
||
(dk_deferred), or not performed (dk_no_check).
|
||
|
||
2. When a declaration such as a type, or a variable, is encountered,
|
||
the function `perform_or_defer_access_check' is called. It
|
||
maintains a VEC of all deferred checks.
|
||
|
||
3. The global `current_class_type' or `current_function_decl' is then
|
||
setup by the parser. `enforce_access' relies on these information
|
||
to check access.
|
||
|
||
4. Upon exiting the context mentioned in step 1,
|
||
`perform_deferred_access_checks' is called to check all declaration
|
||
stored in the VEC. `pop_deferring_access_checks' is then
|
||
called to restore the previous access checking mode.
|
||
|
||
In case of parsing error, we simply call `pop_deferring_access_checks'
|
||
without `perform_deferred_access_checks'. */
|
||
|
||
typedef struct deferred_access GTY(())
|
||
{
|
||
/* A VEC representing name-lookups for which we have deferred
|
||
checking access controls. We cannot check the accessibility of
|
||
names used in a decl-specifier-seq until we know what is being
|
||
declared because code like:
|
||
|
||
class A {
|
||
class B {};
|
||
B* f();
|
||
}
|
||
|
||
A::B* A::f() { return 0; }
|
||
|
||
is valid, even though `A::B' is not generally accessible. */
|
||
VEC (deferred_access_check,gc)* GTY(()) deferred_access_checks;
|
||
|
||
/* The current mode of access checks. */
|
||
enum deferring_kind deferring_access_checks_kind;
|
||
|
||
} deferred_access;
|
||
DEF_VEC_O (deferred_access);
|
||
DEF_VEC_ALLOC_O (deferred_access,gc);
|
||
|
||
/* Data for deferred access checking. */
|
||
static GTY(()) VEC(deferred_access,gc) *deferred_access_stack;
|
||
static GTY(()) unsigned deferred_access_no_check;
|
||
|
||
/* Save the current deferred access states and start deferred
|
||
access checking iff DEFER_P is true. */
|
||
|
||
void
|
||
push_deferring_access_checks (deferring_kind deferring)
|
||
{
|
||
/* For context like template instantiation, access checking
|
||
disabling applies to all nested context. */
|
||
if (deferred_access_no_check || deferring == dk_no_check)
|
||
deferred_access_no_check++;
|
||
else
|
||
{
|
||
deferred_access *ptr;
|
||
|
||
ptr = VEC_safe_push (deferred_access, gc, deferred_access_stack, NULL);
|
||
ptr->deferred_access_checks = NULL;
|
||
ptr->deferring_access_checks_kind = deferring;
|
||
}
|
||
}
|
||
|
||
/* Resume deferring access checks again after we stopped doing
|
||
this previously. */
|
||
|
||
void
|
||
resume_deferring_access_checks (void)
|
||
{
|
||
if (!deferred_access_no_check)
|
||
VEC_last (deferred_access, deferred_access_stack)
|
||
->deferring_access_checks_kind = dk_deferred;
|
||
}
|
||
|
||
/* Stop deferring access checks. */
|
||
|
||
void
|
||
stop_deferring_access_checks (void)
|
||
{
|
||
if (!deferred_access_no_check)
|
||
VEC_last (deferred_access, deferred_access_stack)
|
||
->deferring_access_checks_kind = dk_no_deferred;
|
||
}
|
||
|
||
/* Discard the current deferred access checks and restore the
|
||
previous states. */
|
||
|
||
void
|
||
pop_deferring_access_checks (void)
|
||
{
|
||
if (deferred_access_no_check)
|
||
deferred_access_no_check--;
|
||
else
|
||
VEC_pop (deferred_access, deferred_access_stack);
|
||
}
|
||
|
||
/* Returns a TREE_LIST representing the deferred checks.
|
||
The TREE_PURPOSE of each node is the type through which the
|
||
access occurred; the TREE_VALUE is the declaration named.
|
||
*/
|
||
|
||
VEC (deferred_access_check,gc)*
|
||
get_deferred_access_checks (void)
|
||
{
|
||
if (deferred_access_no_check)
|
||
return NULL;
|
||
else
|
||
return (VEC_last (deferred_access, deferred_access_stack)
|
||
->deferred_access_checks);
|
||
}
|
||
|
||
/* Take current deferred checks and combine with the
|
||
previous states if we also defer checks previously.
|
||
Otherwise perform checks now. */
|
||
|
||
void
|
||
pop_to_parent_deferring_access_checks (void)
|
||
{
|
||
if (deferred_access_no_check)
|
||
deferred_access_no_check--;
|
||
else
|
||
{
|
||
VEC (deferred_access_check,gc) *checks;
|
||
deferred_access *ptr;
|
||
|
||
checks = (VEC_last (deferred_access, deferred_access_stack)
|
||
->deferred_access_checks);
|
||
|
||
VEC_pop (deferred_access, deferred_access_stack);
|
||
ptr = VEC_last (deferred_access, deferred_access_stack);
|
||
if (ptr->deferring_access_checks_kind == dk_no_deferred)
|
||
{
|
||
/* Check access. */
|
||
perform_access_checks (checks);
|
||
}
|
||
else
|
||
{
|
||
/* Merge with parent. */
|
||
int i, j;
|
||
deferred_access_check *chk, *probe;
|
||
|
||
for (i = 0 ;
|
||
VEC_iterate (deferred_access_check, checks, i, chk) ;
|
||
++i)
|
||
{
|
||
for (j = 0 ;
|
||
VEC_iterate (deferred_access_check,
|
||
ptr->deferred_access_checks, j, probe) ;
|
||
++j)
|
||
{
|
||
if (probe->binfo == chk->binfo &&
|
||
probe->decl == chk->decl &&
|
||
probe->diag_decl == chk->diag_decl)
|
||
goto found;
|
||
}
|
||
/* Insert into parent's checks. */
|
||
VEC_safe_push (deferred_access_check, gc,
|
||
ptr->deferred_access_checks, chk);
|
||
found:;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Perform the access checks in CHECKS. The TREE_PURPOSE of each node
|
||
is the BINFO indicating the qualifying scope used to access the
|
||
DECL node stored in the TREE_VALUE of the node. */
|
||
|
||
void
|
||
perform_access_checks (VEC (deferred_access_check,gc)* checks)
|
||
{
|
||
int i;
|
||
deferred_access_check *chk;
|
||
|
||
if (!checks)
|
||
return;
|
||
|
||
for (i = 0 ; VEC_iterate (deferred_access_check, checks, i, chk) ; ++i)
|
||
enforce_access (chk->binfo, chk->decl, chk->diag_decl);
|
||
}
|
||
|
||
/* Perform the deferred access checks.
|
||
|
||
After performing the checks, we still have to keep the list
|
||
`deferred_access_stack->deferred_access_checks' since we may want
|
||
to check access for them again later in a different context.
|
||
For example:
|
||
|
||
class A {
|
||
typedef int X;
|
||
static X a;
|
||
};
|
||
A::X A::a, x; // No error for `A::a', error for `x'
|
||
|
||
We have to perform deferred access of `A::X', first with `A::a',
|
||
next with `x'. */
|
||
|
||
void
|
||
perform_deferred_access_checks (void)
|
||
{
|
||
perform_access_checks (get_deferred_access_checks ());
|
||
}
|
||
|
||
/* Defer checking the accessibility of DECL, when looked up in
|
||
BINFO. DIAG_DECL is the declaration to use to print diagnostics. */
|
||
|
||
void
|
||
perform_or_defer_access_check (tree binfo, tree decl, tree diag_decl)
|
||
{
|
||
int i;
|
||
deferred_access *ptr;
|
||
deferred_access_check *chk;
|
||
deferred_access_check *new_access;
|
||
|
||
|
||
/* Exit if we are in a context that no access checking is performed.
|
||
*/
|
||
if (deferred_access_no_check)
|
||
return;
|
||
|
||
gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
|
||
|
||
ptr = VEC_last (deferred_access, deferred_access_stack);
|
||
|
||
/* If we are not supposed to defer access checks, just check now. */
|
||
if (ptr->deferring_access_checks_kind == dk_no_deferred)
|
||
{
|
||
enforce_access (binfo, decl, diag_decl);
|
||
return;
|
||
}
|
||
|
||
/* See if we are already going to perform this check. */
|
||
for (i = 0 ;
|
||
VEC_iterate (deferred_access_check,
|
||
ptr->deferred_access_checks, i, chk) ;
|
||
++i)
|
||
{
|
||
if (chk->decl == decl && chk->binfo == binfo &&
|
||
chk->diag_decl == diag_decl)
|
||
{
|
||
return;
|
||
}
|
||
}
|
||
/* If not, record the check. */
|
||
new_access =
|
||
VEC_safe_push (deferred_access_check, gc,
|
||
ptr->deferred_access_checks, 0);
|
||
new_access->binfo = binfo;
|
||
new_access->decl = decl;
|
||
new_access->diag_decl = diag_decl;
|
||
}
|
||
|
||
/* Returns nonzero if the current statement is a full expression,
|
||
i.e. temporaries created during that statement should be destroyed
|
||
at the end of the statement. */
|
||
|
||
int
|
||
stmts_are_full_exprs_p (void)
|
||
{
|
||
return current_stmt_tree ()->stmts_are_full_exprs_p;
|
||
}
|
||
|
||
/* T is a statement. Add it to the statement-tree. This is the C++
|
||
version. The C/ObjC frontends have a slightly different version of
|
||
this function. */
|
||
|
||
tree
|
||
add_stmt (tree t)
|
||
{
|
||
enum tree_code code = TREE_CODE (t);
|
||
|
||
if (EXPR_P (t) && code != LABEL_EXPR)
|
||
{
|
||
if (!EXPR_HAS_LOCATION (t))
|
||
SET_EXPR_LOCATION (t, input_location);
|
||
|
||
/* When we expand a statement-tree, we must know whether or not the
|
||
statements are full-expressions. We record that fact here. */
|
||
STMT_IS_FULL_EXPR_P (t) = stmts_are_full_exprs_p ();
|
||
}
|
||
|
||
/* Add T to the statement-tree. Non-side-effect statements need to be
|
||
recorded during statement expressions. */
|
||
append_to_statement_list_force (t, &cur_stmt_list);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Returns the stmt_tree (if any) to which statements are currently
|
||
being added. If there is no active statement-tree, NULL is
|
||
returned. */
|
||
|
||
stmt_tree
|
||
current_stmt_tree (void)
|
||
{
|
||
return (cfun
|
||
? &cfun->language->base.x_stmt_tree
|
||
: &scope_chain->x_stmt_tree);
|
||
}
|
||
|
||
/* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */
|
||
|
||
static tree
|
||
maybe_cleanup_point_expr (tree expr)
|
||
{
|
||
if (!processing_template_decl && stmts_are_full_exprs_p ())
|
||
expr = fold_build_cleanup_point_expr (TREE_TYPE (expr), expr);
|
||
return expr;
|
||
}
|
||
|
||
/* Like maybe_cleanup_point_expr except have the type of the new expression be
|
||
void so we don't need to create a temporary variable to hold the inner
|
||
expression. The reason why we do this is because the original type might be
|
||
an aggregate and we cannot create a temporary variable for that type. */
|
||
|
||
static tree
|
||
maybe_cleanup_point_expr_void (tree expr)
|
||
{
|
||
if (!processing_template_decl && stmts_are_full_exprs_p ())
|
||
expr = fold_build_cleanup_point_expr (void_type_node, expr);
|
||
return expr;
|
||
}
|
||
|
||
|
||
|
||
/* Create a declaration statement for the declaration given by the DECL. */
|
||
|
||
void
|
||
add_decl_expr (tree decl)
|
||
{
|
||
tree r = build_stmt (DECL_EXPR, decl);
|
||
if (DECL_INITIAL (decl)
|
||
|| (DECL_SIZE (decl) && TREE_SIDE_EFFECTS (DECL_SIZE (decl))))
|
||
r = maybe_cleanup_point_expr_void (r);
|
||
add_stmt (r);
|
||
}
|
||
|
||
/* Nonzero if TYPE is an anonymous union or struct type. We have to use a
|
||
flag for this because "A union for which objects or pointers are
|
||
declared is not an anonymous union" [class.union]. */
|
||
|
||
int
|
||
anon_aggr_type_p (tree node)
|
||
{
|
||
return ANON_AGGR_TYPE_P (node);
|
||
}
|
||
|
||
/* Finish a scope. */
|
||
|
||
tree
|
||
do_poplevel (tree stmt_list)
|
||
{
|
||
tree block = NULL;
|
||
|
||
if (stmts_are_full_exprs_p ())
|
||
block = poplevel (kept_level_p (), 1, 0);
|
||
|
||
stmt_list = pop_stmt_list (stmt_list);
|
||
|
||
if (!processing_template_decl)
|
||
{
|
||
stmt_list = c_build_bind_expr (block, stmt_list);
|
||
/* ??? See c_end_compound_stmt re statement expressions. */
|
||
}
|
||
|
||
return stmt_list;
|
||
}
|
||
|
||
/* Begin a new scope. */
|
||
|
||
static tree
|
||
do_pushlevel (scope_kind sk)
|
||
{
|
||
tree ret = push_stmt_list ();
|
||
if (stmts_are_full_exprs_p ())
|
||
begin_scope (sk, NULL);
|
||
return ret;
|
||
}
|
||
|
||
/* Queue a cleanup. CLEANUP is an expression/statement to be executed
|
||
when the current scope is exited. EH_ONLY is true when this is not
|
||
meant to apply to normal control flow transfer. */
|
||
|
||
void
|
||
push_cleanup (tree decl, tree cleanup, bool eh_only)
|
||
{
|
||
tree stmt = build_stmt (CLEANUP_STMT, NULL, cleanup, decl);
|
||
CLEANUP_EH_ONLY (stmt) = eh_only;
|
||
add_stmt (stmt);
|
||
CLEANUP_BODY (stmt) = push_stmt_list ();
|
||
}
|
||
|
||
/* Begin a conditional that might contain a declaration. When generating
|
||
normal code, we want the declaration to appear before the statement
|
||
containing the conditional. When generating template code, we want the
|
||
conditional to be rendered as the raw DECL_EXPR. */
|
||
|
||
static void
|
||
begin_cond (tree *cond_p)
|
||
{
|
||
if (processing_template_decl)
|
||
*cond_p = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish such a conditional. */
|
||
|
||
static void
|
||
finish_cond (tree *cond_p, tree expr)
|
||
{
|
||
if (processing_template_decl)
|
||
{
|
||
tree cond = pop_stmt_list (*cond_p);
|
||
if (TREE_CODE (cond) == DECL_EXPR)
|
||
expr = cond;
|
||
}
|
||
*cond_p = expr;
|
||
}
|
||
|
||
/* If *COND_P specifies a conditional with a declaration, transform the
|
||
loop such that
|
||
while (A x = 42) { }
|
||
for (; A x = 42;) { }
|
||
becomes
|
||
while (true) { A x = 42; if (!x) break; }
|
||
for (;;) { A x = 42; if (!x) break; }
|
||
The statement list for BODY will be empty if the conditional did
|
||
not declare anything. */
|
||
|
||
static void
|
||
simplify_loop_decl_cond (tree *cond_p, tree body)
|
||
{
|
||
tree cond, if_stmt;
|
||
|
||
if (!TREE_SIDE_EFFECTS (body))
|
||
return;
|
||
|
||
cond = *cond_p;
|
||
*cond_p = boolean_true_node;
|
||
|
||
if_stmt = begin_if_stmt ();
|
||
cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
|
||
finish_if_stmt_cond (cond, if_stmt);
|
||
finish_break_stmt ();
|
||
finish_then_clause (if_stmt);
|
||
finish_if_stmt (if_stmt);
|
||
}
|
||
|
||
/* Finish a goto-statement. */
|
||
|
||
tree
|
||
finish_goto_stmt (tree destination)
|
||
{
|
||
if (TREE_CODE (destination) == IDENTIFIER_NODE)
|
||
destination = lookup_label (destination);
|
||
|
||
/* We warn about unused labels with -Wunused. That means we have to
|
||
mark the used labels as used. */
|
||
if (TREE_CODE (destination) == LABEL_DECL)
|
||
TREE_USED (destination) = 1;
|
||
else
|
||
{
|
||
/* The DESTINATION is being used as an rvalue. */
|
||
if (!processing_template_decl)
|
||
destination = decay_conversion (destination);
|
||
/* We don't inline calls to functions with computed gotos.
