freebsd-skq/sys/dev/ath/ath_hal/ah_regdomain.c
2009-02-07 01:54:57 +00:00

2421 lines
80 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2005-2006 Atheros Communications, Inc.
* All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include <net80211/_ieee80211.h>
#include <net80211/ieee80211_regdomain.h>
#include "ah_internal.h"
#include "ah_eeprom.h"
#include "ah_devid.h"
/*
* XXX this code needs a audit+review
*/
/* used throughout this file... */
#define N(a) (sizeof (a) / sizeof (a[0]))
#define HAL_MODE_11A_TURBO HAL_MODE_108A
#define HAL_MODE_11G_TURBO HAL_MODE_108G
/*
* BMLEN defines the size of the bitmask used to hold frequency
* band specifications. Note this must agree with the BM macro
* definition that's used to setup initializers. See also further
* comments below.
*/
#define BMLEN 2 /* 2 x 64 bits in each channel bitmask */
typedef uint64_t chanbmask_t[BMLEN];
#define W0(_a) \
(((_a) >= 0 && (_a) < 64 ? (((uint64_t) 1)<<(_a)) : (uint64_t) 0))
#define W1(_a) \
(((_a) > 63 && (_a) < 128 ? (((uint64_t) 1)<<((_a)-64)) : (uint64_t) 0))
#define BM1(_fa) { W0(_fa), W1(_fa) }
#define BM2(_fa, _fb) { W0(_fa) | W0(_fb), W1(_fa) | W1(_fb) }
#define BM3(_fa, _fb, _fc) \
{ W0(_fa) | W0(_fb) | W0(_fc), W1(_fa) | W1(_fb) | W1(_fc) }
#define BM4(_fa, _fb, _fc, _fd) \
{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd), \
W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) }
#define BM5(_fa, _fb, _fc, _fd, _fe) \
{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe), \
W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) }
#define BM6(_fa, _fb, _fc, _fd, _fe, _ff) \
{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff), \
W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) }
#define BM7(_fa, _fb, _fc, _fd, _fe, _ff, _fg) \
{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) | \
W0(_fg),\
W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) | \
W1(_fg) }
#define BM8(_fa, _fb, _fc, _fd, _fe, _ff, _fg, _fh) \
{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) | \
W0(_fg) | W0(_fh) , \
W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) | \
W1(_fg) | W1(_fh) }
#define BM9(_fa, _fb, _fc, _fd, _fe, _ff, _fg, _fh, _fi) \
{ W0(_fa) | W0(_fb) | W0(_fc) | W0(_fd) | W0(_fe) | W0(_ff) | \
W0(_fg) | W0(_fh) | W0(_fi) , \
W1(_fa) | W1(_fb) | W1(_fc) | W1(_fd) | W1(_fe) | W1(_ff) | \
W1(_fg) | W1(_fh) | W1(_fi) }
/*
* Mask to check whether a domain is a multidomain or a single domain
*/
#define MULTI_DOMAIN_MASK 0xFF00
/*
* Enumerated Regulatory Domain Information 8 bit values indicate that
* the regdomain is really a pair of unitary regdomains. 12 bit values
* are the real unitary regdomains and are the only ones which have the
* frequency bitmasks and flags set.
*/
enum {
/*
* The following regulatory domain definitions are
* found in the EEPROM. Each regulatory domain
* can operate in either a 5GHz or 2.4GHz wireless mode or
* both 5GHz and 2.4GHz wireless modes.
* In general, the value holds no special
* meaning and is used to decode into either specific
* 2.4GHz or 5GHz wireless mode for that particular
* regulatory domain.
*/
NO_ENUMRD = 0x00,
NULL1_WORLD = 0x03, /* For 11b-only countries (no 11a allowed) */
NULL1_ETSIB = 0x07, /* Israel */
NULL1_ETSIC = 0x08,
FCC1_FCCA = 0x10, /* USA */
FCC1_WORLD = 0x11, /* Hong Kong */
FCC4_FCCA = 0x12, /* USA - Public Safety */
FCC5_FCCB = 0x13, /* USA w/ 1/2 and 1/4 width channels */
FCC2_FCCA = 0x20, /* Canada */
FCC2_WORLD = 0x21, /* Australia & HK */
FCC2_ETSIC = 0x22,
FRANCE_RES = 0x31, /* Legacy France for OEM */
FCC3_FCCA = 0x3A, /* USA & Canada w/5470 band, 11h, DFS enabled */
