freebsd-skq/lib/CodeGen/LiveRangeEdit.cpp

314 lines
11 KiB
C++

//===--- LiveRangeEdit.cpp - Basic tools for editing a register live range --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeEdit class represents changes done to a virtual register when it
// is spilled or split.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "LiveRangeEdit.h"
#include "VirtRegMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg,
LiveIntervals &LIS,
VirtRegMap &VRM) {
MachineRegisterInfo &MRI = VRM.getRegInfo();
unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
VRM.grow();
VRM.setIsSplitFromReg(VReg, VRM.getOriginal(OldReg));
LiveInterval &LI = LIS.getOrCreateInterval(VReg);
newRegs_.push_back(&LI);
return LI;
}
bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
const MachineInstr *DefMI,
const TargetInstrInfo &tii,
AliasAnalysis *aa) {
assert(DefMI && "Missing instruction");
scannedRemattable_ = true;
if (!tii.isTriviallyReMaterializable(DefMI, aa))
return false;
remattable_.insert(VNI);
return true;
}
void LiveRangeEdit::scanRemattable(LiveIntervals &lis,
const TargetInstrInfo &tii,
AliasAnalysis *aa) {
for (LiveInterval::vni_iterator I = parent_.vni_begin(),
E = parent_.vni_end(); I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
MachineInstr *DefMI = lis.getInstructionFromIndex(VNI->def);
if (!DefMI)
continue;
checkRematerializable(VNI, DefMI, tii, aa);
}
scannedRemattable_ = true;
}
bool LiveRangeEdit::anyRematerializable(LiveIntervals &lis,
const TargetInstrInfo &tii,
AliasAnalysis *aa) {
if (!scannedRemattable_)
scanRemattable(lis, tii, aa);
return !remattable_.empty();
}
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
SlotIndex OrigIdx,
SlotIndex UseIdx,
LiveIntervals &lis) {
OrigIdx = OrigIdx.getUseIndex();
UseIdx = UseIdx.getUseIndex();
for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = OrigMI->getOperand(i);
if (!MO.isReg() || !MO.getReg() || MO.isDef())
continue;
// Reserved registers are OK.
if (MO.isUndef() || !lis.hasInterval(MO.getReg()))
continue;
// We cannot depend on virtual registers in uselessRegs_.
if (uselessRegs_)
for (unsigned ui = 0, ue = uselessRegs_->size(); ui != ue; ++ui)
if ((*uselessRegs_)[ui]->reg == MO.getReg())
return false;
LiveInterval &li = lis.getInterval(MO.getReg());
const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
if (!OVNI)
continue;
if (OVNI != li.getVNInfoAt(UseIdx))
return false;
}
return true;
}
bool LiveRangeEdit::canRematerializeAt(Remat &RM,
SlotIndex UseIdx,
bool cheapAsAMove,
LiveIntervals &lis) {
assert(scannedRemattable_ && "Call anyRematerializable first");
// Use scanRemattable info.
if (!remattable_.count(RM.ParentVNI))
return false;
// No defining instruction provided.
SlotIndex DefIdx;
if (RM.OrigMI)
DefIdx = lis.getInstructionIndex(RM.OrigMI);
else {
DefIdx = RM.ParentVNI->def;
RM.OrigMI = lis.getInstructionFromIndex(DefIdx);
assert(RM.OrigMI && "No defining instruction for remattable value");
}
// If only cheap remats were requested, bail out early.
if (cheapAsAMove && !RM.OrigMI->getDesc().isAsCheapAsAMove())
return false;
// Verify that all used registers are available with the same values.
if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx, lis))
return false;
return true;
}
SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg,
const Remat &RM,
LiveIntervals &lis,
const TargetInstrInfo &tii,
const TargetRegisterInfo &tri,
bool Late) {
assert(RM.OrigMI && "Invalid remat");
tii.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
rematted_.insert(RM.ParentVNI);
return lis.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
.getDefIndex();
}
void LiveRangeEdit::eraseVirtReg(unsigned Reg, LiveIntervals &LIS) {
if (delegate_ && delegate_->LRE_CanEraseVirtReg(Reg))
LIS.removeInterval(Reg);
}
bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
SmallVectorImpl<MachineInstr*> &Dead,
MachineRegisterInfo &MRI,
LiveIntervals &LIS,
const TargetInstrInfo &TII) {
MachineInstr *DefMI = 0, *UseMI = 0;
// Check that there is a single def and a single use.