|
||
Those functions are typically up to some funny business,
|
||
and may be depending on the labels being at particular
|
||
addresses, or some such. */
|
||
DECL_UNINLINABLE (current_function_decl) = 1;
|
||
}
|
||
|
||
check_goto (destination);
|
||
|
||
return add_stmt (build_stmt (GOTO_EXPR, destination));
|
||
}
|
||
|
||
/* COND is the condition-expression for an if, while, etc.,
|
||
statement. Convert it to a boolean value, if appropriate. */
|
||
|
||
static tree
|
||
maybe_convert_cond (tree cond)
|
||
{
|
||
/* Empty conditions remain empty. */
|
||
if (!cond)
|
||
return NULL_TREE;
|
||
|
||
/* Wait until we instantiate templates before doing conversion. */
|
||
if (processing_template_decl)
|
||
return cond;
|
||
|
||
/* Do the conversion. */
|
||
cond = convert_from_reference (cond);
|
||
return condition_conversion (cond);
|
||
}
|
||
|
||
/* Finish an expression-statement, whose EXPRESSION is as indicated. */
|
||
|
||
tree
|
||
finish_expr_stmt (tree expr)
|
||
{
|
||
tree r = NULL_TREE;
|
||
|
||
if (expr != NULL_TREE)
|
||
{
|
||
if (!processing_template_decl)
|
||
{
|
||
if (warn_sequence_point)
|
||
verify_sequence_points (expr);
|
||
expr = convert_to_void (expr, "statement");
|
||
}
|
||
else if (!type_dependent_expression_p (expr))
|
||
convert_to_void (build_non_dependent_expr (expr), "statement");
|
||
|
||
/* Simplification of inner statement expressions, compound exprs,
|
||
etc can result in us already having an EXPR_STMT. */
|
||
if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
|
||
{
|
||
if (TREE_CODE (expr) != EXPR_STMT)
|
||
expr = build_stmt (EXPR_STMT, expr);
|
||
expr = maybe_cleanup_point_expr_void (expr);
|
||
}
|
||
|
||
r = add_stmt (expr);
|
||
}
|
||
|
||
finish_stmt ();
|
||
|
||
return r;
|
||
}
|
||
|
||
|
||
/* Begin an if-statement. Returns a newly created IF_STMT if
|
||
appropriate. */
|
||
|
||
tree
|
||
begin_if_stmt (void)
|
||
{
|
||
tree r, scope;
|
||
scope = do_pushlevel (sk_block);
|
||
r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
|
||
TREE_CHAIN (r) = scope;
|
||
begin_cond (&IF_COND (r));
|
||
return r;
|
||
}
|
||
|
||
/* Process the COND of an if-statement, which may be given by
|
||
IF_STMT. */
|
||
|
||
void
|
||
finish_if_stmt_cond (tree cond, tree if_stmt)
|
||
{
|
||
finish_cond (&IF_COND (if_stmt), maybe_convert_cond (cond));
|
||
add_stmt (if_stmt);
|
||
THEN_CLAUSE (if_stmt) = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish the then-clause of an if-statement, which may be given by
|
||
IF_STMT. */
|
||
|
||
tree
|
||
finish_then_clause (tree if_stmt)
|
||
{
|
||
THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt));
|
||
return if_stmt;
|
||
}
|
||
|
||
/* Begin the else-clause of an if-statement. */
|
||
|
||
void
|
||
begin_else_clause (tree if_stmt)
|
||
{
|
||
ELSE_CLAUSE (if_stmt) = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish the else-clause of an if-statement, which may be given by
|
||
IF_STMT. */
|
||
|
||
void
|
||
finish_else_clause (tree if_stmt)
|
||
{
|
||
ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt));
|
||
}
|
||
|
||
/* Finish an if-statement. */
|
||
|
||
void
|
||
finish_if_stmt (tree if_stmt)
|
||
{
|
||
tree scope = TREE_CHAIN (if_stmt);
|
||
TREE_CHAIN (if_stmt) = NULL;
|
||
add_stmt (do_poplevel (scope));
|
||
finish_stmt ();
|
||
empty_body_warning (THEN_CLAUSE (if_stmt), ELSE_CLAUSE (if_stmt));
|
||
}
|
||
|
||
/* Begin a while-statement. Returns a newly created WHILE_STMT if
|
||
appropriate. */
|
||
|
||
tree
|
||
begin_while_stmt (void)
|
||
{
|
||
tree r;
|
||
r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
|
||
add_stmt (r);
|
||
WHILE_BODY (r) = do_pushlevel (sk_block);
|
||
begin_cond (&WHILE_COND (r));
|
||
return r;
|
||
}
|
||
|
||
/* Process the COND of a while-statement, which may be given by
|
||
WHILE_STMT. */
|
||
|
||
void
|
||
finish_while_stmt_cond (tree cond, tree while_stmt)
|
||
{
|
||
finish_cond (&WHILE_COND (while_stmt), maybe_convert_cond (cond));
|
||
simplify_loop_decl_cond (&WHILE_COND (while_stmt), WHILE_BODY (while_stmt));
|
||
}
|
||
|
||
/* Finish a while-statement, which may be given by WHILE_STMT. */
|
||
|
||
void
|
||
finish_while_stmt (tree while_stmt)
|
||
{
|
||
WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt));
|
||
finish_stmt ();
|
||
}
|
||
|
||
/* Begin a do-statement. Returns a newly created DO_STMT if
|
||
appropriate. */
|
||
|
||
tree
|
||
begin_do_stmt (void)
|
||
{
|
||
tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE);
|
||
add_stmt (r);
|
||
DO_BODY (r) = push_stmt_list ();
|
||
return r;
|
||
}
|
||
|
||
/* Finish the body of a do-statement, which may be given by DO_STMT. */
|
||
|
||
void
|
||
finish_do_body (tree do_stmt)
|
||
{
|
||
DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt));
|
||
}
|
||
|
||
/* Finish a do-statement, which may be given by DO_STMT, and whose
|
||
COND is as indicated. */
|
||
|
||
void
|
||
finish_do_stmt (tree cond, tree do_stmt)
|
||
{
|
||
cond = maybe_convert_cond (cond);
|
||
DO_COND (do_stmt) = cond;
|
||
finish_stmt ();
|
||
}
|
||
|
||
/* Finish a return-statement. The EXPRESSION returned, if any, is as
|
||
indicated. */
|
||
|
||
tree
|
||
finish_return_stmt (tree expr)
|
||
{
|
||
tree r;
|
||
bool no_warning;
|
||
|
||
expr = check_return_expr (expr, &no_warning);
|
||
|
||
if (flag_openmp && !check_omp_return ())
|
||
return error_mark_node;
|
||
if (!processing_template_decl)
|
||
{
|
||
if (DECL_DESTRUCTOR_P (current_function_decl)
|
||
|| (DECL_CONSTRUCTOR_P (current_function_decl)
|
||
&& targetm.cxx.cdtor_returns_this ()))
|
||
{
|
||
/* Similarly, all destructors must run destructors for
|
||
base-classes before returning. So, all returns in a
|
||
destructor get sent to the DTOR_LABEL; finish_function emits
|
||
code to return a value there. */
|
||
return finish_goto_stmt (cdtor_label);
|
||
}
|
||
}
|
||
|
||
r = build_stmt (RETURN_EXPR, expr);
|
||
TREE_NO_WARNING (r) |= no_warning;
|
||
r = maybe_cleanup_point_expr_void (r);
|
||
r = add_stmt (r);
|
||
finish_stmt ();
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
|
||
|
||
tree
|
||
begin_for_stmt (void)
|
||
{
|
||
tree r;
|
||
|
||
r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE,
|
||
NULL_TREE, NULL_TREE);
|
||
|
||
if (flag_new_for_scope > 0)
|
||
TREE_CHAIN (r) = do_pushlevel (sk_for);
|
||
|
||
if (processing_template_decl)
|
||
FOR_INIT_STMT (r) = push_stmt_list ();
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Finish the for-init-statement of a for-statement, which may be
|
||
given by FOR_STMT. */
|
||
|
||
void
|
||
finish_for_init_stmt (tree for_stmt)
|
||
{
|
||
if (processing_template_decl)
|
||
FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt));
|
||
add_stmt (for_stmt);
|
||
FOR_BODY (for_stmt) = do_pushlevel (sk_block);
|
||
begin_cond (&FOR_COND (for_stmt));
|
||
}
|
||
|
||
/* Finish the COND of a for-statement, which may be given by
|
||
FOR_STMT. */
|
||
|
||
void
|
||
finish_for_cond (tree cond, tree for_stmt)
|
||
{
|
||
finish_cond (&FOR_COND (for_stmt), maybe_convert_cond (cond));
|
||
simplify_loop_decl_cond (&FOR_COND (for_stmt), FOR_BODY (for_stmt));
|
||
}
|
||
|
||
/* Finish the increment-EXPRESSION in a for-statement, which may be
|
||
given by FOR_STMT. */
|
||
|
||
void
|
||
finish_for_expr (tree expr, tree for_stmt)
|
||
{
|
||
if (!expr)
|
||
return;
|
||
/* If EXPR is an overloaded function, issue an error; there is no
|
||
context available to use to perform overload resolution. */
|
||
if (type_unknown_p (expr))
|
||
{
|
||
cxx_incomplete_type_error (expr, TREE_TYPE (expr));
|
||
expr = error_mark_node;
|
||
}
|
||
if (!processing_template_decl)
|
||
{
|
||
if (warn_sequence_point)
|
||
verify_sequence_points (expr);
|
||
expr = convert_to_void (expr, "3rd expression in for");
|
||
}
|
||
else if (!type_dependent_expression_p (expr))
|
||
convert_to_void (build_non_dependent_expr (expr), "3rd expression in for");
|
||
expr = maybe_cleanup_point_expr_void (expr);
|
||
FOR_EXPR (for_stmt) = expr;
|
||
}
|
||
|
||
/* Finish the body of a for-statement, which may be given by
|
||
FOR_STMT. The increment-EXPR for the loop must be
|
||
provided. */
|
||
|
||
void
|
||
finish_for_stmt (tree for_stmt)
|
||
{
|
||
FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt));
|
||
|
||
/* Pop the scope for the body of the loop. */
|
||
if (flag_new_for_scope > 0)
|
||
{
|
||
tree scope = TREE_CHAIN (for_stmt);
|
||
TREE_CHAIN (for_stmt) = NULL;
|
||
add_stmt (do_poplevel (scope));
|
||
}
|
||
|
||
finish_stmt ();
|
||
}
|
||
|
||
/* Finish a break-statement. */
|
||
|
||
tree
|
||
finish_break_stmt (void)
|
||
{
|
||
return add_stmt (build_stmt (BREAK_STMT));
|
||
}
|
||
|
||
/* Finish a continue-statement. */
|
||
|
||
tree
|
||
finish_continue_stmt (void)
|
||
{
|
||
return add_stmt (build_stmt (CONTINUE_STMT));
|
||
}
|
||
|
||
/* Begin a switch-statement. Returns a new SWITCH_STMT if
|
||
appropriate. */
|
||
|
||
tree
|
||
begin_switch_stmt (void)
|
||
{
|
||
tree r, scope;
|
||
|
||
r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
|
||
|
||
scope = do_pushlevel (sk_block);
|
||
TREE_CHAIN (r) = scope;
|
||
begin_cond (&SWITCH_STMT_COND (r));
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Finish the cond of a switch-statement. */
|
||
|
||
void
|
||
finish_switch_cond (tree cond, tree switch_stmt)
|
||
{
|
||
tree orig_type = NULL;
|
||
if (!processing_template_decl)
|
||
{
|
||
tree index;
|
||
|
||
/* Convert the condition to an integer or enumeration type. */
|
||
cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
|
||
if (cond == NULL_TREE)
|
||
{
|
||
error ("switch quantity not an integer");
|
||
cond = error_mark_node;
|
||
}
|
||
orig_type = TREE_TYPE (cond);
|
||
if (cond != error_mark_node)
|
||
{
|
||
/* [stmt.switch]
|
||
|
||
Integral promotions are performed. */
|
||
cond = perform_integral_promotions (cond);
|
||
cond = maybe_cleanup_point_expr (cond);
|
||
}
|
||
|
||
if (cond != error_mark_node)
|
||
{
|
||
index = get_unwidened (cond, NULL_TREE);
|
||
/* We can't strip a conversion from a signed type to an unsigned,
|
||
because if we did, int_fits_type_p would do the wrong thing
|
||
when checking case values for being in range,
|
||
and it's too hard to do the right thing. */
|
||
if (TYPE_UNSIGNED (TREE_TYPE (cond))
|
||
== TYPE_UNSIGNED (TREE_TYPE (index)))
|
||
cond = index;
|
||
}
|
||
}
|
||
finish_cond (&SWITCH_STMT_COND (switch_stmt), cond);
|
||
SWITCH_STMT_TYPE (switch_stmt) = orig_type;
|
||
add_stmt (switch_stmt);
|
||
push_switch (switch_stmt);
|
||
SWITCH_STMT_BODY (switch_stmt) = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish the body of a switch-statement, which may be given by
|
||
SWITCH_STMT. The COND to switch on is indicated. */
|
||
|
||
void
|
||
finish_switch_stmt (tree switch_stmt)
|
||
{
|
||
tree scope;
|
||
|
||
SWITCH_STMT_BODY (switch_stmt) =
|
||
pop_stmt_list (SWITCH_STMT_BODY (switch_stmt));
|
||
pop_switch ();
|
||
finish_stmt ();
|
||
|
||
scope = TREE_CHAIN (switch_stmt);
|
||
TREE_CHAIN (switch_stmt) = NULL;
|
||
add_stmt (do_poplevel (scope));
|
||
}
|
||
|
||
/* Begin a try-block. Returns a newly-created TRY_BLOCK if
|
||
appropriate. */
|
||
|
||
tree
|
||
begin_try_block (void)
|
||
{
|
||
tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
|
||
add_stmt (r);
|
||
TRY_STMTS (r) = push_stmt_list ();
|
||
return r;
|
||
}
|
||
|
||
/* Likewise, for a function-try-block. The block returned in
|
||
*COMPOUND_STMT is an artificial outer scope, containing the
|
||
function-try-block. */
|
||
|
||
tree
|
||
begin_function_try_block (tree *compound_stmt)
|
||
{
|
||
tree r;
|
||
/* This outer scope does not exist in the C++ standard, but we need
|
||
a place to put __FUNCTION__ and similar variables. */
|
||
*compound_stmt = begin_compound_stmt (0);
|
||
r = begin_try_block ();
|
||
FN_TRY_BLOCK_P (r) = 1;
|
||
return r;
|
||
}
|
||
|
||
/* Finish a try-block, which may be given by TRY_BLOCK. */
|
||
|
||
void
|
||
finish_try_block (tree try_block)
|
||
{
|
||
TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
|
||
TRY_HANDLERS (try_block) = push_stmt_list ();
|
||
}
|
||
|
||
/* Finish the body of a cleanup try-block, which may be given by
|
||
TRY_BLOCK. */
|
||
|
||
void
|
||
finish_cleanup_try_block (tree try_block)
|
||
{
|
||
TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
|
||
}
|
||
|
||
/* Finish an implicitly generated try-block, with a cleanup is given
|
||
by CLEANUP. */
|
||
|
||
void
|
||
finish_cleanup (tree cleanup, tree try_block)
|
||
{
|
||
TRY_HANDLERS (try_block) = cleanup;
|
||
CLEANUP_P (try_block) = 1;
|
||
}
|
||
|
||
/* Likewise, for a function-try-block. */
|
||
|
||
void
|
||
finish_function_try_block (tree try_block)
|
||
{
|
||
finish_try_block (try_block);
|
||
/* FIXME : something queer about CTOR_INITIALIZER somehow following
|
||
the try block, but moving it inside. */
|
||
in_function_try_handler = 1;
|
||
}
|
||
|
||
/* Finish a handler-sequence for a try-block, which may be given by
|
||
TRY_BLOCK. */
|
||
|
||
void
|
||
finish_handler_sequence (tree try_block)
|
||
{
|
||
TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block));
|
||
check_handlers (TRY_HANDLERS (try_block));
|
||
}
|
||
|
||
/* Finish the handler-seq for a function-try-block, given by
|
||
TRY_BLOCK. COMPOUND_STMT is the outer block created by
|
||
begin_function_try_block. */
|
||
|
||
void
|
||
finish_function_handler_sequence (tree try_block, tree compound_stmt)
|
||
{
|
||
in_function_try_handler = 0;
|
||
finish_handler_sequence (try_block);
|
||
finish_compound_stmt (compound_stmt);
|
||
}
|
||
|
||
/* Begin a handler. Returns a HANDLER if appropriate. */
|
||
|
||
tree
|
||
begin_handler (void)
|
||
{
|
||
tree r;
|
||
|
||
r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
|
||
add_stmt (r);
|
||
|
||
/* Create a binding level for the eh_info and the exception object
|
||
cleanup. */
|
||
HANDLER_BODY (r) = do_pushlevel (sk_catch);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Finish the handler-parameters for a handler, which may be given by
|
||
HANDLER. DECL is the declaration for the catch parameter, or NULL
|
||
if this is a `catch (...)' clause. */
|
||
|
||
void
|
||
finish_handler_parms (tree decl, tree handler)
|
||
{
|
||
tree type = NULL_TREE;
|
||
if (processing_template_decl)
|
||
{
|
||
if (decl)
|
||
{
|
||
decl = pushdecl (decl);
|
||
decl = push_template_decl (decl);
|
||
HANDLER_PARMS (handler) = decl;
|
||
type = TREE_TYPE (decl);
|
||
}
|
||
}
|
||
else
|
||
type = expand_start_catch_block (decl);
|
||
HANDLER_TYPE (handler) = type;
|
||
if (!processing_template_decl && type)
|
||
mark_used (eh_type_info (type));
|
||
}
|
||
|
||
/* Finish a handler, which may be given by HANDLER. The BLOCKs are
|
||
the return value from the matching call to finish_handler_parms. */
|
||
|
||
void
|
||
finish_handler (tree handler)
|
||
{
|
||
if (!processing_template_decl)
|
||
expand_end_catch_block ();
|
||
HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler));
|
||
}
|
||
|
||
/* Begin a compound statement. FLAGS contains some bits that control the
|
||
behavior and context. If BCS_NO_SCOPE is set, the compound statement
|
||
does not define a scope. If BCS_FN_BODY is set, this is the outermost
|
||
block of a function. If BCS_TRY_BLOCK is set, this is the block
|
||
created on behalf of a TRY statement. Returns a token to be passed to
|
||
finish_compound_stmt. */
|
||
|
||
tree
|
||
begin_compound_stmt (unsigned int flags)
|
||
{
|
||
tree r;
|
||
|
||
if (flags & BCS_NO_SCOPE)
|
||
{
|
||
r = push_stmt_list ();
|
||
STATEMENT_LIST_NO_SCOPE (r) = 1;
|
||
|
||
/* Normally, we try hard to keep the BLOCK for a statement-expression.