FCC3_WORLD = 0x3B, /* USA & Canada w/5470 band, 11h, DFS enabled */
ETSI1_WORLD = 0x37,
ETSI3_ETSIA = 0x32, /* France (optional) */
ETSI2_WORLD = 0x35, /* Hungary & others */
ETSI3_WORLD = 0x36, /* France & others */
ETSI4_WORLD = 0x30,
ETSI4_ETSIC = 0x38,
ETSI5_WORLD = 0x39,
ETSI6_WORLD = 0x34, /* Bulgaria */
ETSI_RESERVED = 0x33, /* Reserved (Do not used) */
MKK1_MKKA = 0x40, /* Japan (JP1) */
MKK1_MKKB = 0x41, /* Japan (JP0) */
APL4_WORLD = 0x42, /* Singapore */
MKK2_MKKA = 0x43, /* Japan with 4.9G channels */
APL_RESERVED = 0x44, /* Reserved (Do not used) */
APL2_WORLD = 0x45, /* Korea */
APL2_APLC = 0x46,
APL3_WORLD = 0x47,
MKK1_FCCA = 0x48, /* Japan (JP1-1) */
APL2_APLD = 0x49, /* Korea with 2.3G channels */
MKK1_MKKA1 = 0x4A, /* Japan (JE1) */
MKK1_MKKA2 = 0x4B, /* Japan (JE2) */
MKK1_MKKC = 0x4C, /* Japan (MKK1_MKKA,except Ch14) */
APL3_FCCA = 0x50,
APL1_WORLD = 0x52, /* Latin America */
APL1_FCCA = 0x53,
APL1_APLA = 0x54,
APL1_ETSIC = 0x55,
APL2_ETSIC = 0x56, /* Venezuela */
APL5_WORLD = 0x58, /* Chile */
APL6_WORLD = 0x5B, /* Singapore */
APL7_FCCA = 0x5C, /* Taiwan 5.47 Band */
APL8_WORLD = 0x5D, /* Malaysia 5GHz */
APL9_WORLD = 0x5E, /* Korea 5GHz */
/*
* World mode SKUs
*/
WOR0_WORLD = 0x60, /* World0 (WO0 SKU) */
WOR1_WORLD = 0x61, /* World1 (WO1 SKU) */
WOR2_WORLD = 0x62, /* World2 (WO2 SKU) */
WOR3_WORLD = 0x63, /* World3 (WO3 SKU) */
WOR4_WORLD = 0x64, /* World4 (WO4 SKU) */
WOR5_ETSIC = 0x65, /* World5 (WO5 SKU) */
WOR01_WORLD = 0x66, /* World0-1 (WW0-1 SKU) */
WOR02_WORLD = 0x67, /* World0-2 (WW0-2 SKU) */
EU1_WORLD = 0x68, /* Same as World0-2 (WW0-2 SKU), except active scan ch1-13. No ch14 */
WOR9_WORLD = 0x69, /* World9 (WO9 SKU) */
WORA_WORLD = 0x6A, /* WorldA (WOA SKU) */
MKK3_MKKB = 0x80, /* Japan UNI-1 even + MKKB */
MKK3_MKKA2 = 0x81, /* Japan UNI-1 even + MKKA2 */
MKK3_MKKC = 0x82, /* Japan UNI-1 even + MKKC */
MKK4_MKKB = 0x83, /* Japan UNI-1 even + UNI-2 + MKKB */
MKK4_MKKA2 = 0x84, /* Japan UNI-1 even + UNI-2 + MKKA2 */
MKK4_MKKC = 0x85, /* Japan UNI-1 even + UNI-2 + MKKC */
MKK5_MKKB = 0x86, /* Japan UNI-1 even + UNI-2 + mid-band + MKKB */
MKK5_MKKA2 = 0x87, /* Japan UNI-1 even + UNI-2 + mid-band + MKKA2 */
MKK5_MKKC = 0x88, /* Japan UNI-1 even + UNI-2 + mid-band + MKKC */
MKK6_MKKB = 0x89, /* Japan UNI-1 even + UNI-1 odd MKKB */
MKK6_MKKA2 = 0x8A, /* Japan UNI-1 even + UNI-1 odd + MKKA2 */
MKK6_MKKC = 0x8B, /* Japan UNI-1 even + UNI-1 odd + MKKC */
MKK7_MKKB = 0x8C, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKB */
MKK7_MKKA2 = 0x8D, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKA2 */
MKK7_MKKC = 0x8E, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKC */
MKK8_MKKB = 0x8F, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKB */
MKK8_MKKA2 = 0x90, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKA2 */
MKK8_MKKC = 0x91, /* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKC */
/* Following definitions are used only by s/w to map old
* Japan SKUs.
*/
MKK3_MKKA = 0xF0, /* Japan UNI-1 even + MKKA */
MKK3_MKKA1 = 0xF1, /* Japan UNI-1 even + MKKA1 */
MKK3_FCCA = 0xF2, /* Japan UNI-1 even + FCCA */
MKK4_MKKA = 0xF3, /* Japan UNI-1 even + UNI-2 + MKKA */
MKK4_MKKA1 = 0xF4, /* Japan UNI-1 even + UNI-2 + MKKA1 */
MKK4_FCCA = 0xF5, /* Japan UNI-1 even + UNI-2 + FCCA */
MKK9_MKKA = 0xF6, /* Japan UNI-1 even + 4.9GHz */
MKK10_MKKA = 0xF7, /* Japan UNI-1 even + UNI-2 + 4.9GHz */
/*
* Regulator domains ending in a number (e.g. APL1,
* MK1, ETSI4, etc) apply to 5GHz channel and power
* information. Regulator domains ending in a letter
* (e.g. APLA, FCCA, etc) apply to 2.4GHz channel and
* power information.