for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg),
E = MRI.reg_nodbg_end(); I != E; ++I) {
MachineOperand &MO = I.getOperand();
MachineInstr *MI = MO.getParent();
if (MO.isDef()) {
if (DefMI && DefMI != MI)
return false;
if (!MI->getDesc().canFoldAsLoad())
return false;
DefMI = MI;
} else if (!MO.isUndef()) {
if (UseMI && UseMI != MI)
return false;
// FIXME: Targets don't know how to fold subreg uses.
if (MO.getSubReg())
return false;
UseMI = MI;
}
}
if (!DefMI || !UseMI)
return false;
DEBUG(dbgs() << "Try to fold single def: " << *DefMI
<< " into single use: " << *UseMI);
SmallVector<unsigned, 8> Ops;
if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
return false;
MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
if (!FoldMI)
return false;
DEBUG(dbgs() << " folded: " << *FoldMI);
LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
UseMI->eraseFromParent();
DefMI->addRegisterDead(LI->reg, 0);
Dead.push_back(DefMI);
return true;
}
void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
LiveIntervals &LIS, VirtRegMap &VRM,
const TargetInstrInfo &TII) {
SetVector<LiveInterval*,
SmallVector<LiveInterval*, 8>,
SmallPtrSet<LiveInterval*, 8> > ToShrink;
MachineRegisterInfo &MRI = VRM.getRegInfo();
for (;;) {
// Erase all dead defs.
while (!Dead.empty()) {
MachineInstr *MI = Dead.pop_back_val();
assert(MI->allDefsAreDead() && "Def isn't really dead");
SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex();
// Never delete inline asm.
if (MI->isInlineAsm()) {
DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
continue;
}
// Use the same criteria as DeadMachineInstructionElim.
bool SawStore = false;
if (!MI->isSafeToMove(&TII, 0, SawStore)) {
DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
continue;
}
DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
// Check for live intervals that may shrink
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end(); MOI != MOE; ++MOI) {
if (!MOI->isReg())
continue;
unsigned Reg = MOI->getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
LiveInterval &LI = LIS.getInterval(Reg);
// Shrink read registers, unless it is likely to be expensive and
// unlikely to change anything. We typically don't want to shrink the
// PIC base register that has lots of uses everywhere.
// Always shrink COPY uses that probably come from live range splitting.
if (MI->readsVirtualRegister(Reg) &&
(MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
LI.killedAt(Idx)))
ToShrink.insert(&LI);
// Remove defined value.
if (MOI->isDef()) {
if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
if (delegate_)
delegate_->LRE_WillShrinkVirtReg(LI.reg);
LI.removeValNo(VNI);
if (LI.empty()) {
ToShrink.remove(&LI);
eraseVirtReg(Reg, LIS);
}
}
}
}
if (delegate_)
delegate_->LRE_WillEraseInstruction(MI);
LIS.RemoveMachineInstrFromMaps(MI);
MI->eraseFromParent();
}
if (ToShrink.empty())
break;
// Shrink just one live interval. Then delete new dead defs.
LiveInterval *LI = ToShrink.back();
ToShrink.pop_back();
if (foldAsLoad(LI, Dead, MRI, LIS, TII))
continue;
if (delegate_)
delegate_->LRE_WillShrinkVirtReg(LI->reg);
if (!LIS.shrinkToUses(LI, &Dead))
continue;
// LI may have been separated, create new intervals.
LI->RenumberValues(LIS);
ConnectedVNInfoEqClasses ConEQ(LIS);
unsigned NumComp = ConEQ.Classify(LI);
if (NumComp <= 1)
continue;
DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
SmallVector<LiveInterval*, 8> Dups(1, LI);
for (unsigned i = 1; i != NumComp; ++i) {
Dups.push_back(&createFrom(LI->reg, LIS, VRM));
if (delegate_)
delegate_->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
}
ConEQ.Distribute(&Dups[0], MRI);
}
}
void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
LiveIntervals &LIS,
const MachineLoopInfo &Loops) {
VirtRegAuxInfo VRAI(MF, LIS, Loops);
for (iterator I = begin(), E = end(); I != E; ++I) {
LiveInterval &LI = **I;
VRAI.CalculateRegClass(LI.reg);
VRAI.CalculateWeightAndHint(LI);
}
}