|
||
But, if it's a statement-expression with a scopeless block, there's
|
||
nothing to keep, and we don't want to accidentally keep a block
|
||
*inside* the scopeless block. */
|
||
keep_next_level (false);
|
||
}
|
||
else
|
||
r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block);
|
||
|
||
/* When processing a template, we need to remember where the braces were,
|
||
so that we can set up identical scopes when instantiating the template
|
||
later. BIND_EXPR is a handy candidate for this.
|
||
Note that do_poplevel won't create a BIND_EXPR itself here (and thus
|
||
result in nested BIND_EXPRs), since we don't build BLOCK nodes when
|
||
processing templates. */
|
||
if (processing_template_decl)
|
||
{
|
||
r = build3 (BIND_EXPR, NULL, NULL, r, NULL);
|
||
BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0;
|
||
BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0;
|
||
TREE_SIDE_EFFECTS (r) = 1;
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Finish a compound-statement, which is given by STMT. */
|
||
|
||
void
|
||
finish_compound_stmt (tree stmt)
|
||
{
|
||
if (TREE_CODE (stmt) == BIND_EXPR)
|
||
BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt));
|
||
else if (STATEMENT_LIST_NO_SCOPE (stmt))
|
||
stmt = pop_stmt_list (stmt);
|
||
else
|
||
{
|
||
/* Destroy any ObjC "super" receivers that may have been
|
||
created. */
|
||
objc_clear_super_receiver ();
|
||
|
||
stmt = do_poplevel (stmt);
|
||
}
|
||
|
||
/* ??? See c_end_compound_stmt wrt statement expressions. */
|
||
add_stmt (stmt);
|
||
finish_stmt ();
|
||
}
|
||
|
||
/* Finish an asm-statement, whose components are a STRING, some
|
||
OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
|
||
whether the asm-statement should be considered volatile. */
|
||
|
||
tree
|
||
finish_asm_stmt (int volatile_p, tree string, tree output_operands,
|
||
tree input_operands, tree clobbers)
|
||
{
|
||
tree r;
|
||
tree t;
|
||
int ninputs = list_length (input_operands);
|
||
int noutputs = list_length (output_operands);
|
||
|
||
if (!processing_template_decl)
|
||
{
|
||
const char *constraint;
|
||
const char **oconstraints;
|
||
bool allows_mem, allows_reg, is_inout;
|
||
tree operand;
|
||
int i;
|
||
|
||
oconstraints = (const char **) alloca (noutputs * sizeof (char *));
|
||
|
||
string = resolve_asm_operand_names (string, output_operands,
|
||
input_operands);
|
||
|
||
for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
|
||
{
|
||
operand = TREE_VALUE (t);
|
||
|
||
/* ??? Really, this should not be here. Users should be using a
|
||
proper lvalue, dammit. But there's a long history of using
|
||
casts in the output operands. In cases like longlong.h, this
|
||
becomes a primitive form of typechecking -- if the cast can be
|
||
removed, then the output operand had a type of the proper width;
|
||
otherwise we'll get an error. Gross, but ... */
|
||
STRIP_NOPS (operand);
|
||
|
||
if (!lvalue_or_else (operand, lv_asm))
|
||
operand = error_mark_node;
|
||
|
||
if (operand != error_mark_node
|
||
&& (TREE_READONLY (operand)
|
||
|| CP_TYPE_CONST_P (TREE_TYPE (operand))
|
||
/* Functions are not modifiable, even though they are
|
||
lvalues. */
|
||
|| TREE_CODE (TREE_TYPE (operand)) == FUNCTION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (operand)) == METHOD_TYPE
|
||
/* If it's an aggregate and any field is const, then it is
|
||
effectively const. */
|
||
|| (CLASS_TYPE_P (TREE_TYPE (operand))
|
||
&& C_TYPE_FIELDS_READONLY (TREE_TYPE (operand)))))
|
||
readonly_error (operand, "assignment (via 'asm' output)", 0);
|
||
|
||
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
|
||
oconstraints[i] = constraint;
|
||
|
||
if (parse_output_constraint (&constraint, i, ninputs, noutputs,
|
||
&allows_mem, &allows_reg, &is_inout))
|
||
{
|
||
/* If the operand is going to end up in memory,
|
||
mark it addressable. */
|
||
if (!allows_reg && !cxx_mark_addressable (operand))
|
||
operand = error_mark_node;
|
||
}
|
||
else
|
||
operand = error_mark_node;
|
||
|
||
TREE_VALUE (t) = operand;
|
||
}
|
||
|
||
for (i = 0, t = input_operands; t; ++i, t = TREE_CHAIN (t))
|
||
{
|
||
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
|
||
operand = decay_conversion (TREE_VALUE (t));
|
||
|
||
/* If the type of the operand hasn't been determined (e.g.,
|
||
because it involves an overloaded function), then issue
|
||
an error message. There's no context available to
|
||
resolve the overloading. */
|
||
if (TREE_TYPE (operand) == unknown_type_node)
|
||
{
|
||
error ("type of asm operand %qE could not be determined",
|
||
TREE_VALUE (t));
|
||
operand = error_mark_node;
|
||
}
|
||
|
||
if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
|
||
oconstraints, &allows_mem, &allows_reg))
|
||
{
|
||
/* If the operand is going to end up in memory,
|
||
mark it addressable. */
|
||
if (!allows_reg && allows_mem)
|
||
{
|
||
/* Strip the nops as we allow this case. FIXME, this really
|
||
should be rejected or made deprecated. */
|
||
STRIP_NOPS (operand);
|
||
if (!cxx_mark_addressable (operand))
|
||
operand = error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
operand = error_mark_node;
|
||
|
||
TREE_VALUE (t) = operand;
|
||
}
|
||
}
|
||
|
||
r = build_stmt (ASM_EXPR, string,
|
||
output_operands, input_operands,
|
||
clobbers);
|
||
ASM_VOLATILE_P (r) = volatile_p || noutputs == 0;
|
||
r = maybe_cleanup_point_expr_void (r);
|
||
return add_stmt (r);
|
||
}
|
||
|
||
/* Finish a label with the indicated NAME. */
|
||
|
||
tree
|
||
finish_label_stmt (tree name)
|
||
{
|
||
tree decl = define_label (input_location, name);
|
||
|
||
if (decl == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return add_stmt (build_stmt (LABEL_EXPR, decl));
|
||
}
|
||
|
||
/* Finish a series of declarations for local labels. G++ allows users
|
||
to declare "local" labels, i.e., labels with scope. This extension
|
||
is useful when writing code involving statement-expressions. */
|
||
|
||
void
|
||
finish_label_decl (tree name)
|
||
{
|
||
tree decl = declare_local_label (name);
|
||
add_decl_expr (decl);
|
||
}
|
||
|
||
/* When DECL goes out of scope, make sure that CLEANUP is executed. */
|
||
|
||
void
|
||
finish_decl_cleanup (tree decl, tree cleanup)
|
||
{
|
||
push_cleanup (decl, cleanup, false);
|
||
}
|
||
|
||
/* If the current scope exits with an exception, run CLEANUP. */
|
||
|
||
void
|
||
finish_eh_cleanup (tree cleanup)
|
||
{
|
||
push_cleanup (NULL, cleanup, true);
|
||
}
|
||
|
||
/* The MEM_INITS is a list of mem-initializers, in reverse of the
|
||
order they were written by the user. Each node is as for
|
||
emit_mem_initializers. */
|
||
|
||
void
|
||
finish_mem_initializers (tree mem_inits)
|
||
{
|
||
/* Reorder the MEM_INITS so that they are in the order they appeared
|
||
in the source program. */
|
||
mem_inits = nreverse (mem_inits);
|
||
|
||
if (processing_template_decl)
|
||
add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
|
||
else
|
||
emit_mem_initializers (mem_inits);
|
||
}
|
||
|
||
/* Finish a parenthesized expression EXPR. */
|
||
|
||
tree
|
||
finish_parenthesized_expr (tree expr)
|
||
{
|
||
if (EXPR_P (expr))
|
||
/* This inhibits warnings in c_common_truthvalue_conversion. */
|
||
TREE_NO_WARNING (expr) = 1;
|
||
|
||
if (TREE_CODE (expr) == OFFSET_REF)
|
||
/* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
|
||
enclosed in parentheses. */
|
||
PTRMEM_OK_P (expr) = 0;
|
||
|
||
if (TREE_CODE (expr) == STRING_CST)
|
||
PAREN_STRING_LITERAL_P (expr) = 1;
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Finish a reference to a non-static data member (DECL) that is not
|
||
preceded by `.' or `->'. */
|
||
|
||
tree
|
||
finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
|
||
{
|
||
gcc_assert (TREE_CODE (decl) == FIELD_DECL);
|
||
|
||
if (!object)
|
||
{
|
||
if (current_function_decl
|
||
&& DECL_STATIC_FUNCTION_P (current_function_decl))
|
||
error ("invalid use of member %q+D in static member function", decl);
|
||
else
|
||
error ("invalid use of non-static data member %q+D", decl);
|
||
error ("from this location");
|
||
|
||
return error_mark_node;
|
||
}
|
||
TREE_USED (current_class_ptr) = 1;
|
||
if (processing_template_decl && !qualifying_scope)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
type = TREE_TYPE (type);
|
||
else
|
||
{
|
||
/* Set the cv qualifiers. */
|
||
int quals = cp_type_quals (TREE_TYPE (current_class_ref));
|
||
|
||
if (DECL_MUTABLE_P (decl))
|
||
quals &= ~TYPE_QUAL_CONST;
|
||
|
||
quals |= cp_type_quals (TREE_TYPE (decl));
|
||
type = cp_build_qualified_type (type, quals);
|
||
}
|
||
|
||
return build_min (COMPONENT_REF, type, object, decl, NULL_TREE);
|
||
}
|
||
else
|
||
{
|
||
tree access_type = TREE_TYPE (object);
|
||
tree lookup_context = context_for_name_lookup (decl);
|
||
|
||
while (!DERIVED_FROM_P (lookup_context, access_type))
|
||
{
|
||
access_type = TYPE_CONTEXT (access_type);
|
||
while (access_type && DECL_P (access_type))
|
||
access_type = DECL_CONTEXT (access_type);
|
||
|
||
if (!access_type)
|
||
{
|
||
error ("object missing in reference to %q+D", decl);
|
||
error ("from this location");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* If PROCESSING_TEMPLATE_DECL is nonzero here, then
|
||
QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
|
||
for now. */
|
||
if (processing_template_decl)
|
||
return build_qualified_name (TREE_TYPE (decl),
|
||
qualifying_scope,
|
||
DECL_NAME (decl),
|
||
/*template_p=*/false);
|
||
|
||
perform_or_defer_access_check (TYPE_BINFO (access_type), decl,
|
||
decl);
|
||
|
||
/* If the data member was named `C::M', convert `*this' to `C'
|
||
first. */
|
||
if (qualifying_scope)
|
||
{
|
||
tree binfo = NULL_TREE;
|
||
object = build_scoped_ref (object, qualifying_scope,
|
||
&binfo);
|
||
}
|
||
|
||
return build_class_member_access_expr (object, decl,
|
||
/*access_path=*/NULL_TREE,
|
||
/*preserve_reference=*/false);
|
||
}
|
||
}
|
||
|
||
/* DECL was the declaration to which a qualified-id resolved. Issue
|
||
an error message if it is not accessible. If OBJECT_TYPE is
|
||
non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
|
||
type of `*x', or `x', respectively. If the DECL was named as
|
||
`A::B' then NESTED_NAME_SPECIFIER is `A'. */
|
||
|
||
void
|
||
check_accessibility_of_qualified_id (tree decl,
|
||
tree object_type,
|
||
tree nested_name_specifier)
|
||
{
|
||
tree scope;
|
||
tree qualifying_type = NULL_TREE;
|
||
|
||
/* If we're not checking, return immediately. */
|
||
if (deferred_access_no_check)
|
||
return;
|
||
|
||
/* Determine the SCOPE of DECL. */
|
||
scope = context_for_name_lookup (decl);
|
||
/* If the SCOPE is not a type, then DECL is not a member. */
|
||
if (!TYPE_P (scope))
|
||
return;
|
||
/* Compute the scope through which DECL is being accessed. */
|
||
if (object_type
|
||
/* OBJECT_TYPE might not be a class type; consider:
|
||
|
||
class A { typedef int I; };
|
||
I *p;
|
||
p->A::I::~I();
|
||
|
||
In this case, we will have "A::I" as the DECL, but "I" as the
|
||
OBJECT_TYPE. */
|
||
&& CLASS_TYPE_P (object_type)
|
||
&& DERIVED_FROM_P (scope, object_type))
|
||
/* If we are processing a `->' or `.' expression, use the type of the
|
||
left-hand side. */
|
||
qualifying_type = object_type;
|
||
else if (nested_name_specifier)
|
||
{
|
||
/* If the reference is to a non-static member of the
|
||
current class, treat it as if it were referenced through
|
||
`this'. */
|
||
if (DECL_NONSTATIC_MEMBER_P (decl)
|
||
&& current_class_ptr
|
||
&& DERIVED_FROM_P (scope, current_class_type))
|
||
qualifying_type = current_class_type;
|
||
/* Otherwise, use the type indicated by the
|
||
nested-name-specifier. */
|
||
else
|
||
qualifying_type = nested_name_specifier;
|
||
}
|
||
else
|
||
/* Otherwise, the name must be from the current class or one of
|
||
its bases. */
|
||
qualifying_type = currently_open_derived_class (scope);
|
||
|
||
if (qualifying_type
|
||
/* It is possible for qualifying type to be a TEMPLATE_TYPE_PARM
|
||
or similar in a default argument value. */
|
||
&& CLASS_TYPE_P (qualifying_type)
|
||
&& !dependent_type_p (qualifying_type))
|
||
perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl,
|
||
decl);
|
||
}
|
||
|
||
/* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
|
||
class named to the left of the "::" operator. DONE is true if this
|
||
expression is a complete postfix-expression; it is false if this
|
||
expression is followed by '->', '[', '(', etc. ADDRESS_P is true
|
||
iff this expression is the operand of '&'. TEMPLATE_P is true iff
|
||
the qualified-id was of the form "A::template B". TEMPLATE_ARG_P
|
||
is true iff this qualified name appears as a template argument. */
|
||
|
||
tree
|
||
finish_qualified_id_expr (tree qualifying_class,
|
||
tree expr,
|
||
bool done,
|
||
bool address_p,
|
||
bool template_p,
|
||
bool template_arg_p)
|
||
{
|
||
gcc_assert (TYPE_P (qualifying_class));
|
||
|
||
if (error_operand_p (expr))
|
||
return error_mark_node;
|
||
|
||
if (DECL_P (expr) || BASELINK_P (expr))
|
||
mark_used (expr);
|
||
|
||
if (template_p)
|
||
check_template_keyword (expr);
|
||
|
||
/* If EXPR occurs as the operand of '&', use special handling that
|
||
permits a pointer-to-member. */
|
||
if (address_p && done)
|
||
{
|
||
if (TREE_CODE (expr) == SCOPE_REF)
|
||
expr = TREE_OPERAND (expr, 1);
|
||
expr = build_offset_ref (qualifying_class, expr,
|
||
/*address_p=*/true);
|
||
return expr;
|
||
}
|
||
|
||
/* Within the scope of a class, turn references to non-static
|
||
members into expression of the form "this->...". */
|
||
if (template_arg_p)
|
||
/* But, within a template argument, we do not want make the
|
||
transformation, as there is no "this" pointer. */
|
||
;
|
||
else if (TREE_CODE (expr) == FIELD_DECL)
|
||
expr = finish_non_static_data_member (expr, current_class_ref,
|
||
qualifying_class);
|
||
else if (BASELINK_P (expr) && !processing_template_decl)
|
||
{
|
||
tree fns;
|
||
|
||
/* See if any of the functions are non-static members. */
|
||
fns = BASELINK_FUNCTIONS (expr);
|
||
if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
|
||
fns = TREE_OPERAND (fns, 0);
|
||
/* If so, the expression may be relative to the current
|
||
class. */
|
||
if (!shared_member_p (fns)
|
||
&& current_class_type
|
||
&& DERIVED_FROM_P (qualifying_class, current_class_type))
|
||
expr = (build_class_member_access_expr
|
||
(maybe_dummy_object (qualifying_class, NULL),
|
||
expr,
|
||
BASELINK_ACCESS_BINFO (expr),
|
||
/*preserve_reference=*/false));
|
||
else if (done)
|
||
/* The expression is a qualified name whose address is not
|
||
being taken. */
|
||
expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Begin a statement-expression. The value returned must be passed to