*/
APL1 = 0x0150, /* LAT & Asia */
APL2 = 0x0250, /* LAT & Asia */
APL3 = 0x0350, /* Taiwan */
APL4 = 0x0450, /* Jordan */
APL5 = 0x0550, /* Chile */
APL6 = 0x0650, /* Singapore */
APL8 = 0x0850, /* Malaysia */
APL9 = 0x0950, /* Korea (South) ROC 3 */
ETSI1 = 0x0130, /* Europe & others */
ETSI2 = 0x0230, /* Europe & others */
ETSI3 = 0x0330, /* Europe & others */
ETSI4 = 0x0430, /* Europe & others */
ETSI5 = 0x0530, /* Europe & others */
ETSI6 = 0x0630, /* Europe & others */
ETSIA = 0x0A30, /* France */
ETSIB = 0x0B30, /* Israel */
ETSIC = 0x0C30, /* Latin America */
FCC1 = 0x0110, /* US & others */
FCC2 = 0x0120, /* Canada, Australia & New Zealand */
FCC3 = 0x0160, /* US w/new middle band & DFS */
FCC4 = 0x0165, /* US Public Safety */
FCC5 = 0x0166, /* US w/ 1/2 and 1/4 width channels */
FCCA = 0x0A10,
FCCB = 0x0A11, /* US w/ 1/2 and 1/4 width channels */
APLD = 0x0D50, /* South Korea */
MKK1 = 0x0140, /* Japan (UNI-1 odd)*/
MKK2 = 0x0240, /* Japan (4.9 GHz + UNI-1 odd) */
MKK3 = 0x0340, /* Japan (UNI-1 even) */
MKK4 = 0x0440, /* Japan (UNI-1 even + UNI-2) */
MKK5 = 0x0540, /* Japan (UNI-1 even + UNI-2 + mid-band) */
MKK6 = 0x0640, /* Japan (UNI-1 odd + UNI-1 even) */
MKK7 = 0x0740, /* Japan (UNI-1 odd + UNI-1 even + UNI-2 */
MKK8 = 0x0840, /* Japan (UNI-1 odd + UNI-1 even + UNI-2 + mid-band) */
MKK9 = 0x0940, /* Japan (UNI-1 even + 4.9 GHZ) */
MKK10 = 0x0B40, /* Japan (UNI-1 even + UNI-2 + 4.9 GHZ) */
MKKA = 0x0A40, /* Japan */
MKKC = 0x0A50,
NULL1 = 0x0198,
WORLD = 0x0199,
DEBUG_REG_DMN = 0x01ff,
};
#define WORLD_SKU_MASK 0x00F0
#define WORLD_SKU_PREFIX 0x0060
enum { /* conformance test limits */
FCC = 0x10,
MKK = 0x40,
ETSI = 0x30,
};
/*
* The following are flags for different requirements per reg domain.
* These requirements are either inhereted from the reg domain pair or
* from the unitary reg domain if the reg domain pair flags value is 0
*/
enum {
NO_REQ = 0x00000000, /* NB: must be zero */
DISALLOW_ADHOC_11A = 0x00000001, /* adhoc not allowed in 5GHz */
DISALLOW_ADHOC_11A_TURB = 0x00000002, /* not allowed w/ 5GHz turbo */
NEED_NFC = 0x00000004, /* need noise floor check */
ADHOC_PER_11D = 0x00000008, /* must receive 11d beacon */
LIMIT_FRAME_4MS = 0x00000020, /* 4msec tx burst limit */
NO_HOSTAP = 0x00000040, /* No HOSTAP mode opereation */
};
/*
* The following describe the bit masks for different passive scan
* capability/requirements per regdomain.
*/
#define NO_PSCAN 0x0ULL /* NB: must be zero */
#define PSCAN_FCC 0x0000000000000001ULL
#define PSCAN_FCC_T 0x0000000000000002ULL
#define PSCAN_ETSI 0x0000000000000004ULL
#define PSCAN_MKK1 0x0000000000000008ULL
#define PSCAN_MKK2 0x0000000000000010ULL
#define PSCAN_MKKA 0x0000000000000020ULL
#define PSCAN_MKKA_G 0x0000000000000040ULL
#define PSCAN_ETSIA 0x0000000000000080ULL
#define PSCAN_ETSIB 0x0000000000000100ULL
#define PSCAN_ETSIC 0x0000000000000200ULL
#define PSCAN_WWR 0x0000000000000400ULL
#define PSCAN_MKKA1 0x0000000000000800ULL
#define PSCAN_MKKA1_G 0x0000000000001000ULL
#define PSCAN_MKKA2 0x0000000000002000ULL
#define PSCAN_MKKA2_G 0x0000000000004000ULL
#define PSCAN_MKK3 0x0000000000008000ULL
#define PSCAN_DEFER 0x7FFFFFFFFFFFFFFFULL
#define IS_ECM_CHAN 0x8000000000000000ULL
/*
* THE following table is the mapping of regdomain pairs specified by
* an 8 bit regdomain value to the individual unitary reg domains
*/
typedef struct regDomainPair {
HAL_REG_DOMAIN regDmnEnum; /* 16 bit reg domain pair */
HAL_REG_DOMAIN regDmn5GHz; /* 5GHz reg domain */
HAL_REG_DOMAIN regDmn2GHz; /* 2GHz reg domain */
uint32_t flags5GHz; /* Requirements flags (AdHoc
disallow, noise floor cal needed,
etc) */
uint32_t flags2GHz; /* Requirements flags (AdHoc
disallow, noise floor cal needed,
etc) */
uint64_t pscanMask; /* Passive Scan flags which
can override unitary domain
passive scan flags. This
value is used as a mask on
the unitary flags*/
uint16_t singleCC; /* Country code of single country if
a one-on-one mapping exists */
} REG_DMN_PAIR_MAPPING;
static REG_DMN_PAIR_MAPPING regDomainPairs[] = {
{NO_ENUMRD, DEBUG_REG_DMN, DEBUG_REG_DMN, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{NULL1_WORLD, NULL1, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{NULL1_ETSIB, NULL1, ETSIB, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{NULL1_ETSIC, NULL1, ETSIC, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FCC2_FCCA, FCC2, FCCA, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FCC2_WORLD, FCC2, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FCC2_ETSIC, FCC2, ETSIC, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FCC3_FCCA, FCC3, FCCA, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FCC3_WORLD, FCC3, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FCC4_FCCA, FCC4, FCCA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FCC5_FCCB, FCC5, FCCB, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{ETSI1_WORLD, ETSI1, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{ETSI2_WORLD, ETSI2, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{ETSI3_WORLD, ETSI3, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{ETSI4_WORLD, ETSI4, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{ETSI5_WORLD, ETSI5, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{ETSI6_WORLD, ETSI6, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{ETSI3_ETSIA, ETSI3, WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