|
||
finish_stmt_expr. */
|
||
|
||
tree
|
||
begin_stmt_expr (void)
|
||
{
|
||
return push_stmt_list ();
|
||
}
|
||
|
||
/* Process the final expression of a statement expression. EXPR can be
|
||
NULL, if the final expression is empty. Return a STATEMENT_LIST
|
||
containing all the statements in the statement-expression, or
|
||
ERROR_MARK_NODE if there was an error. */
|
||
|
||
tree
|
||
finish_stmt_expr_expr (tree expr, tree stmt_expr)
|
||
{
|
||
if (error_operand_p (expr))
|
||
return error_mark_node;
|
||
|
||
/* If the last statement does not have "void" type, then the value
|
||
of the last statement is the value of the entire expression. */
|
||
if (expr)
|
||
{
|
||
tree type = TREE_TYPE (expr);
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
expr = build_stmt (EXPR_STMT, expr);
|
||
expr = add_stmt (expr);
|
||
/* Mark the last statement so that we can recognize it as such at
|
||
template-instantiation time. */
|
||
EXPR_STMT_STMT_EXPR_RESULT (expr) = 1;
|
||
}
|
||
else if (VOID_TYPE_P (type))
|
||
{
|
||
/* Just treat this like an ordinary statement. */
|
||
expr = finish_expr_stmt (expr);
|
||
}
|
||
else
|
||
{
|
||
/* It actually has a value we need to deal with. First, force it
|
||
to be an rvalue so that we won't need to build up a copy
|
||
constructor call later when we try to assign it to something. */
|
||
expr = force_rvalue (expr);
|
||
if (error_operand_p (expr))
|
||
return error_mark_node;
|
||
|
||
/* Update for array-to-pointer decay. */
|
||
type = TREE_TYPE (expr);
|
||
|
||
/* Wrap it in a CLEANUP_POINT_EXPR and add it to the list like a
|
||
normal statement, but don't convert to void or actually add
|
||
the EXPR_STMT. */
|
||
if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
|
||
expr = maybe_cleanup_point_expr (expr);
|
||
add_stmt (expr);
|
||
}
|
||
|
||
/* The type of the statement-expression is the type of the last
|
||
expression. */
|
||
TREE_TYPE (stmt_expr) = type;
|
||
}
|
||
|
||
return stmt_expr;
|
||
}
|
||
|
||
/* Finish a statement-expression. EXPR should be the value returned
|
||
by the previous begin_stmt_expr. Returns an expression
|
||
representing the statement-expression. */
|
||
|
||
tree
|
||
finish_stmt_expr (tree stmt_expr, bool has_no_scope)
|
||
{
|
||
tree type;
|
||
tree result;
|
||
|
||
if (error_operand_p (stmt_expr))
|
||
return error_mark_node;
|
||
|
||
gcc_assert (TREE_CODE (stmt_expr) == STATEMENT_LIST);
|
||
|
||
type = TREE_TYPE (stmt_expr);
|
||
result = pop_stmt_list (stmt_expr);
|
||
TREE_TYPE (result) = type;
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
result = build_min (STMT_EXPR, type, result);
|
||
TREE_SIDE_EFFECTS (result) = 1;
|
||
STMT_EXPR_NO_SCOPE (result) = has_no_scope;
|
||
}
|
||
else if (CLASS_TYPE_P (type))
|
||
{
|
||
/* Wrap the statement-expression in a TARGET_EXPR so that the
|
||
temporary object created by the final expression is destroyed at
|
||
the end of the full-expression containing the
|
||
statement-expression. */
|
||
result = force_target_expr (type, result);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Perform Koenig lookup. FN is the postfix-expression representing
|
||
the function (or functions) to call; ARGS are the arguments to the
|
||
call. Returns the functions to be considered by overload
|
||
resolution. */
|
||
|
||
tree
|
||
perform_koenig_lookup (tree fn, tree args)
|
||
{
|
||
tree identifier = NULL_TREE;
|
||
tree functions = NULL_TREE;
|
||
|
||
/* Find the name of the overloaded function. */
|
||
if (TREE_CODE (fn) == IDENTIFIER_NODE)
|
||
identifier = fn;
|
||
else if (is_overloaded_fn (fn))
|
||
{
|
||
functions = fn;
|
||
identifier = DECL_NAME (get_first_fn (functions));
|
||
}
|
||
else if (DECL_P (fn))
|
||
{
|
||
functions = fn;
|
||
identifier = DECL_NAME (fn);
|
||
}
|
||
|
||
/* A call to a namespace-scope function using an unqualified name.
|
||
|
||
Do Koenig lookup -- unless any of the arguments are
|
||
type-dependent. */
|
||
if (!any_type_dependent_arguments_p (args))
|
||
{
|
||
fn = lookup_arg_dependent (identifier, functions, args);
|
||
if (!fn)
|
||
/* The unqualified name could not be resolved. */
|
||
fn = unqualified_fn_lookup_error (identifier);
|
||
}
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Generate an expression for `FN (ARGS)'.
|
||
|
||
If DISALLOW_VIRTUAL is true, the call to FN will be not generated
|
||
as a virtual call, even if FN is virtual. (This flag is set when
|
||
encountering an expression where the function name is explicitly
|
||
qualified. For example a call to `X::f' never generates a virtual
|
||
call.)
|
||
|
||
Returns code for the call. */
|
||
|
||
tree
|
||
finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
|
||
{
|
||
tree result;
|
||
tree orig_fn;
|
||
tree orig_args;
|
||
|
||
if (fn == error_mark_node || args == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* ARGS should be a list of arguments. */
|
||
gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
|
||
gcc_assert (!TYPE_P (fn));
|
||
|
||
orig_fn = fn;
|
||
orig_args = args;
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
if (type_dependent_expression_p (fn)
|
||
|| any_type_dependent_arguments_p (args))
|
||
{
|
||
result = build_nt (CALL_EXPR, fn, args, NULL_TREE);
|
||
KOENIG_LOOKUP_P (result) = koenig_p;
|
||
return result;
|
||
}
|
||
if (!BASELINK_P (fn)
|
||
&& TREE_CODE (fn) != PSEUDO_DTOR_EXPR
|
||
&& TREE_TYPE (fn) != unknown_type_node)
|
||
fn = build_non_dependent_expr (fn);
|
||
args = build_non_dependent_args (orig_args);
|
||
}
|
||
|
||
if (is_overloaded_fn (fn))
|
||
fn = baselink_for_fns (fn);
|
||
|
||
result = NULL_TREE;
|
||
if (BASELINK_P (fn))
|
||
{
|
||
tree object;
|
||
|
||
/* A call to a member function. From [over.call.func]:
|
||
|
||
If the keyword this is in scope and refers to the class of
|
||
that member function, or a derived class thereof, then the
|
||
function call is transformed into a qualified function call
|
||
using (*this) as the postfix-expression to the left of the
|
||
. operator.... [Otherwise] a contrived object of type T
|
||
becomes the implied object argument.
|
||
|
||
This paragraph is unclear about this situation:
|
||
|
||
struct A { void f(); };
|
||
struct B : public A {};
|
||
struct C : public A { void g() { B::f(); }};
|
||
|
||
In particular, for `B::f', this paragraph does not make clear
|
||
whether "the class of that member function" refers to `A' or
|
||
to `B'. We believe it refers to `B'. */
|
||
if (current_class_type
|
||
&& DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
|
||
current_class_type)
|
||
&& current_class_ref)
|
||
object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
|
||
NULL);
|
||
else
|
||
{
|
||
tree representative_fn;
|
||
|
||
representative_fn = BASELINK_FUNCTIONS (fn);
|
||
if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
|
||
representative_fn = TREE_OPERAND (representative_fn, 0);
|
||
representative_fn = get_first_fn (representative_fn);
|
||
object = build_dummy_object (DECL_CONTEXT (representative_fn));
|
||
}
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
if (type_dependent_expression_p (object))
|
||
return build_nt (CALL_EXPR, orig_fn, orig_args, NULL_TREE);
|
||
object = build_non_dependent_expr (object);
|
||
}
|
||
|
||
result = build_new_method_call (object, fn, args, NULL_TREE,
|
||
(disallow_virtual
|
||
? LOOKUP_NONVIRTUAL : 0),
|
||
/*fn_p=*/NULL);
|
||
}
|
||
else if (is_overloaded_fn (fn))
|
||
{
|
||
/* If the function is an overloaded builtin, resolve it. */
|
||
if (TREE_CODE (fn) == FUNCTION_DECL
|
||
&& (DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL
|
||
|| DECL_BUILT_IN_CLASS (fn) == BUILT_IN_MD))
|
||
result = resolve_overloaded_builtin (fn, args);
|
||
|
||
if (!result)
|
||
/* A call to a namespace-scope function. */
|
||
result = build_new_function_call (fn, args, koenig_p);
|
||
}
|
||
else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
|
||
{
|
||
if (args)
|
||
error ("arguments to destructor are not allowed");
|
||
/* Mark the pseudo-destructor call as having side-effects so
|
||
that we do not issue warnings about its use. */
|
||
result = build1 (NOP_EXPR,
|
||
void_type_node,
|
||
TREE_OPERAND (fn, 0));
|
||
TREE_SIDE_EFFECTS (result) = 1;
|
||
}
|
||
else if (CLASS_TYPE_P (TREE_TYPE (fn)))
|
||
/* If the "function" is really an object of class type, it might
|
||
have an overloaded `operator ()'. */
|
||
result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
|
||
/*overloaded_p=*/NULL);
|
||
|
||
if (!result)
|
||
/* A call where the function is unknown. */
|
||
result = build_function_call (fn, args);
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
result = build3 (CALL_EXPR, TREE_TYPE (result), orig_fn,
|
||
orig_args, NULL_TREE);
|
||
KOENIG_LOOKUP_P (result) = koenig_p;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* Finish a call to a postfix increment or decrement or EXPR. (Which
|
||
is indicated by CODE, which should be POSTINCREMENT_EXPR or
|
||
POSTDECREMENT_EXPR.) */
|
||
|
||
tree
|
||
finish_increment_expr (tree expr, enum tree_code code)
|
||
{
|
||
return build_x_unary_op (code, expr);
|
||
}
|
||
|
||
/* Finish a use of `this'. Returns an expression for `this'. */
|
||
|
||
tree
|
||
finish_this_expr (void)
|
||
{
|
||
tree result;
|
||
|
||
if (current_class_ptr)
|
||
{
|
||
result = current_class_ptr;
|
||
}
|
||
else if (current_function_decl
|
||
&& DECL_STATIC_FUNCTION_P (current_function_decl))
|
||
{
|
||
error ("%<this%> is unavailable for static member functions");
|
||
result = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
if (current_function_decl)
|
||
error ("invalid use of %<this%> in non-member function");
|
||
else
|
||
error ("invalid use of %<this%> at top level");
|
||
result = error_mark_node;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Finish a pseudo-destructor expression. If SCOPE is NULL, the
|
||
expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
|
||
the TYPE for the type given. If SCOPE is non-NULL, the expression
|
||
was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
|
||
|
||
tree
|
||
finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
|
||
{
|
||
if (destructor == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
gcc_assert (TYPE_P (destructor));
|
||
|
||
if (!processing_template_decl)
|
||
{
|
||
if (scope == error_mark_node)
|
||
{
|
||
error ("invalid qualifying scope in pseudo-destructor name");
|
||
return error_mark_node;
|
||
}
|
||
if (scope && TYPE_P (scope) && !check_dtor_name (scope, destructor))
|
||
{
|
||
error ("qualified type %qT does not match destructor name ~%qT",
|
||
scope, destructor);
|
||
return error_mark_node;
|
||
}
|
||
|
||
|
||
/* [expr.pseudo] says both:
|
||
|
||
The type designated by the pseudo-destructor-name shall be
|
||
the same as the object type.
|
||
|
||
and:
|
||
|
||
The cv-unqualified versions of the object type and of the
|
||
type designated by the pseudo-destructor-name shall be the
|
||
same type.
|
||
|
||
We implement the more generous second sentence, since that is
|
||
what most other compilers do. */
|
||
if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object),
|
||
destructor))
|
||
{
|
||
error ("%qE is not of type %qT", object, destructor);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
return build3 (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
|
||
}
|
||
|
||
/* Finish an expression of the form CODE EXPR. */
|
||
|
||
tree
|
||
finish_unary_op_expr (enum tree_code code, tree expr)
|
||
{
|
||
tree result = build_x_unary_op (code, expr);
|
||
/* Inside a template, build_x_unary_op does not fold the
|
||
expression. So check whether the result is folded before
|
||
setting TREE_NEGATED_INT. */
|
||
if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
|
||
&& TREE_CODE (result) == INTEGER_CST
|
||
&& !TYPE_UNSIGNED (TREE_TYPE (result))
|
||
&& INT_CST_LT (result, integer_zero_node))
|
||
{
|
||
/* RESULT may be a cached INTEGER_CST, so we must copy it before
|
||
setting TREE_NEGATED_INT. */
|
||
result = copy_node (result);
|
||
TREE_NEGATED_INT (result) = 1;
|
||
}
|
||
overflow_warning (result);
|
||
return result;
|
||
}
|
||
|
||
/* Finish a compound-literal expression. TYPE is the type to which
|
||
the INITIALIZER_LIST is being cast. */
|
||
|
||
tree
|
||
finish_compound_literal (tree type, VEC(constructor_elt,gc) *initializer_list)
|
||
{
|
||
tree var;
|
||
tree compound_literal;
|
||
|
||
if (!TYPE_OBJ_P (type))
|
||
{
|
||
error ("compound literal of non-object type %qT", type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
|
||
compound_literal = build_constructor (NULL_TREE, initializer_list);
|
||
if (processing_template_decl)
|
||
{
|
||
TREE_TYPE (compound_literal) = type;
|
||
/* Mark the expression as a compound literal. */
|
||
TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
|
||
return compound_literal;
|
||
}
|
||
|
||
/* Create a temporary variable to represent the compound literal. */
|
||
var = create_temporary_var (type);
|
||
if (!current_function_decl)
|
||
{
|
||
/* If this compound-literal appears outside of a function, then
|
||
the corresponding variable has static storage duration, just
|
||
like the variable in whose initializer it appears. */
|
||
TREE_STATIC (var) = 1;
|
||
/* The variable has internal linkage, since there is no need to
|
||
reference it from another translation unit. */
|
||
TREE_PUBLIC (var) = 0;
|
||
/* It must have a name, so that the name mangler can mangle it. */
|
||
DECL_NAME (var) = make_anon_name ();
|
||
}
|
||
/* We must call pushdecl, since the gimplifier complains if the
|
||
variable has not been declared via a BIND_EXPR. */
|
||
pushdecl (var);
|
||
/* Initialize the variable as we would any other variable with a
|
||
brace-enclosed initializer. */
|
||
cp_finish_decl (var, compound_literal,
|
||
/*init_const_expr_p=*/false,
|
||
/*asmspec_tree=*/NULL_TREE,
|
||
LOOKUP_ONLYCONVERTING);
|
||
return var;
|
||
}
|
||
|
||
/* Return the declaration for the function-name variable indicated by
|
||
ID. */
|
||
|
||
tree
|
||
finish_fname (tree id)
|
||
{
|
||
tree decl;
|
||
|
||
decl = fname_decl (C_RID_CODE (id), id);
|
||
if (processing_template_decl)
|
||
decl = DECL_NAME (decl);
|
||
return decl;
|
||
}
|
||
|
||
/* Finish a translation unit. */
|
||
|
||
void
|
||
finish_translation_unit (void)
|
||
{
|
||
/* In case there were missing closebraces,
|
||
get us back to the global binding level. */
|
||
pop_everything ();
|
||
while (current_namespace != global_namespace)
|
||
pop_namespace ();
|
||
|
||
/* Do file scope __FUNCTION__ et al. */
|
||
finish_fname_decls ();
|
||
}
|
||
|
||
/* Finish a template type parameter, specified as AGGR IDENTIFIER.