FRANCE_RES, ETSI3, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FCC1_WORLD, FCC1, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{FCC1_FCCA, FCC1, FCCA, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL1_WORLD, APL1, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL2_WORLD, APL2, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL3_WORLD, APL3, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL4_WORLD, APL4, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL5_WORLD, APL5, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL6_WORLD, APL6, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL8_WORLD, APL8, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL9_WORLD, APL9, WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL3_FCCA, APL3, FCCA, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL1_ETSIC, APL1, ETSIC, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL2_ETSIC, APL2, ETSIC, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{APL2_APLD, APL2, APLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{MKK1_MKKA, MKK1, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA, CTRY_JAPAN },
{MKK1_MKKB, MKK1, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN1 },
{MKK1_FCCA, MKK1, FCCA, DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN2 },
{MKK1_MKKA1, MKK1, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_JAPAN4 },
{MKK1_MKKA2, MKK1, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN5 },
{MKK1_MKKC, MKK1, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN6 },
/* MKK2 */
{MKK2_MKKA, MKK2, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC| LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK2 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN3 },
/* MKK3 */
{MKK3_MKKA, MKK3, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC , PSCAN_MKKA, CTRY_DEFAULT },
{MKK3_MKKB, MKK3, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN7 },
{MKK3_MKKA1, MKK3, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_DEFAULT },
{MKK3_MKKA2,MKK3, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN8 },
{MKK3_MKKC, MKK3, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, CTRY_JAPAN9 },
{MKK3_FCCA, MKK3, FCCA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, NO_PSCAN, CTRY_DEFAULT },
/* MKK4 */
{MKK4_MKKB, MKK4, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN10 },
{MKK4_MKKA1, MKK4, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA1 | PSCAN_MKKA1_G, CTRY_DEFAULT },
{MKK4_MKKA2, MKK4, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 |PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN11 },
{MKK4_MKKC, MKK4, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN12 },
{MKK4_FCCA, MKK4, FCCA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_DEFAULT },
/* MKK5 */
{MKK5_MKKB, MKK5, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN13 },
{MKK5_MKKA2,MKK5, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN14 },
{MKK5_MKKC, MKK5, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3, CTRY_JAPAN15 },
/* MKK6 */
{MKK6_MKKB, MKK6, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN16 },
{MKK6_MKKA2, MKK6, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN17 },
{MKK6_MKKC, MKK6, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1, CTRY_JAPAN18 },
/* MKK7 */
{MKK7_MKKB, MKK7, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN19 },
{MKK7_MKKA2, MKK7, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN20 },
{MKK7_MKKC, MKK7, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3, CTRY_JAPAN21 },
/* MKK8 */
{MKK8_MKKB, MKK8, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_JAPAN22 },
{MKK8_MKKA2,MKK8, MKKA, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 | PSCAN_MKKA2 | PSCAN_MKKA2_G, CTRY_JAPAN23 },
{MKK8_MKKC, MKK8, MKKC, DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK1 | PSCAN_MKK3 , CTRY_JAPAN24 },
{MKK9_MKKA, MKK9, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_DEFAULT },
{MKK10_MKKA, MKK10, MKKA, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB | NEED_NFC | LIMIT_FRAME_4MS, NEED_NFC, PSCAN_MKK3 | PSCAN_MKKA | PSCAN_MKKA_G, CTRY_DEFAULT },
/* These are super domains */
{WOR0_WORLD, WOR0_WORLD, WOR0_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{WOR1_WORLD, WOR1_WORLD, WOR1_WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{WOR2_WORLD, WOR2_WORLD, WOR2_WORLD, DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{WOR3_WORLD, WOR3_WORLD, WOR3_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{WOR4_WORLD, WOR4_WORLD, WOR4_WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{WOR5_ETSIC, WOR5_ETSIC, WOR5_ETSIC, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{WOR01_WORLD, WOR01_WORLD, WOR01_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{WOR02_WORLD, WOR02_WORLD, WOR02_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{EU1_WORLD, EU1_WORLD, EU1_WORLD, NO_REQ, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{WOR9_WORLD, WOR9_WORLD, WOR9_WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
{WORA_WORLD, WORA_WORLD, WORA_WORLD, DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB, NO_REQ, PSCAN_DEFER, CTRY_DEFAULT },
};
/*
* The following tables are the master list for all different freqeuncy
* bands with the complete matrix of all possible flags and settings
* for each band if it is used in ANY reg domain.
*/
#define DEF_REGDMN FCC1_FCCA
#define COUNTRY_ERD_FLAG 0x8000
#define WORLDWIDE_ROAMING_FLAG 0x4000
typedef struct {
HAL_CTRY_CODE countryCode;
HAL_REG_DOMAIN regDmnEnum;
} COUNTRY_CODE_TO_ENUM_RD;
static COUNTRY_CODE_TO_ENUM_RD allCountries[] = {
{ CTRY_DEBUG, NO_ENUMRD },
{ CTRY_DEFAULT, DEF_REGDMN },
{ CTRY_ALBANIA, NULL1_WORLD },
{ CTRY_ALGERIA, NULL1_WORLD },
{ CTRY_ARGENTINA, APL3_WORLD },
{ CTRY_ARMENIA, ETSI4_WORLD },
{ CTRY_AUSTRALIA, FCC2_WORLD },
{ CTRY_AUSTRIA, ETSI1_WORLD },
{ CTRY_AZERBAIJAN, ETSI4_WORLD },
{ CTRY_BAHRAIN, APL6_WORLD },
{ CTRY_BELARUS, NULL1_WORLD },
{ CTRY_BELGIUM, ETSI1_WORLD },
{ CTRY_BELIZE, APL1_ETSIC },
{ CTRY_BOLIVIA, APL1_ETSIC },
{ CTRY_BRAZIL, FCC3_WORLD },
{ CTRY_BRUNEI_DARUSSALAM,APL1_WORLD },
{ CTRY_BULGARIA, ETSI6_WORLD },
{ CTRY_CANADA, FCC2_FCCA },
{ CTRY_CHILE, APL6_WORLD },
{ CTRY_CHINA, APL1_WORLD },
{ CTRY_COLOMBIA, FCC1_FCCA },
{ CTRY_COSTA_RICA, NULL1_WORLD },
{ CTRY_CROATIA, ETSI3_WORLD },
{ CTRY_CYPRUS, ETSI1_WORLD },
{ CTRY_CZECH, ETSI1_WORLD },
{ CTRY_DENMARK, ETSI1_WORLD },
{ CTRY_DOMINICAN_REPUBLIC,FCC1_FCCA },
{ CTRY_ECUADOR, NULL1_WORLD },
{ CTRY_EGYPT, ETSI3_WORLD },
{ CTRY_EL_SALVADOR, NULL1_WORLD },
{ CTRY_ESTONIA, ETSI1_WORLD },
{ CTRY_FINLAND, ETSI1_WORLD },
{ CTRY_FRANCE, ETSI1_WORLD },
{ CTRY_FRANCE2, ETSI3_WORLD },
{ CTRY_GEORGIA, ETSI4_WORLD },
{ CTRY_GERMANY, ETSI1_WORLD },
{ CTRY_GREECE, ETSI1_WORLD },
{ CTRY_GUATEMALA, FCC1_FCCA },
{ CTRY_HONDURAS, NULL1_WORLD },
{ CTRY_HONG_KONG, FCC2_WORLD },
{ CTRY_HUNGARY, ETSI1_WORLD },
{ CTRY_ICELAND, ETSI1_WORLD },
{ CTRY_INDIA, APL6_WORLD },
{ CTRY_INDONESIA, APL1_WORLD },
{ CTRY_IRAN, APL1_WORLD },
{ CTRY_IRELAND, ETSI1_WORLD },
{ CTRY_ISRAEL, NULL1_WORLD },
{ CTRY_ITALY, ETSI1_WORLD },
{ CTRY_JAPAN, MKK1_MKKA },
{ CTRY_JAPAN1, MKK1_MKKB },
{ CTRY_JAPAN2, MKK1_FCCA },
{ CTRY_JAPAN3, MKK2_MKKA },
{ CTRY_JAPAN4, MKK1_MKKA1 },
{ CTRY_JAPAN5, MKK1_MKKA2 },
{ CTRY_JAPAN6, MKK1_MKKC },
{ CTRY_JAPAN7, MKK3_MKKB },
{ CTRY_JAPAN8, MKK3_MKKA2 },
{ CTRY_JAPAN9, MKK3_MKKC },
{ CTRY_JAPAN10, MKK4_MKKB },
{ CTRY_JAPAN11, MKK4_MKKA2 },
{ CTRY_JAPAN12, MKK4_MKKC },
{ CTRY_JAPAN13, MKK5_MKKB },
{ CTRY_JAPAN14, MKK5_MKKA2 },
{ CTRY_JAPAN15, MKK5_MKKC },
{ CTRY_JAPAN16, MKK6_MKKB },
{ CTRY_JAPAN17, MKK6_MKKA2 },
{ CTRY_JAPAN18, MKK6_MKKC },
{ CTRY_JAPAN19, MKK7_MKKB },
{ CTRY_JAPAN20, MKK7_MKKA2 },
{ CTRY_JAPAN21, MKK7_MKKC },
{ CTRY_JAPAN22, MKK8_MKKB },
{ CTRY_JAPAN23, MKK8_MKKA2 },
{ CTRY_JAPAN24, MKK8_MKKC },
{ CTRY_JORDAN, APL4_WORLD },
{ CTRY_KAZAKHSTAN, NULL1_WORLD },
{ CTRY_KOREA_NORTH, APL2_WORLD },