|
||
Returns the parameter. */
|
||
|
||
tree
|
||
finish_template_type_parm (tree aggr, tree identifier)
|
||
{
|
||
if (aggr != class_type_node)
|
||
{
|
||
pedwarn ("template type parameters must use the keyword %<class%> or %<typename%>");
|
||
aggr = class_type_node;
|
||
}
|
||
|
||
return build_tree_list (aggr, identifier);
|
||
}
|
||
|
||
/* Finish a template template parameter, specified as AGGR IDENTIFIER.
|
||
Returns the parameter. */
|
||
|
||
tree
|
||
finish_template_template_parm (tree aggr, tree identifier)
|
||
{
|
||
tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
|
||
tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
|
||
DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
|
||
DECL_TEMPLATE_RESULT (tmpl) = decl;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
end_template_decl ();
|
||
|
||
gcc_assert (DECL_TEMPLATE_PARMS (tmpl));
|
||
|
||
return finish_template_type_parm (aggr, tmpl);
|
||
}
|
||
|
||
/* ARGUMENT is the default-argument value for a template template
|
||
parameter. If ARGUMENT is invalid, issue error messages and return
|
||
the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
|
||
|
||
tree
|
||
check_template_template_default_arg (tree argument)
|
||
{
|
||
if (TREE_CODE (argument) != TEMPLATE_DECL
|
||
&& TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
|
||
&& TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
|
||
{
|
||
if (TREE_CODE (argument) == TYPE_DECL)
|
||
error ("invalid use of type %qT as a default value for a template "
|
||
"template-parameter", TREE_TYPE (argument));
|
||
else
|
||
error ("invalid default argument for a template template parameter");
|
||
return error_mark_node;
|
||
}
|
||
|
||
return argument;
|
||
}
|
||
|
||
/* Begin a class definition, as indicated by T. */
|
||
|
||
tree
|
||
begin_class_definition (tree t, tree attributes)
|
||
{
|
||
if (t == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (processing_template_parmlist)
|
||
{
|
||
error ("definition of %q#T inside template parameter list", t);
|
||
return error_mark_node;
|
||
}
|
||
/* A non-implicit typename comes from code like:
|
||
|
||
template <typename T> struct A {
|
||
template <typename U> struct A<T>::B ...
|
||
|
||
This is erroneous. */
|
||
else if (TREE_CODE (t) == TYPENAME_TYPE)
|
||
{
|
||
error ("invalid definition of qualified type %qT", t);
|
||
t = error_mark_node;
|
||
}
|
||
|
||
if (t == error_mark_node || ! IS_AGGR_TYPE (t))
|
||
{
|
||
t = make_aggr_type (RECORD_TYPE);
|
||
pushtag (make_anon_name (), t, /*tag_scope=*/ts_current);
|
||
}
|
||
|
||
/* Update the location of the decl. */
|
||
DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
|
||
|
||
if (TYPE_BEING_DEFINED (t))
|
||
{
|
||
t = make_aggr_type (TREE_CODE (t));
|
||
pushtag (TYPE_IDENTIFIER (t), t, /*tag_scope=*/ts_current);
|
||
}
|
||
maybe_process_partial_specialization (t);
|
||
pushclass (t);
|
||
TYPE_BEING_DEFINED (t) = 1;
|
||
|
||
cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
|
||
|
||
if (flag_pack_struct)
|
||
{
|
||
tree v;
|
||
TYPE_PACKED (t) = 1;
|
||
/* Even though the type is being defined for the first time
|
||
here, there might have been a forward declaration, so there
|
||
might be cv-qualified variants of T. */
|
||
for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
|
||
TYPE_PACKED (v) = 1;
|
||
}
|
||
/* Reset the interface data, at the earliest possible
|
||
moment, as it might have been set via a class foo;
|
||
before. */
|
||
if (! TYPE_ANONYMOUS_P (t))
|
||
{
|
||
struct c_fileinfo *finfo = get_fileinfo (input_filename);
|
||
CLASSTYPE_INTERFACE_ONLY (t) = finfo->interface_only;
|
||
SET_CLASSTYPE_INTERFACE_UNKNOWN_X
|
||
(t, finfo->interface_unknown);
|
||
}
|
||
reset_specialization();
|
||
|
||
/* Make a declaration for this class in its own scope. */
|
||
build_self_reference ();
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Finish the member declaration given by DECL. */
|
||
|
||
void
|
||
finish_member_declaration (tree decl)
|
||
{
|
||
if (decl == error_mark_node || decl == NULL_TREE)
|
||
return;
|
||
|
||
if (decl == void_type_node)
|
||
/* The COMPONENT was a friend, not a member, and so there's
|
||
nothing for us to do. */
|
||
return;
|
||
|
||
/* We should see only one DECL at a time. */
|
||
gcc_assert (TREE_CHAIN (decl) == NULL_TREE);
|
||
|
||
/* Set up access control for DECL. */
|
||
TREE_PRIVATE (decl)
|
||
= (current_access_specifier == access_private_node);
|
||
TREE_PROTECTED (decl)
|
||
= (current_access_specifier == access_protected_node);
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
||
{
|
||
TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
|
||
TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
|
||
}
|
||
|
||
/* Mark the DECL as a member of the current class. */
|
||
DECL_CONTEXT (decl) = current_class_type;
|
||
|
||
/* [dcl.link]
|
||
|
||
A C language linkage is ignored for the names of class members
|
||
and the member function type of class member functions. */
|
||
if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
|
||
SET_DECL_LANGUAGE (decl, lang_cplusplus);
|
||
|
||
/* Put functions on the TYPE_METHODS list and everything else on the
|
||
TYPE_FIELDS list. Note that these are built up in reverse order.
|
||
We reverse them (to obtain declaration order) in finish_struct. */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
|| DECL_FUNCTION_TEMPLATE_P (decl))
|
||
{
|
||
/* We also need to add this function to the
|
||
CLASSTYPE_METHOD_VEC. */
|
||
if (add_method (current_class_type, decl, NULL_TREE))
|
||
{
|
||
TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
|
||
TYPE_METHODS (current_class_type) = decl;
|
||
|
||
maybe_add_class_template_decl_list (current_class_type, decl,
|
||
/*friend_p=*/0);
|
||
}
|
||
}
|
||
/* Enter the DECL into the scope of the class. */
|
||
else if ((TREE_CODE (decl) == USING_DECL && !DECL_DEPENDENT_P (decl))
|
||
|| pushdecl_class_level (decl))
|
||
{
|
||
/* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
|
||
go at the beginning. The reason is that lookup_field_1
|
||
searches the list in order, and we want a field name to
|
||
override a type name so that the "struct stat hack" will
|
||
work. In particular:
|
||
|
||
struct S { enum E { }; int E } s;
|
||
s.E = 3;
|
||
|
||
is valid. In addition, the FIELD_DECLs must be maintained in
|
||
declaration order so that class layout works as expected.
|
||
However, we don't need that order until class layout, so we
|
||
save a little time by putting FIELD_DECLs on in reverse order
|
||
here, and then reversing them in finish_struct_1. (We could
|
||
also keep a pointer to the correct insertion points in the
|
||
list.) */
|
||
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
TYPE_FIELDS (current_class_type)
|
||
= chainon (TYPE_FIELDS (current_class_type), decl);
|
||
else
|
||
{
|
||
TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
|
||
TYPE_FIELDS (current_class_type) = decl;
|
||
}
|
||
|
||
maybe_add_class_template_decl_list (current_class_type, decl,
|
||
/*friend_p=*/0);
|
||
}
|
||
|
||
if (pch_file)
|
||
note_decl_for_pch (decl);
|
||
}
|
||
|
||
/* DECL has been declared while we are building a PCH file. Perform
|
||
actions that we might normally undertake lazily, but which can be
|
||
performed now so that they do not have to be performed in
|
||
translation units which include the PCH file. */
|
||
|
||
void
|
||
note_decl_for_pch (tree decl)
|
||
{
|
||
gcc_assert (pch_file);
|
||
|
||
/* There's a good chance that we'll have to mangle names at some
|
||
point, even if only for emission in debugging information. */
|
||
if ((TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == FUNCTION_DECL)
|
||
&& !processing_template_decl)
|
||
mangle_decl (decl);
|
||
}
|
||
|
||
/* Finish processing a complete template declaration. The PARMS are
|
||
the template parameters. */
|
||
|
||
void
|
||
finish_template_decl (tree parms)
|
||
{
|
||
if (parms)
|
||
end_template_decl ();
|
||
else
|
||
end_specialization ();
|
||
}
|
||
|
||
/* Finish processing a template-id (which names a type) of the form
|
||
NAME < ARGS >. Return the TYPE_DECL for the type named by the
|
||
template-id. If ENTERING_SCOPE is nonzero we are about to enter
|
||
the scope of template-id indicated. */
|
||
|
||
tree
|
||
finish_template_type (tree name, tree args, int entering_scope)
|
||
{
|
||
tree decl;
|
||
|
||
decl = lookup_template_class (name, args,
|
||
NULL_TREE, NULL_TREE, entering_scope,
|
||
tf_warning_or_error | tf_user);
|
||
if (decl != error_mark_node)
|
||
decl = TYPE_STUB_DECL (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
|
||
Return a TREE_LIST containing the ACCESS_SPECIFIER and the
|
||
BASE_CLASS, or NULL_TREE if an error occurred. The
|
||
ACCESS_SPECIFIER is one of
|
||
access_{default,public,protected_private}_node. For a virtual base
|
||
we set TREE_TYPE. */
|
||
|
||
tree
|
||
finish_base_specifier (tree base, tree access, bool virtual_p)
|
||
{
|
||
tree result;
|
||
|
||
if (base == error_mark_node)
|
||
{
|
||
error ("invalid base-class specification");
|
||
result = NULL_TREE;
|
||
}
|
||
else if (! is_aggr_type (base, 1))
|
||
result = NULL_TREE;
|
||
else
|
||
{
|
||
if (cp_type_quals (base) != 0)
|
||
{
|
||
error ("base class %qT has cv qualifiers", base);
|
||
base = TYPE_MAIN_VARIANT (base);
|
||
}
|
||
result = build_tree_list (access, base);
|
||
if (virtual_p)
|
||
TREE_TYPE (result) = integer_type_node;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Issue a diagnostic that NAME cannot be found in SCOPE. DECL is
|
||
what we found when we tried to do the lookup. */
|
||
|
||
void
|
||
qualified_name_lookup_error (tree scope, tree name, tree decl)
|
||
{
|
||
if (scope == error_mark_node)
|
||
; /* We already complained. */
|
||
else if (TYPE_P (scope))
|
||
{
|
||
if (!COMPLETE_TYPE_P (scope))
|
||
error ("incomplete type %qT used in nested name specifier", scope);
|
||
else if (TREE_CODE (decl) == TREE_LIST)
|
||
{
|
||
error ("reference to %<%T::%D%> is ambiguous", scope, name);
|
||
print_candidates (decl);
|
||
}
|
||
else
|
||
error ("%qD is not a member of %qT", name, scope);
|
||
}
|
||
else if (scope != global_namespace)
|
||
error ("%qD is not a member of %qD", name, scope);
|
||
else
|
||
error ("%<::%D%> has not been declared", name);
|
||
}
|
||
|
||
/* If FNS is a member function, a set of member functions, or a
|
||
template-id referring to one or more member functions, return a
|
||
BASELINK for FNS, incorporating the current access context.
|
||
Otherwise, return FNS unchanged. */
|
||
|
||
tree
|
||
baselink_for_fns (tree fns)
|
||
{
|
||
tree fn;
|
||
tree cl;
|
||
|
||
if (BASELINK_P (fns)
|
||
|| error_operand_p (fns))
|
||
return fns;
|
||
|
||
fn = fns;
|
||
if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
|
||
fn = TREE_OPERAND (fn, 0);
|
||
fn = get_first_fn (fn);
|
||
if (!DECL_FUNCTION_MEMBER_P (fn))
|
||
return fns;
|
||
|
||
cl = currently_open_derived_class (DECL_CONTEXT (fn));
|
||
if (!cl)
|
||
cl = DECL_CONTEXT (fn);
|
||
cl = TYPE_BINFO (cl);
|
||
return build_baselink (cl, cl, fns, /*optype=*/NULL_TREE);
|
||
}
|
||
|
||
/* ID_EXPRESSION is a representation of parsed, but unprocessed,
|
||
id-expression. (See cp_parser_id_expression for details.) SCOPE,
|
||
if non-NULL, is the type or namespace used to explicitly qualify
|
||
ID_EXPRESSION. DECL is the entity to which that name has been
|
||
resolved.
|
||
|
||
*CONSTANT_EXPRESSION_P is true if we are presently parsing a
|
||
constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
|
||
be set to true if this expression isn't permitted in a
|
||
constant-expression, but it is otherwise not set by this function.
|
||
*ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
|
||
constant-expression, but a non-constant expression is also
|
||
permissible.
|
||
|
||
DONE is true if this expression is a complete postfix-expression;
|
||
it is false if this expression is followed by '->', '[', '(', etc.
|
||
ADDRESS_P is true iff this expression is the operand of '&'.
|
||
TEMPLATE_P is true iff the qualified-id was of the form
|
||
"A::template B". TEMPLATE_ARG_P is true iff this qualified name
|
||
appears as a template argument.
|
||
|
||
If an error occurs, and it is the kind of error that might cause
|
||
the parser to abort a tentative parse, *ERROR_MSG is filled in. It
|
||
is the caller's responsibility to issue the message. *ERROR_MSG
|
||
will be a string with static storage duration, so the caller need
|
||
not "free" it.
|
||
|
||
Return an expression for the entity, after issuing appropriate
|
||
diagnostics. This function is also responsible for transforming a
|
||
reference to a non-static member into a COMPONENT_REF that makes
|
||
the use of "this" explicit.