{ CTRY_KOREA_ROC, APL2_WORLD },
{ CTRY_KOREA_ROC2, APL2_WORLD },
{ CTRY_KOREA_ROC3, APL9_WORLD },
{ CTRY_KUWAIT, NULL1_WORLD },
{ CTRY_LATVIA, ETSI1_WORLD },
{ CTRY_LEBANON, NULL1_WORLD },
{ CTRY_LIECHTENSTEIN,ETSI1_WORLD },
{ CTRY_LITHUANIA, ETSI1_WORLD },
{ CTRY_LUXEMBOURG, ETSI1_WORLD },
{ CTRY_MACAU, FCC2_WORLD },
{ CTRY_MACEDONIA, NULL1_WORLD },
{ CTRY_MALAYSIA, APL8_WORLD },
{ CTRY_MALTA, ETSI1_WORLD },
{ CTRY_MEXICO, FCC1_FCCA },
{ CTRY_MONACO, ETSI4_WORLD },
{ CTRY_MOROCCO, NULL1_WORLD },
{ CTRY_NETHERLANDS, ETSI1_WORLD },
{ CTRY_NEW_ZEALAND, FCC2_ETSIC },
{ CTRY_NORWAY, ETSI1_WORLD },
{ CTRY_OMAN, APL6_WORLD },
{ CTRY_PAKISTAN, NULL1_WORLD },
{ CTRY_PANAMA, FCC1_FCCA },
{ CTRY_PERU, APL1_WORLD },
{ CTRY_PHILIPPINES, FCC3_WORLD },
{ CTRY_POLAND, ETSI1_WORLD },
{ CTRY_PORTUGAL, ETSI1_WORLD },
{ CTRY_PUERTO_RICO, FCC1_FCCA },
{ CTRY_QATAR, NULL1_WORLD },
{ CTRY_ROMANIA, NULL1_WORLD },
{ CTRY_RUSSIA, NULL1_WORLD },
{ CTRY_SAUDI_ARABIA,FCC2_WORLD },
{ CTRY_SINGAPORE, APL6_WORLD },
{ CTRY_SLOVAKIA, ETSI1_WORLD },
{ CTRY_SLOVENIA, ETSI1_WORLD },
{ CTRY_SOUTH_AFRICA,FCC3_WORLD },
{ CTRY_SPAIN, ETSI1_WORLD },
{ CTRY_SWEDEN, ETSI1_WORLD },
{ CTRY_SWITZERLAND, ETSI1_WORLD },
{ CTRY_SYRIA, NULL1_WORLD },
{ CTRY_TAIWAN, APL3_FCCA },
{ CTRY_THAILAND, NULL1_WORLD },
{ CTRY_TRINIDAD_Y_TOBAGO,ETSI4_WORLD },
{ CTRY_TUNISIA, ETSI3_WORLD },
{ CTRY_TURKEY, ETSI3_WORLD },
{ CTRY_UKRAINE, NULL1_WORLD },
{ CTRY_UAE, NULL1_WORLD },
{ CTRY_UNITED_KINGDOM, ETSI1_WORLD },
{ CTRY_UNITED_STATES, FCC1_FCCA },
{ CTRY_UNITED_STATES_FCC49,FCC4_FCCA },
{ CTRY_URUGUAY, FCC1_WORLD },
{ CTRY_UZBEKISTAN, FCC3_FCCA },
{ CTRY_VENEZUELA, APL2_ETSIC },
{ CTRY_VIET_NAM, NULL1_WORLD },
{ CTRY_ZIMBABWE, NULL1_WORLD }
};
/* Bit masks for DFS per regdomain */
enum {
NO_DFS = 0x0000000000000000ULL, /* NB: must be zero */
DFS_FCC3 = 0x0000000000000001ULL,
DFS_ETSI = 0x0000000000000002ULL,
DFS_MKK4 = 0x0000000000000004ULL,
};
#define AFTER(x) ((x)+1)
/*
* Frequency band collections are defined using bitmasks. Each bit
* in a mask is the index of an entry in one of the following tables.
* Bitmasks are BMLEN*64 bits so if a table grows beyond that the bit
* vectors must be enlarged or the tables split somehow (e.g. split
* 1/2 and 1/4 rate channels into a separate table).
*
* Beware of ordering; the indices are defined relative to the preceding
* entry so if things get off there will be confusion. A good way to
* check the indices is to collect them in a switch statement in a stub
* function so the compiler checks for duplicates.
*/
typedef struct {
uint16_t lowChannel; /* Low channel center in MHz */
uint16_t highChannel; /* High Channel center in MHz */
uint8_t powerDfs; /* Max power (dBm) for channel
range when using DFS */
uint8_t antennaMax; /* Max allowed antenna gain */
uint8_t channelBW; /* Bandwidth of the channel */
uint8_t channelSep; /* Channel separation within
the band */
uint64_t useDfs; /* Use DFS in the RegDomain
if corresponding bit is set */
uint64_t usePassScan; /* Use Passive Scan in the RegDomain
if corresponding bit is set */
} REG_DMN_FREQ_BAND;
/*
* 5GHz 11A channel tags
*/
static REG_DMN_FREQ_BAND regDmn5GhzFreq[] = {
{ 4915, 4925, 23, 0, 10, 5, NO_DFS, PSCAN_MKK2 },
#define F1_4915_4925 0
{ 4935, 4945, 23, 0, 10, 5, NO_DFS, PSCAN_MKK2 },
#define F1_4935_4945 AFTER(F1_4915_4925)
{ 4920, 4980, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2 },
#define F1_4920_4980 AFTER(F1_4935_4945)
{ 4942, 4987, 27, 6, 5, 5, NO_DFS, PSCAN_FCC },
#define F1_4942_4987 AFTER(F1_4920_4980)
{ 4945, 4985, 30, 6, 10, 5, NO_DFS, PSCAN_FCC },
#define F1_4945_4985 AFTER(F1_4942_4987)
{ 4950, 4980, 33, 6, 20, 5, NO_DFS, PSCAN_FCC },
#define F1_4950_4980 AFTER(F1_4945_4985)
{ 5035, 5040, 23, 0, 10, 5, NO_DFS, PSCAN_MKK2 },
#define F1_5035_5040 AFTER(F1_4950_4980)
{ 5040, 5080, 23, 0, 20, 20, NO_DFS, PSCAN_MKK2 },
#define F1_5040_5080 AFTER(F1_5035_5040)
{ 5055, 5055, 23, 0, 10, 5, NO_DFS, PSCAN_MKK2 },
#define F1_5055_5055 AFTER(F1_5040_5080)
{ 5120, 5240, 5, 6, 20, 20, NO_DFS, NO_PSCAN },
#define F1_5120_5240 AFTER(F1_5055_5055)
{ 5120, 5240, 5, 6, 10, 10, NO_DFS, NO_PSCAN },
#define F2_5120_5240 AFTER(F1_5120_5240)
{ 5120, 5240, 5, 6, 5, 5, NO_DFS, NO_PSCAN },
#define F3_5120_5240 AFTER(F2_5120_5240)
{ 5170, 5230, 23, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2 },
#define F1_5170_5230 AFTER(F3_5120_5240)
{ 5170, 5230, 20, 0, 20, 20, NO_DFS, PSCAN_MKK1 | PSCAN_MKK2 },
#define F2_5170_5230 AFTER(F1_5170_5230)
{ 5180, 5240, 15, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
#define F1_5180_5240 AFTER(F2_5170_5230)
{ 5180, 5240, 17, 6, 20, 20, NO_DFS, PSCAN_FCC },
#define F2_5180_5240 AFTER(F1_5180_5240)
{ 5180, 5240, 18, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
#define F3_5180_5240 AFTER(F2_5180_5240)
{ 5180, 5240, 20, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
#define F4_5180_5240 AFTER(F3_5180_5240)
{ 5180, 5240, 23, 0, 20, 20, NO_DFS, PSCAN_FCC | PSCAN_ETSI },
#define F5_5180_5240 AFTER(F4_5180_5240)
{ 5180, 5240, 23, 6, 20, 20, NO_DFS, PSCAN_FCC },
#define F6_5180_5240 AFTER(F5_5180_5240)
{ 5180, 5240, 17, 6, 20, 10, NO_DFS, PSCAN_FCC },
#define F7_5180_5240 AFTER(F6_5180_5240)
{ 5180, 5240, 17, 6, 20, 5, NO_DFS, PSCAN_FCC },
#define F8_5180_5240 AFTER(F7_5180_5240)
{ 5180, 5320, 20, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
#define F1_5180_5320 AFTER(F8_5180_5240)
{ 5240, 5280, 23, 0, 20, 20, DFS_FCC3, PSCAN_FCC | PSCAN_ETSI },
#define F1_5240_5280 AFTER(F1_5180_5320)
{ 5260, 5280, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
#define F1_5260_5280 AFTER(F1_5240_5280)
{ 5260, 5320, 18, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
#define F1_5260_5320 AFTER(F1_5260_5280)
{ 5260, 5320, 20, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_FCC | PSCAN_ETSI | PSCAN_MKK3 },
#define F2_5260_5320 AFTER(F1_5260_5320)
{ 5260, 5320, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
#define F3_5260_5320 AFTER(F2_5260_5320)
{ 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
#define F4_5260_5320 AFTER(F3_5260_5320)
{ 5260, 5320, 23, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
#define F5_5260_5320 AFTER(F4_5260_5320)
{ 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
#define F6_5260_5320 AFTER(F5_5260_5320)
{ 5260, 5320, 23, 6, 20, 10, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
#define F7_5260_5320 AFTER(F6_5260_5320)
{ 5260, 5320, 23, 6, 20, 5, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
#define F8_5260_5320 AFTER(F7_5260_5320)
{ 5260, 5700, 5, 6, 20, 20, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
#define F1_5260_5700 AFTER(F8_5260_5320)
{ 5260, 5700, 5, 6, 10, 10, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
#define F2_5260_5700 AFTER(F1_5260_5700)
{ 5260, 5700, 5, 6, 5, 5, DFS_FCC3 | DFS_ETSI, NO_PSCAN },
#define F3_5260_5700 AFTER(F2_5260_5700)
{ 5280, 5320, 17, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
#define F1_5280_5320 AFTER(F3_5260_5700)
{ 5500, 5620, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
#define F1_5500_5620 AFTER(F1_5280_5320)
{ 5500, 5700, 20, 6, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC },
#define F1_5500_5700 AFTER(F1_5500_5620)