|
||
|
||
Upon return, *IDK will be filled in appropriately. */
|
||
|
||
tree
|
||
finish_id_expression (tree id_expression,
|
||
tree decl,
|
||
tree scope,
|
||
cp_id_kind *idk,
|
||
bool integral_constant_expression_p,
|
||
bool allow_non_integral_constant_expression_p,
|
||
bool *non_integral_constant_expression_p,
|
||
bool template_p,
|
||
bool done,
|
||
bool address_p,
|
||
bool template_arg_p,
|
||
const char **error_msg)
|
||
{
|
||
/* Initialize the output parameters. */
|
||
*idk = CP_ID_KIND_NONE;
|
||
*error_msg = NULL;
|
||
|
||
if (id_expression == error_mark_node)
|
||
return error_mark_node;
|
||
/* If we have a template-id, then no further lookup is
|
||
required. If the template-id was for a template-class, we
|
||
will sometimes have a TYPE_DECL at this point. */
|
||
else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
|
||
|| TREE_CODE (decl) == TYPE_DECL)
|
||
;
|
||
/* Look up the name. */
|
||
else
|
||
{
|
||
if (decl == error_mark_node)
|
||
{
|
||
/* Name lookup failed. */
|
||
if (scope
|
||
&& (!TYPE_P (scope)
|
||
|| (!dependent_type_p (scope)
|
||
&& !(TREE_CODE (id_expression) == IDENTIFIER_NODE
|
||
&& IDENTIFIER_TYPENAME_P (id_expression)
|
||
&& dependent_type_p (TREE_TYPE (id_expression))))))
|
||
{
|
||
/* If the qualifying type is non-dependent (and the name
|
||
does not name a conversion operator to a dependent
|
||
type), issue an error. */
|
||
qualified_name_lookup_error (scope, id_expression, decl);
|
||
return error_mark_node;
|
||
}
|
||
else if (!scope)
|
||
{
|
||
/* It may be resolved via Koenig lookup. */
|
||
*idk = CP_ID_KIND_UNQUALIFIED;
|
||
return id_expression;
|
||
}
|
||
else
|
||
decl = id_expression;
|
||
}
|
||
/* If DECL is a variable that would be out of scope under
|
||
ANSI/ISO rules, but in scope in the ARM, name lookup
|
||
will succeed. Issue a diagnostic here. */
|
||
else
|
||
decl = check_for_out_of_scope_variable (decl);
|
||
|
||
/* Remember that the name was used in the definition of
|
||
the current class so that we can check later to see if
|
||
the meaning would have been different after the class
|
||
was entirely defined. */
|
||
if (!scope && decl != error_mark_node)
|
||
maybe_note_name_used_in_class (id_expression, decl);
|
||
|
||
/* Disallow uses of local variables from containing functions. */
|
||
if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL)
|
||
{
|
||
tree context = decl_function_context (decl);
|
||
if (context != NULL_TREE && context != current_function_decl
|
||
&& ! TREE_STATIC (decl))
|
||
{
|
||
error (TREE_CODE (decl) == VAR_DECL
|
||
? "use of %<auto%> variable from containing function"
|
||
: "use of parameter from containing function");
|
||
error (" %q+#D declared here", decl);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we didn't find anything, or what we found was a type,
|
||
then this wasn't really an id-expression. */
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL
|
||
&& !DECL_FUNCTION_TEMPLATE_P (decl))
|
||
{
|
||
*error_msg = "missing template arguments";
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CODE (decl) == TYPE_DECL
|
||
|| TREE_CODE (decl) == NAMESPACE_DECL)
|
||
{
|
||
*error_msg = "expected primary-expression";
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* If the name resolved to a template parameter, there is no
|
||
need to look it up again later. */
|
||
if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
|
||
|| TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
|
||
{
|
||
tree r;
|
||
|
||
*idk = CP_ID_KIND_NONE;
|
||
if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
|
||
decl = TEMPLATE_PARM_DECL (decl);
|
||
r = convert_from_reference (DECL_INITIAL (decl));
|
||
|
||
if (integral_constant_expression_p
|
||
&& !dependent_type_p (TREE_TYPE (decl))
|
||
&& !(INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (r))))
|
||
{
|
||
if (!allow_non_integral_constant_expression_p)
|
||
error ("template parameter %qD of type %qT is not allowed in "
|
||
"an integral constant expression because it is not of "
|
||
"integral or enumeration type", decl, TREE_TYPE (decl));
|
||
*non_integral_constant_expression_p = true;
|
||
}
|
||
return r;
|
||
}
|
||
/* Similarly, we resolve enumeration constants to their
|
||
underlying values. */
|
||
else if (TREE_CODE (decl) == CONST_DECL)
|
||
{
|
||
*idk = CP_ID_KIND_NONE;
|
||
if (!processing_template_decl)
|
||
{
|
||
used_types_insert (TREE_TYPE (decl));
|
||
return DECL_INITIAL (decl);
|
||
}
|
||
return decl;
|
||
}
|
||
else
|
||
{
|
||
bool dependent_p;
|
||
|
||
/* If the declaration was explicitly qualified indicate
|
||
that. The semantics of `A::f(3)' are different than
|
||
`f(3)' if `f' is virtual. */
|
||
*idk = (scope
|
||
? CP_ID_KIND_QUALIFIED
|
||
: (TREE_CODE (decl) == TEMPLATE_ID_EXPR
|
||
? CP_ID_KIND_TEMPLATE_ID
|
||
: CP_ID_KIND_UNQUALIFIED));
|
||
|
||
|
||
/* [temp.dep.expr]
|
||
|
||
An id-expression is type-dependent if it contains an
|
||
identifier that was declared with a dependent type.
|
||
|
||
The standard is not very specific about an id-expression that
|
||
names a set of overloaded functions. What if some of them
|
||
have dependent types and some of them do not? Presumably,
|
||
such a name should be treated as a dependent name. */
|
||
/* Assume the name is not dependent. */
|
||
dependent_p = false;
|
||
if (!processing_template_decl)
|
||
/* No names are dependent outside a template. */
|
||
;
|
||
/* A template-id where the name of the template was not resolved
|
||
is definitely dependent. */
|
||
else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (decl, 0))
|
||
== IDENTIFIER_NODE))
|
||
dependent_p = true;
|
||
/* For anything except an overloaded function, just check its
|
||
type. */
|
||
else if (!is_overloaded_fn (decl))
|
||
dependent_p
|
||
= dependent_type_p (TREE_TYPE (decl));
|
||
/* For a set of overloaded functions, check each of the
|
||
functions. */
|
||
else
|
||
{
|
||
tree fns = decl;
|
||
|
||
if (BASELINK_P (fns))
|
||
fns = BASELINK_FUNCTIONS (fns);
|
||
|
||
/* For a template-id, check to see if the template
|
||
arguments are dependent. */
|
||
if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
|
||
{
|
||
tree args = TREE_OPERAND (fns, 1);
|
||
dependent_p = any_dependent_template_arguments_p (args);
|
||
/* The functions are those referred to by the
|
||
template-id. */
|
||
fns = TREE_OPERAND (fns, 0);
|
||
}
|
||
|
||
/* If there are no dependent template arguments, go through
|
||
the overloaded functions. */
|
||
while (fns && !dependent_p)
|
||
{
|
||
tree fn = OVL_CURRENT (fns);
|
||
|
||
/* Member functions of dependent classes are
|
||
dependent. */
|
||
if (TREE_CODE (fn) == FUNCTION_DECL
|
||
&& type_dependent_expression_p (fn))
|
||
dependent_p = true;
|
||
else if (TREE_CODE (fn) == TEMPLATE_DECL
|
||
&& dependent_template_p (fn))
|
||
dependent_p = true;
|
||
|
||
fns = OVL_NEXT (fns);
|
||
}
|
||
}
|
||
|
||
/* If the name was dependent on a template parameter, we will
|
||
resolve the name at instantiation time. */
|
||
if (dependent_p)
|
||
{
|
||
/* Create a SCOPE_REF for qualified names, if the scope is
|
||
dependent. */
|
||
if (scope)
|
||
{
|
||
/* Since this name was dependent, the expression isn't
|
||
constant -- yet. No error is issued because it might
|
||
be constant when things are instantiated. */
|
||
if (integral_constant_expression_p)
|
||
*non_integral_constant_expression_p = true;
|
||
if (TYPE_P (scope))
|
||
{
|
||
if (address_p && done)
|
||
decl = finish_qualified_id_expr (scope, decl,
|
||
done, address_p,
|
||
template_p,
|
||
template_arg_p);
|
||
else if (dependent_type_p (scope))
|
||
decl = build_qualified_name (/*type=*/NULL_TREE,
|
||
scope,
|
||
id_expression,
|
||
template_p);
|
||
else if (DECL_P (decl))
|
||
decl = build_qualified_name (TREE_TYPE (decl),
|
||
scope,
|
||
id_expression,
|
||
template_p);
|
||
}
|
||
if (TREE_TYPE (decl))
|
||
decl = convert_from_reference (decl);
|
||
return decl;
|
||
}
|
||
/* A TEMPLATE_ID already contains all the information we
|
||
need. */
|
||
if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
|
||
return id_expression;
|
||
*idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
|
||
/* If we found a variable, then name lookup during the
|
||
instantiation will always resolve to the same VAR_DECL
|
||
(or an instantiation thereof). */
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == PARM_DECL)
|
||
return convert_from_reference (decl);
|
||
/* The same is true for FIELD_DECL, but we also need to
|
||
make sure that the syntax is correct. */
|
||
else if (TREE_CODE (decl) == FIELD_DECL)
|
||
{
|
||
/* Since SCOPE is NULL here, this is an unqualified name.
|
||
Access checking has been performed during name lookup
|
||
already. Turn off checking to avoid duplicate errors. */
|
||
push_deferring_access_checks (dk_no_check);
|
||
decl = finish_non_static_data_member
|
||
(decl, current_class_ref,
|
||
/*qualifying_scope=*/NULL_TREE);
|
||
pop_deferring_access_checks ();
|
||
return decl;
|
||
}
|
||
return id_expression;
|
||
}
|
||
|
||
/* Only certain kinds of names are allowed in constant
|
||
expression. Enumerators and template parameters have already
|
||
been handled above. */
|
||
if (integral_constant_expression_p
|
||
&& ! DECL_INTEGRAL_CONSTANT_VAR_P (decl)
|
||
&& ! builtin_valid_in_constant_expr_p (decl))
|
||
{
|
||
if (!allow_non_integral_constant_expression_p)
|
||
{
|
||
error ("%qD cannot appear in a constant-expression", decl);
|
||
return error_mark_node;
|
||
}
|
||
*non_integral_constant_expression_p = true;
|
||
}
|
||
|
||
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
||
{
|
||
error ("use of namespace %qD as expression", decl);
|
||
return error_mark_node;
|
||
}
|
||
else if (DECL_CLASS_TEMPLATE_P (decl))
|
||
{
|
||
error ("use of class template %qT as expression", decl);
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CODE (decl) == TREE_LIST)
|
||
{
|
||
/* Ambiguous reference to base members. */
|
||
error ("request for member %qD is ambiguous in "
|
||
"multiple inheritance lattice", id_expression);
|
||
print_candidates (decl);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Mark variable-like entities as used. Functions are similarly
|
||
marked either below or after overload resolution. */
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == PARM_DECL
|
||
|| TREE_CODE (decl) == RESULT_DECL)
|
||
mark_used (decl);
|
||
|
||
if (scope)
|
||
{
|
||
decl = (adjust_result_of_qualified_name_lookup
|
||
(decl, scope, current_class_type));
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
mark_used (decl);
|
||
|
||
if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
|
||
decl = finish_qualified_id_expr (scope,
|
||
decl,
|
||
done,
|
||
address_p,
|
||
template_p,
|
||
template_arg_p);
|
||
else
|
||
{
|
||
tree r = convert_from_reference (decl);
|
||
|
||
if (processing_template_decl && TYPE_P (scope))
|
||
r = build_qualified_name (TREE_TYPE (r),
|
||
scope, decl,
|
||
template_p);
|
||
decl = r;
|
||
}
|
||
}
|
||
else if (TREE_CODE (decl) == FIELD_DECL)
|
||
{
|
||
/* Since SCOPE is NULL here, this is an unqualified name.
|
||
Access checking has been performed during name lookup
|
||
already. Turn off checking to avoid duplicate errors. */
|
||
push_deferring_access_checks (dk_no_check);
|
||
decl = finish_non_static_data_member (decl, current_class_ref,
|
||
/*qualifying_scope=*/NULL_TREE);
|
||
pop_deferring_access_checks ();
|
||
}
|
||
else if (is_overloaded_fn (decl))
|
||
{
|
||
tree first_fn;
|
||
|
||
first_fn = decl;
|
||
if (TREE_CODE (first_fn) == TEMPLATE_ID_EXPR)
|
||
first_fn = TREE_OPERAND (first_fn, 0);
|
||
first_fn = get_first_fn (first_fn);
|
||
if (TREE_CODE (first_fn) == TEMPLATE_DECL)
|
||
first_fn = DECL_TEMPLATE_RESULT (first_fn);
|
||
|
||
if (!really_overloaded_fn (decl))
|
||
mark_used (first_fn);
|
||
|
||
if (!template_arg_p
|
||
&& TREE_CODE (first_fn) == FUNCTION_DECL
|
||
&& DECL_FUNCTION_MEMBER_P (first_fn)
|
||
&& !shared_member_p (decl))
|
||
{
|
||
/* A set of member functions. */
|
||
decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
|
||
return finish_class_member_access_expr (decl, id_expression,
|
||
/*template_p=*/false);
|
||
}
|
||
|
||
decl = baselink_for_fns (decl);
|
||
}
|
||
else
|
||
{
|
||
if (DECL_P (decl) && DECL_NONLOCAL (decl)
|
||
&& DECL_CLASS_SCOPE_P (decl)
|
||
&& DECL_CONTEXT (decl) != current_class_type)
|
||
{
|
||
tree path;
|
||
|
||
path = currently_open_derived_class (DECL_CONTEXT (decl));
|
||
perform_or_defer_access_check (TYPE_BINFO (path), decl, decl);
|
||
}
|
||
|
||
decl = convert_from_reference (decl);
|
||
}
|
||
}
|
||
|
||
if (TREE_DEPRECATED (decl))
|
||
warn_deprecated_use (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Implement the __typeof keyword: Return the type of EXPR, suitable for
|
||
use as a type-specifier. */
|
||
|
||
tree
|
||
finish_typeof (tree expr)
|
||
{
|
||
tree type;
|
||
|
||
if (type_dependent_expression_p (expr))
|
||
{
|
||
type = make_aggr_type (TYPEOF_TYPE);
|
||
TYPEOF_TYPE_EXPR (type) = expr;
|
||
|
||
return type;
|
||
}
|
||
|
||
type = unlowered_expr_type (expr);
|
||
|
||
if (!type || type == unknown_type_node)
|
||
{
|
||
error ("type of %qE is unknown", expr);
|
||
return error_mark_node;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Perform C++-specific checks for __builtin_offsetof before calling
|
||
fold_offsetof. */
|
||
|
||
tree
|
||
finish_offsetof (tree expr)
|
||
{
|
||
if (TREE_CODE (expr) == PSEUDO_DTOR_EXPR)
|
||
{
|
||
error ("cannot apply %<offsetof%> to destructor %<~%T%>",
|
||
TREE_OPERAND (expr, 2));
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (expr)) == METHOD_TYPE
|
||
|| TREE_CODE (TREE_TYPE (expr)) == UNKNOWN_TYPE)
|
||
{
|
||
if (TREE_CODE (expr) == COMPONENT_REF
|
||
|| TREE_CODE (expr) == COMPOUND_EXPR)
|
||
expr = TREE_OPERAND (expr, 1);
|
||
error ("cannot apply %<offsetof%> to member function %qD", expr);
|
||
return error_mark_node;
|
||
}
|
||
return fold_offsetof (expr, NULL_TREE);
|
||
}
|
||
|
||
/* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
|
||
with equivalent CALL_EXPRs. */
|
||
|
||
static tree
|
||
simplify_aggr_init_exprs_r (tree* tp,
|
||
int* walk_subtrees,
|
||
void* data ATTRIBUTE_UNUSED)
|
||
{
|
||
/* We don't need to walk into types; there's nothing in a type that
|
||
needs simplification. (And, furthermore, there are places we
|
||
actively don't want to go. For example, we don't want to wander
|
||
into the default arguments for a FUNCTION_DECL that appears in a
|
||
CALL_EXPR.) */
|
||
if (TYPE_P (*tp))
|
||
{
|
||
*walk_subtrees = 0;
|
||
return NULL_TREE;
|
||
}
|
||
/* Only AGGR_INIT_EXPRs are interesting. */
|
||
else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
|
||
return NULL_TREE;
|
||
|
||
simplify_aggr_init_expr (tp);
|
||
|
||
/* Keep iterating. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
|
||
function is broken out from the above for the benefit of the tree-ssa
|
||
project. */
|
||
|
||
void
|
||
simplify_aggr_init_expr (tree *tp)
|
||
{
|
||
tree aggr_init_expr = *tp;
|
||
|
||
/* Form an appropriate CALL_EXPR. */
|
||
tree fn = TREE_OPERAND (aggr_init_expr, 0);
|
||
tree args = TREE_OPERAND (aggr_init_expr, 1);
|
||
tree slot = TREE_OPERAND (aggr_init_expr, 2);
|
||
tree type = TREE_TYPE (slot);
|
||
|
||
tree call_expr;
|
||
enum style_t { ctor, arg, pcc } style;
|
||
|
||
if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
|
||
style = ctor;
|
||
#ifdef PCC_STATIC_STRUCT_RETURN
|
||
else if (1)
|
||
style = pcc;
|
||
#endif
|
||
else
|
||
{
|
||
gcc_assert (TREE_ADDRESSABLE (type));
|
||
style = arg;
|
||
}
|
||
|
||
if (style == ctor)
|
||
{
|
||
/* Replace the first argument to the ctor with the address of the
|
||
slot. */
|
||
tree addr;
|
||
|
||
args = TREE_CHAIN (args);
|
||
cxx_mark_addressable (slot);
|
||
addr = build1 (ADDR_EXPR, build_pointer_type (type), slot);
|
||
args = tree_cons (NULL_TREE, addr, args);
|
||
}
|
||
|
||
call_expr = build3 (CALL_EXPR,
|
||
TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
|
||
fn, args, NULL_TREE);
|
||
|
||
if (style == arg)
|
||
{
|
||
/* Just mark it addressable here, and leave the rest to
|
||
expand_call{,_inline}. */
|
||
cxx_mark_addressable (slot);
|
||
CALL_EXPR_RETURN_SLOT_OPT (call_expr) = true;
|
||
call_expr = build2 (MODIFY_EXPR, TREE_TYPE (call_expr), slot, call_expr);
|
||
}
|
||
else if (style == pcc)
|
||
{
|
||
/* If we're using the non-reentrant PCC calling convention, then we
|
||
need to copy the returned value out of the static buffer into the
|
||
SLOT. */
|
||
push_deferring_access_checks (dk_no_check);
|
||
call_expr = build_aggr_init (slot, call_expr,
|
||
DIRECT_BIND | LOOKUP_ONLYCONVERTING);
|
||
pop_deferring_access_checks ();
|
||
call_expr = build2 (COMPOUND_EXPR, TREE_TYPE (slot), call_expr, slot);
|
||
}
|
||
|
||
*tp = call_expr;
|
||
}
|
||
|
||
/* Emit all thunks to FN that should be emitted when FN is emitted. */
|
||
|
||
static void
|
||
emit_associated_thunks (tree fn)
|
||
{
|
||
/* When we use vcall offsets, we emit thunks with the virtual
|
||
functions to which they thunk. The whole point of vcall offsets
|
||
is so that you can know statically the entire set of thunks that
|
||
will ever be needed for a given virtual function, thereby
|
||
enabling you to output all the thunks with the function itself. */
|
||
if (DECL_VIRTUAL_P (fn))
|
||
{
|
||
tree thunk;
|
||
|
||
for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
|
||
{
|
||
if (!THUNK_ALIAS (thunk))
|
||
{
|
||
use_thunk (thunk, /*emit_p=*/1);
|
||
if (DECL_RESULT_THUNK_P (thunk))
|
||
{
|
||
tree probe;
|
||
|
||
for (probe = DECL_THUNKS (thunk);
|
||
probe; probe = TREE_CHAIN (probe))
|
||
use_thunk (probe, /*emit_p=*/1);
|
||
}
|
||
}
|
||
else
|
||
gcc_assert (!DECL_THUNKS (thunk));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Generate RTL for FN. */
|
||
|
||
void
|
||
expand_body (tree fn)
|
||
{
|
||
tree saved_function;
|
||
|
||
/* Compute the appropriate object-file linkage for inline
|
||
functions. */
|
||
if (DECL_DECLARED_INLINE_P (fn))
|
||
import_export_decl (fn);
|
||
|
||
/* If FN is external, then there's no point in generating RTL for
|
||
it. This situation can arise with an inline function under
|
||
`-fexternal-templates'; we instantiate the function, even though
|
||
we're not planning on emitting it, in case we get a chance to
|
||
inline it. */
|
||
if (DECL_EXTERNAL (fn))
|
||
return;
|
||
|
||
/* ??? When is this needed? */
|
||
saved_function = current_function_decl;
|
||
|
||
/* Emit any thunks that should be emitted at the same time as FN. */
|
||
emit_associated_thunks (fn);
|
||
|
||
/* This function is only called from cgraph, or recursively from
|
||
emit_associated_thunks. In neither case should we be currently
|
||
generating trees for a function. */
|
||
gcc_assert (function_depth == 0);
|
||
|
||
tree_rest_of_compilation (fn);
|
||
|
||
current_function_decl = saved_function;
|
||
|
||
if (DECL_CLONED_FUNCTION_P (fn))
|
||
{
|
||
/* If this is a clone, go through the other clones now and mark
|
||
their parameters used. We have to do that here, as we don't
|
||
know whether any particular clone will be expanded, and
|
||
therefore cannot pick one arbitrarily. */
|
||
tree probe;
|
||
|
||
for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
|
||
probe && DECL_CLONED_FUNCTION_P (probe);
|
||
probe = TREE_CHAIN (probe))
|
||
{
|
||
tree parms;
|
||
|
||
for (parms = DECL_ARGUMENTS (probe);
|
||
parms; parms = TREE_CHAIN (parms))
|
||
TREE_USED (parms) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Generate RTL for FN. */
|
||
|
||
void
|
||
expand_or_defer_fn (tree fn)
|
||
{
|
||
/* When the parser calls us after finishing the body of a template
|
||
function, we don't really want to expand the body. */
|
||
if (processing_template_decl)
|
||
{
|
||
/* Normally, collection only occurs in rest_of_compilation. So,
|
||
if we don't collect here, we never collect junk generated
|
||
during the processing of templates until we hit a
|
||
non-template function. It's not safe to do this inside a
|
||
nested class, though, as the parser may have local state that
|
||
is not a GC root. */
|
||
if (!function_depth)
|
||
ggc_collect ();
|
||
return;
|
||
}
|
||
|
||
/* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
|
||
walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
|
||
simplify_aggr_init_exprs_r,
|
||
NULL);
|
||
|
||
/* If this is a constructor or destructor body, we have to clone
|
||
it. */
|
||
if (maybe_clone_body (fn))
|
||
{
|
||
/* We don't want to process FN again, so pretend we've written
|
||
it out, even though we haven't. */
|
||
TREE_ASM_WRITTEN (fn) = 1;
|
||
return;
|
||
}
|
||
|
||
/* If this function is marked with the constructor attribute, add it
|
||
to the list of functions to be called along with constructors
|
||
from static duration objects. */
|
||
if (DECL_STATIC_CONSTRUCTOR (fn))
|
||
static_ctors = tree_cons (NULL_TREE, fn, static_ctors);
|
||
|
||
/* If this function is marked with the destructor attribute, add it
|
||
to the list of functions to be called along with destructors from
|
||
static duration objects. */
|
||
if (DECL_STATIC_DESTRUCTOR (fn))
|
||
static_dtors = tree_cons (NULL_TREE, fn, static_dtors);
|
||
|
||
/* We make a decision about linkage for these functions at the end
|
||
of the compilation. Until that point, we do not want the back
|
||
end to output them -- but we do want it to see the bodies of
|
||
these functions so that it can inline them as appropriate. */
|
||
if (DECL_DECLARED_INLINE_P (fn) || DECL_IMPLICIT_INSTANTIATION (fn))
|
||
{
|
||
if (DECL_INTERFACE_KNOWN (fn))
|
||
/* We've already made a decision as to how this function will
|
||
be handled. */;
|
||
else if (!at_eof)
|
||
{
|
||
DECL_EXTERNAL (fn) = 1;
|
||
DECL_NOT_REALLY_EXTERN (fn) = 1;
|
||
note_vague_linkage_fn (fn);
|
||
/* A non-template inline function with external linkage will
|
||
always be COMDAT. As we must eventually determine the
|
||
linkage of all functions, and as that causes writes to
|
||
the data mapped in from the PCH file, it's advantageous
|
||
to mark the functions at this point. */
|
||
if (!DECL_IMPLICIT_INSTANTIATION (fn))
|
||
{
|
||
/* This function must have external linkage, as
|
||
otherwise DECL_INTERFACE_KNOWN would have been
|
||
set. */
|
||
gcc_assert (TREE_PUBLIC (fn));
|
||
comdat_linkage (fn);
|
||
DECL_INTERFACE_KNOWN (fn) = 1;
|
||
}
|
||
}
|
||
else
|
||
import_export_decl (fn);
|
||
|
||
/* If the user wants us to keep all inline functions, then mark
|
||
this function as needed so that finish_file will make sure to
|
||
output it later. */
|
||
if (flag_keep_inline_functions && DECL_DECLARED_INLINE_P (fn))
|
||
mark_needed (fn);
|
||
}
|
||
|
||
/* There's no reason to do any of the work here if we're only doing
|
||
semantic analysis; this code just generates RTL. */
|
||
if (flag_syntax_only)
|
||
return;
|
||
|
||
function_depth++;
|
||
|
||
/* Expand or defer, at the whim of the compilation unit manager. */
|
||
cgraph_finalize_function (fn, function_depth > 1);
|
||
|
||
function_depth--;
|
||
}
|
||
|
||
struct nrv_data
|
||
{
|
||
tree var;
|
||
tree result;
|
||
htab_t visited;
|
||
};
|
||
|
||
/* Helper function for walk_tree, used by finalize_nrv below. */
|
||
|
||
static tree
|
||
finalize_nrv_r (tree* tp, int* walk_subtrees, void* data)
|
||
{
|
||
struct nrv_data *dp = (struct nrv_data *)data;
|
||
void **slot;
|
||
|
||
/* No need to walk into types. There wouldn't be any need to walk into
|
||
non-statements, except that we have to consider STMT_EXPRs. */
|
||
if (TYPE_P (*tp))
|
||
*walk_subtrees = 0;
|
||
/* Change all returns to just refer to the RESULT_DECL; this is a nop,
|
||
but differs from using NULL_TREE in that it indicates that we care
|
||
about the value of the RESULT_DECL. */
|
||
else if (TREE_CODE (*tp) == RETURN_EXPR)
|
||
TREE_OPERAND (*tp, 0) = dp->result;
|
||
/* Change all cleanups for the NRV to only run when an exception is
|
||
thrown. */
|
||
else if (TREE_CODE (*tp) == CLEANUP_STMT
|
||
&& CLEANUP_DECL (*tp) == dp->var)
|
||
CLEANUP_EH_ONLY (*tp) = 1;
|
||
/* Replace the DECL_EXPR for the NRV with an initialization of the
|
||
RESULT_DECL, if needed. */
|
||
else if (TREE_CODE (*tp) == DECL_EXPR
|
||
&& DECL_EXPR_DECL (*tp) == dp->var)
|
||
{
|
||
tree init;
|
||
if (DECL_INITIAL (dp->var)
|
||
&& DECL_INITIAL (dp->var) != error_mark_node)
|
||
{
|
||
init = build2 (INIT_EXPR, void_type_node, dp->result,
|
||
DECL_INITIAL (dp->var));
|
||
DECL_INITIAL (dp->var) = error_mark_node;
|
||
}
|
||
else
|
||
init = build_empty_stmt ();
|
||
SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp));
|
||
*tp = init;
|
||
}
|
||
/* And replace all uses of the NRV with the RESULT_DECL. */
|
||
else if (*tp == dp->var)
|
||
*tp = dp->result;
|
||
|
||
/* Avoid walking into the same tree more than once. Unfortunately, we
|
||
can't just use walk_tree_without duplicates because it would only call
|
||
us for the first occurrence of dp->var in the function body. */
|
||
slot = htab_find_slot (dp->visited, *tp, INSERT);
|
||
if (*slot)
|
||
*walk_subtrees = 0;
|
||
else
|
||
*slot = *tp;
|
||
|
||
/* Keep iterating. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Called from finish_function to implement the named return value
|
||
optimization by overriding all the RETURN_EXPRs and pertinent
|
||
CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
|
||
RESULT_DECL for the function. */
|
||
|
||
void
|
||
finalize_nrv (tree *tp, tree var, tree result)
|
||
{
|
||
struct nrv_data data;
|
||
|
||
/* Copy debugging information from VAR to RESULT. */
|
||
DECL_NAME (result) = DECL_NAME (var);
|
||
DECL_ARTIFICIAL (result) = DECL_ARTIFICIAL (var);
|
||
DECL_IGNORED_P (result) = DECL_IGNORED_P (var);
|
||
DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var);
|
||
DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var);
|
||
/* Don't forget that we take its address. */
|
||
TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var);
|
||
|
||
data.var = var;
|
||
data.result = result;
|
||
data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
|
||
walk_tree (tp, finalize_nrv_r, &data, 0);
|
||
htab_delete (data.visited);
|
||
}
|
||
|
||
/* For all elements of CLAUSES, validate them vs OpenMP constraints.
|
||
Remove any elements from the list that are invalid. */
|
||
|
||
tree
|
||
finish_omp_clauses (tree clauses)
|
||
{
|
||
bitmap_head generic_head, firstprivate_head, lastprivate_head;
|
||
tree c, t, *pc = &clauses;
|
||
const char *name;
|
||
|
||
bitmap_obstack_initialize (NULL);
|
||
bitmap_initialize (&generic_head, &bitmap_default_obstack);
|
||
bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
|
||
bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
|
||
|
||
for (pc = &clauses, c = clauses; c ; c = *pc)
|
||
{
|
||
bool remove = false;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_SHARED:
|
||
name = "shared";
|
||
goto check_dup_generic;
|
||
case OMP_CLAUSE_PRIVATE:
|
||
name = "private";
|
||
goto check_dup_generic;
|
||
case OMP_CLAUSE_REDUCTION:
|
||
name = "reduction";
|
||
goto check_dup_generic;
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
name = "copyprivate";
|
||
goto check_dup_generic;
|
||
case OMP_CLAUSE_COPYIN:
|
||
name = "copyin";
|
||
goto check_dup_generic;
|
||
check_dup_generic:
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
if (processing_template_decl)
|
||
break;
|
||
error ("%qE is not a variable in clause %qs", t, name);
|
||
remove = true;
|
||
}
|
||
else if (bitmap_bit_p (&generic_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&firstprivate_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
|
||
{
|
||
error ("%qE appears more than once in data clauses", t);
|
||
remove = true;
|
||
}
|
||
else
|
||
bitmap_set_bit (&generic_head, DECL_UID (t));
|
||
break;
|
||
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
if (processing_template_decl)
|
||
break;
|
||
error ("%qE is not a variable in clause %<firstprivate%>", t);
|
||
remove = true;
|
||
}
|
||
else if (bitmap_bit_p (&generic_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
|
||
{
|
||
error ("%qE appears more than once in data clauses", t);
|
||
remove = true;
|
||
}
|
||
else
|
||
bitmap_set_bit (&firstprivate_head, DECL_UID (t));
|
||
break;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
if (processing_template_decl)
|
||
break;
|
||
error ("%qE is not a variable in clause %<lastprivate%>", t);
|
||
remove = true;
|
||
}
|
||
else if (bitmap_bit_p (&generic_head, DECL_UID (t))
|
||
|| bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
|
||
{
|
||
error ("%qE appears more than once in data clauses", t);
|
||
remove = true;
|
||
}
|
||
else
|
||
bitmap_set_bit (&lastprivate_head, DECL_UID (t));
|
||
break;
|
||
|
||
case OMP_CLAUSE_IF:
|
||
t = OMP_CLAUSE_IF_EXPR (c);
|
||
t = maybe_convert_cond (t);
|
||
if (t == error_mark_node)
|
||
remove = true;
|
||
OMP_CLAUSE_IF_EXPR (c) = t;
|
||
break;
|
||
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
t = OMP_CLAUSE_NUM_THREADS_EXPR (c);
|
||
if (t == error_mark_node)
|
||
remove = true;
|
||
else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
|
||
&& !type_dependent_expression_p (t))
|
||
{
|
||
error ("num_threads expression must be integral");
|
||
remove = true;
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
t = OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c);
|
||
if (t == NULL)
|
||
;
|
||
else if (t == error_mark_node)
|
||
remove = true;
|
||
else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
|
||
&& !type_dependent_expression_p (t))
|
||
{
|
||
error ("schedule chunk size expression must be integral");
|
||
remove = true;
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
case OMP_CLAUSE_DEFAULT:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (remove)
|
||
*pc = OMP_CLAUSE_CHAIN (c);
|
||
else
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
}
|
||
|
||
for (pc = &clauses, c = clauses; c ; c = *pc)
|
||
{
|
||
enum tree_code c_kind = OMP_CLAUSE_CODE (c);
|
||
bool remove = false;
|
||
bool need_complete_non_reference = false;
|
||
bool need_default_ctor = false;
|
||
bool need_copy_ctor = false;
|
||
bool need_copy_assignment = false;
|
||
bool need_implicitly_determined = false;
|
||
tree type, inner_type;
|
||
|
||
switch (c_kind)
|
||
{
|
||
case OMP_CLAUSE_SHARED:
|
||
name = "shared";
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_PRIVATE:
|
||
name = "private";
|
||
need_complete_non_reference = true;
|
||
need_default_ctor = true;
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
name = "firstprivate";
|
||
need_complete_non_reference = true;
|
||
need_copy_ctor = true;
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
name = "lastprivate";
|
||
need_complete_non_reference = true;
|
||
need_copy_assignment = true;
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_REDUCTION:
|
||
name = "reduction";
|
||
need_implicitly_determined = true;
|
||
break;
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
name = "copyprivate";
|
||
need_copy_assignment = true;
|
||
break;
|
||
case OMP_CLAUSE_COPYIN:
|
||
name = "copyin";
|
||
need_copy_assignment = true;
|
||
break;
|
||
default:
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
continue;
|
||
}
|
||
|
||
t = OMP_CLAUSE_DECL (c);
|
||
if (processing_template_decl
|
||
&& TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
||
{
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
continue;
|
||
}
|
||
|
||
switch (c_kind)
|
||
{
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
if (!bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
|
||
need_default_ctor = true;
|
||
break;
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
if (AGGREGATE_TYPE_P (TREE_TYPE (t))
|
||
|| POINTER_TYPE_P (TREE_TYPE (t)))
|
||
{
|
||
error ("%qE has invalid type for %<reduction%>", t);
|
||
remove = true;
|
||
}
|
||
else if (FLOAT_TYPE_P (TREE_TYPE (t)))
|
||
{
|
||
enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
|
||
switch (r_code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MINUS_EXPR:
|
||
break;
|
||
default:
|
||
error ("%qE has invalid type for %<reduction(%s)%>",
|
||
t, operator_name_info[r_code].name);
|
||
remove = true;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_COPYIN:
|
||
if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
|
||
{
|
||
error ("%qE must be %<threadprivate%> for %<copyin%>", t);
|
||
remove = true;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (need_complete_non_reference)
|
||
{
|
||
t = require_complete_type (t);
|
||
if (t == error_mark_node)
|
||
remove = true;
|
||
else if (TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE)
|
||
{
|
||
error ("%qE has reference type for %qs", t, name);
|
||
remove = true;
|
||
}
|
||
}
|
||
if (need_implicitly_determined)
|
||
{
|
||
const char *share_name = NULL;
|
||
|
||
if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
|
||
share_name = "threadprivate";
|
||
else switch (cxx_omp_predetermined_sharing (t))
|
||
{
|
||
case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
|
||
break;
|
||
case OMP_CLAUSE_DEFAULT_SHARED:
|
||
share_name = "shared";
|
||
break;
|
||
case OMP_CLAUSE_DEFAULT_PRIVATE:
|
||
share_name = "private";
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
if (share_name)
|
||
{
|
||
error ("%qE is predetermined %qs for %qs",
|
||
t, share_name, name);
|
||
remove = true;
|
||
}
|
||
}
|
||
|
||
/* We're interested in the base element, not arrays. */
|
||
inner_type = type = TREE_TYPE (t);
|
||
while (TREE_CODE (inner_type) == ARRAY_TYPE)
|
||
inner_type = TREE_TYPE (inner_type);
|
||
|
||
/* Check for special function availability by building a call to one.
|
||
Save the results, because later we won't be in the right context
|
||
for making these queries. */
|
||
if (CLASS_TYPE_P (inner_type)
|
||
&& (need_default_ctor || need_copy_ctor || need_copy_assignment)
|
||
&& !type_dependent_expression_p (t))
|
||
{
|
||
int save_errorcount = errorcount;
|
||
tree info;
|
||
|
||
/* Always allocate 3 elements for simplicity. These are the
|
||
function decls for the ctor, dtor, and assignment op.
|
||
This layout is known to the three lang hooks,
|
||
cxx_omp_clause_default_init, cxx_omp_clause_copy_init,
|
||
and cxx_omp_clause_assign_op. */
|
||
info = make_tree_vec (3);
|
||
CP_OMP_CLAUSE_INFO (c) = info;
|
||
|
||
if (need_default_ctor
|
||
|| (need_copy_ctor
|
||
&& !TYPE_HAS_TRIVIAL_INIT_REF (inner_type)))
|
||
{
|
||
if (need_default_ctor)
|
||
t = NULL;
|
||
else
|
||
{
|
||
t = build_int_cst (build_pointer_type (inner_type), 0);
|
||
t = build1 (INDIRECT_REF, inner_type, t);
|
||
t = build_tree_list (NULL, t);
|
||
}
|
||
t = build_special_member_call (NULL_TREE,
|
||
complete_ctor_identifier,
|
||
t, inner_type, LOOKUP_NORMAL);
|
||
t = get_callee_fndecl (t);
|
||
TREE_VEC_ELT (info, 0) = t;
|
||
}
|
||
|
||
if ((need_default_ctor || need_copy_ctor)
|
||
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_type))
|
||
{
|
||
t = build_int_cst (build_pointer_type (inner_type), 0);
|
||
t = build1 (INDIRECT_REF, inner_type, t);
|
||
t = build_special_member_call (t, complete_dtor_identifier,
|
||
NULL, inner_type, LOOKUP_NORMAL);
|
||
t = get_callee_fndecl (t);
|
||
TREE_VEC_ELT (info, 1) = t;
|
||
}
|
||
|
||
if (need_copy_assignment
|
||
&& !TYPE_HAS_TRIVIAL_ASSIGN_REF (inner_type))
|
||
{
|
||
t = build_int_cst (build_pointer_type (inner_type), 0);
|
||
t = build1 (INDIRECT_REF, inner_type, t);
|
||
t = build_special_member_call (t, ansi_assopname (NOP_EXPR),
|
||
build_tree_list (NULL, t),
|
||
inner_type, LOOKUP_NORMAL);
|
||
|
||
/* We'll have called convert_from_reference on the call, which
|
||
may well have added an indirect_ref. It's unneeded here,
|
||
and in the way, so kill it. */
|
||
if (TREE_CODE (t) == INDIRECT_REF)
|
||
t = TREE_OPERAND (t, 0);
|
||
|
||
t = get_callee_fndecl (t);
|
||
TREE_VEC_ELT (info, 2) = t;
|
||
}
|
||
|
||
if (errorcount != save_errorcount)
|
||
remove = true;
|
||
}
|
||
|
||
if (remove)
|
||
*pc = OMP_CLAUSE_CHAIN (c);
|
||
else
|
||
pc = &OMP_CLAUSE_CHAIN (c);
|
||
}
|
||
|
||
bitmap_obstack_release (NULL);
|
||
return clauses;
|
||
}
|
||
|
||
/* For all variables in the tree_list VARS, mark them as thread local. */
|
||
|
||
void
|
||
finish_omp_threadprivate (tree vars)
|
||
{
|
||
tree t;
|
||
|
||
/* Mark every variable in VARS to be assigned thread local storage. */
|
||
for (t = vars; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree v = TREE_PURPOSE (t);
|
||
|
||
/* If V had already been marked threadprivate, it doesn't matter
|
||
whether it had been used prior to this point. */
|
||
if (TREE_USED (v)
|
||
&& (DECL_LANG_SPECIFIC (v) == NULL
|
||
|| !CP_DECL_THREADPRIVATE_P (v)))
|
||
error ("%qE declared %<threadprivate%> after first use", v);
|
||
else if (! TREE_STATIC (v) && ! DECL_EXTERNAL (v))
|
||
error ("automatic variable %qE cannot be %<threadprivate%>", v);
|
||
else if (! COMPLETE_TYPE_P (TREE_TYPE (v)))
|
||
error ("%<threadprivate%> %qE has incomplete type", v);
|
||
else if (TREE_STATIC (v) && TYPE_P (CP_DECL_CONTEXT (v)))
|
||
error ("%<threadprivate%> %qE is not file, namespace "
|
||
"or block scope variable", v);
|
||
else
|
||
{
|
||
/* Allocate a LANG_SPECIFIC structure for V, if needed. */
|
||
if (DECL_LANG_SPECIFIC (v) == NULL)
|
||
{
|
||
retrofit_lang_decl (v);
|
||
|
||
/* Make sure that DECL_DISCRIMINATOR_P continues to be true
|
||
after the allocation of the lang_decl structure. */
|
||
if (DECL_DISCRIMINATOR_P (v))
|
||
DECL_LANG_SPECIFIC (v)->decl_flags.u2sel = 1;
|
||
}
|
||
|
||
if (! DECL_THREAD_LOCAL_P (v))
|
||
{
|
||
DECL_TLS_MODEL (v) = decl_default_tls_model (v);
|
||
/* If rtl has been already set for this var, call
|
||
make_decl_rtl once again, so that encode_section_info
|
||
has a chance to look at the new decl flags. */
|
||
if (DECL_RTL_SET_P (v))
|
||
make_decl_rtl (v);
|
||
}
|
||
CP_DECL_THREADPRIVATE_P (v) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Build an OpenMP structured block. */
|
||
|
||
tree
|
||
begin_omp_structured_block (void)
|
||
{
|
||
return do_pushlevel (sk_omp);
|
||
}
|
||
|
||
tree
|
||
finish_omp_structured_block (tree block)
|
||
{
|
||
return do_poplevel (block);
|
||
}
|
||
|
||
/* Similarly, except force the retention of the BLOCK. */
|
||
|
||
tree
|
||
begin_omp_parallel (void)
|
||
{
|
||
keep_next_level (true);
|
||
return begin_omp_structured_block ();
|
||
}
|
||
|
||
tree
|
||
finish_omp_parallel (tree clauses, tree body)
|
||
{
|
||
tree stmt;
|
||
|
||
body = finish_omp_structured_block (body);
|
||
|
||
stmt = make_node (OMP_PARALLEL);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
OMP_PARALLEL_CLAUSES (stmt) = clauses;
|
||
OMP_PARALLEL_BODY (stmt) = body;
|
||
|
||
return add_stmt (stmt);
|
||
}
|
||
|
||
/* Build and validate an OMP_FOR statement. CLAUSES, BODY, COND, INCR
|
||
are directly for their associated operands in the statement. DECL
|
||
and INIT are a combo; if DECL is NULL then INIT ought to be a
|
||
MODIFY_EXPR, and the DECL should be extracted. PRE_BODY are
|
||
optional statements that need to go before the loop into its
|
||
sk_omp scope. */
|
||
|
||
tree
|
||
finish_omp_for (location_t locus, tree decl, tree init, tree cond,
|
||
tree incr, tree body, tree pre_body)
|
||
{
|
||
if (decl == NULL)
|
||
{
|
||
if (init != NULL)
|
||
switch (TREE_CODE (init))
|
||
{
|
||
case MODIFY_EXPR:
|
||
decl = TREE_OPERAND (init, 0);
|
||
init = TREE_OPERAND (init, 1);
|
||
break;
|
||
case MODOP_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (init, 1)) == NOP_EXPR)
|
||
{
|
||
decl = TREE_OPERAND (init, 0);
|
||
init = TREE_OPERAND (init, 2);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (decl == NULL)
|
||
{
|
||
error ("expected iteration declaration or initialization");
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
if (type_dependent_expression_p (decl)
|
||
|| type_dependent_expression_p (init)
|
||
|| (cond && type_dependent_expression_p (cond))
|
||
|| (incr && type_dependent_expression_p (incr)))
|
||
{
|
||
tree stmt;
|
||
|
||
if (cond == NULL)
|
||
{
|
||
error ("%Hmissing controlling predicate", &locus);
|
||
return NULL;
|
||
}
|
||
|
||
if (incr == NULL)
|
||
{
|
||
error ("%Hmissing increment expression", &locus);
|
||
return NULL;
|
||
}
|
||
|
||
stmt = make_node (OMP_FOR);
|
||
|
||
/* This is really just a place-holder. We'll be decomposing this
|
||
again and going through the build_modify_expr path below when
|
||
we instantiate the thing. */
|
||
init = build2 (MODIFY_EXPR, void_type_node, decl, init);
|
||
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
OMP_FOR_INIT (stmt) = init;
|
||
OMP_FOR_COND (stmt) = cond;
|
||
OMP_FOR_INCR (stmt) = incr;
|
||
OMP_FOR_BODY (stmt) = body;
|
||
OMP_FOR_PRE_BODY (stmt) = pre_body;
|
||
|
||
SET_EXPR_LOCATION (stmt, locus);
|
||
return add_stmt (stmt);
|
||
}
|
||
|
||
if (!DECL_P (decl))
|
||
{
|
||
error ("expected iteration declaration or initialization");
|
||
return NULL;
|
||
}
|
||
|
||
if (pre_body == NULL || IS_EMPTY_STMT (pre_body))
|
||
pre_body = NULL;
|
||
else if (! processing_template_decl)
|
||
{
|
||
add_stmt (pre_body);
|
||
pre_body = NULL;
|
||
}
|
||
init = build_modify_expr (decl, NOP_EXPR, init);
|
||
return c_finish_omp_for (locus, decl, init, cond, incr, body, pre_body);
|
||
}
|
||
|
||
void
|
||
finish_omp_atomic (enum tree_code code, tree lhs, tree rhs)
|
||
{
|
||
tree orig_lhs;
|
||
tree orig_rhs;
|
||
bool dependent_p;
|
||
tree stmt;
|
||
|
||
orig_lhs = lhs;
|
||
orig_rhs = rhs;
|
||
dependent_p = false;
|
||
stmt = NULL_TREE;
|
||
|
||
/* Even in a template, we can detect invalid uses of the atomic
|
||
pragma if neither LHS nor RHS is type-dependent. */
|
||
if (processing_template_decl)
|
||
{
|
||
dependent_p = (type_dependent_expression_p (lhs)
|
||
|| type_dependent_expression_p (rhs));
|
||
if (!dependent_p)
|
||
{
|
||
lhs = build_non_dependent_expr (lhs);
|
||
rhs = build_non_dependent_expr (rhs);
|
||
}
|
||
}
|
||
if (!dependent_p)
|
||
{
|
||
stmt = c_finish_omp_atomic (code, lhs, rhs);
|
||
if (stmt == error_mark_node)
|
||
return;
|
||
}
|
||
if (processing_template_decl)
|
||
{
|
||
stmt = build2 (OMP_ATOMIC, void_type_node, orig_lhs, orig_rhs);
|
||
OMP_ATOMIC_DEPENDENT_P (stmt) = 1;
|
||
OMP_ATOMIC_CODE (stmt) = code;
|
||
}
|
||
add_stmt (stmt);
|
||
}
|
||
|
||
void
|
||
finish_omp_barrier (void)
|
||
{
|
||
tree fn = built_in_decls[BUILT_IN_GOMP_BARRIER];
|
||
tree stmt = finish_call_expr (fn, NULL, false, false);
|
||
finish_expr_stmt (stmt);
|
||
}
|
||
|
||
void
|
||
finish_omp_flush (void)
|
||
{
|
||
tree fn = built_in_decls[BUILT_IN_SYNCHRONIZE];
|
||
tree stmt = finish_call_expr (fn, NULL, false, false);
|
||
finish_expr_stmt (stmt);
|
||
}
|
||
|
||
/* True if OpenMP sharing attribute of DECL is predetermined. */
|
||
|
||
enum omp_clause_default_kind
|
||
cxx_omp_predetermined_sharing (tree decl)
|
||
{
|
||
enum omp_clause_default_kind kind;
|
||
|
||
kind = c_omp_predetermined_sharing (decl);
|
||
if (kind != OMP_CLAUSE_DEFAULT_UNSPECIFIED)
|
||
return kind;
|
||
|
||
/* Static data members are predetermined as shared. */
|
||
if (TREE_STATIC (decl))
|
||
{
|
||
tree ctx = CP_DECL_CONTEXT (decl);
|
||
if (TYPE_P (ctx) && IS_AGGR_TYPE (ctx))
|
||
return OMP_CLAUSE_DEFAULT_SHARED;
|
||
}
|
||
|
||
return OMP_CLAUSE_DEFAULT_UNSPECIFIED;
|
||
}
|
||
|
||
void
|
||
init_cp_semantics (void)
|
||
{
|
||
}
|
||
|
||
#include "gt-cp-semantics.h"
|