{ 5500, 5700, 27, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
#define F2_5500_5700 AFTER(F1_5500_5700)
{ 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_FCC | PSCAN_ETSI },
#define F3_5500_5700 AFTER(F2_5500_5700)
{ 5500, 5700, 23, 0, 20, 20, DFS_FCC3 | DFS_ETSI | DFS_MKK4, PSCAN_MKK3 | PSCAN_FCC },
#define F4_5500_5700 AFTER(F3_5500_5700)
{ 5745, 5805, 23, 0, 20, 20, NO_DFS, NO_PSCAN },
#define F1_5745_5805 AFTER(F4_5500_5700)
{ 5745, 5805, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
#define F2_5745_5805 AFTER(F1_5745_5805)
{ 5745, 5805, 30, 6, 20, 20, DFS_ETSI, PSCAN_ETSI },
#define F3_5745_5805 AFTER(F2_5745_5805)
{ 5745, 5825, 5, 6, 20, 20, NO_DFS, NO_PSCAN },
#define F1_5745_5825 AFTER(F3_5745_5805)
{ 5745, 5825, 17, 0, 20, 20, NO_DFS, NO_PSCAN },
#define F2_5745_5825 AFTER(F1_5745_5825)
{ 5745, 5825, 20, 0, 20, 20, NO_DFS, NO_PSCAN },
#define F3_5745_5825 AFTER(F2_5745_5825)
{ 5745, 5825, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
#define F4_5745_5825 AFTER(F3_5745_5825)
{ 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
#define F5_5745_5825 AFTER(F4_5745_5825)
{ 5745, 5825, 30, 6, 20, 20, NO_DFS, NO_PSCAN },
#define F6_5745_5825 AFTER(F5_5745_5825)
{ 5745, 5825, 5, 6, 10, 10, NO_DFS, NO_PSCAN },
#define F7_5745_5825 AFTER(F6_5745_5825)
{ 5745, 5825, 5, 6, 5, 5, NO_DFS, NO_PSCAN },
#define F8_5745_5825 AFTER(F7_5745_5825)
{ 5745, 5825, 30, 6, 20, 10, NO_DFS, NO_PSCAN },
#define F9_5745_5825 AFTER(F8_5745_5825)
{ 5745, 5825, 30, 6, 20, 5, NO_DFS, NO_PSCAN },
#define F10_5745_5825 AFTER(F9_5745_5825)
/*
* Below are the world roaming channels
* All WWR domains have no power limit, instead use the card's CTL
* or max power settings.
*/
{ 4920, 4980, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
#define W1_4920_4980 AFTER(F10_5745_5825)
{ 5040, 5080, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
#define W1_5040_5080 AFTER(W1_4920_4980)
{ 5170, 5230, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
#define W1_5170_5230 AFTER(W1_5040_5080)
{ 5180, 5240, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
#define W1_5180_5240 AFTER(W1_5170_5230)
{ 5260, 5320, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
#define W1_5260_5320 AFTER(W1_5180_5240)
{ 5745, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
#define W1_5745_5825 AFTER(W1_5260_5320)
{ 5500, 5700, 30, 0, 20, 20, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
#define W1_5500_5700 AFTER(W1_5745_5825)
{ 5260, 5320, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
#define W2_5260_5320 AFTER(W1_5500_5700)
{ 5180, 5240, 30, 0, 20, 20, NO_DFS, NO_PSCAN },
#define W2_5180_5240 AFTER(W2_5260_5320)
{ 5825, 5825, 30, 0, 20, 20, NO_DFS, PSCAN_WWR },
#define W2_5825_5825 AFTER(W2_5180_5240)
};
/*
* 5GHz Turbo (dynamic & static) tags
*/
static REG_DMN_FREQ_BAND regDmn5GhzTurboFreq[] = {
{ 5130, 5210, 5, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_5130_5210 0
{ 5250, 5330, 5, 6, 40, 40, DFS_FCC3, NO_PSCAN },
#define T1_5250_5330 AFTER(T1_5130_5210)
{ 5370, 5490, 5, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_5370_5490 AFTER(T1_5250_5330)
{ 5530, 5650, 5, 6, 40, 40, DFS_FCC3, NO_PSCAN },
#define T1_5530_5650 AFTER(T1_5370_5490)
{ 5150, 5190, 5, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_5150_5190 AFTER(T1_5530_5650)
{ 5230, 5310, 5, 6, 40, 40, DFS_FCC3, NO_PSCAN },
#define T1_5230_5310 AFTER(T1_5150_5190)
{ 5350, 5470, 5, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_5350_5470 AFTER(T1_5230_5310)
{ 5510, 5670, 5, 6, 40, 40, DFS_FCC3, NO_PSCAN },
#define T1_5510_5670 AFTER(T1_5350_5470)
{ 5200, 5240, 17, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_5200_5240 AFTER(T1_5510_5670)
{ 5200, 5240, 23, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T2_5200_5240 AFTER(T1_5200_5240)
{ 5210, 5210, 17, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_5210_5210 AFTER(T2_5200_5240)
{ 5210, 5210, 23, 0, 40, 40, NO_DFS, NO_PSCAN },
#define T2_5210_5210 AFTER(T1_5210_5210)
{ 5280, 5280, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
#define T1_5280_5280 AFTER(T2_5210_5210)
{ 5280, 5280, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
#define T2_5280_5280 AFTER(T1_5280_5280)
{ 5250, 5250, 17, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
#define T1_5250_5250 AFTER(T2_5280_5280)
{ 5290, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
#define T1_5290_5290 AFTER(T1_5250_5250)
{ 5250, 5290, 20, 0, 40, 40, DFS_FCC3, PSCAN_FCC_T },
#define T1_5250_5290 AFTER(T1_5290_5290)
{ 5250, 5290, 23, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
#define T2_5250_5290 AFTER(T1_5250_5290)
{ 5540, 5660, 20, 6, 40, 40, DFS_FCC3, PSCAN_FCC_T },
#define T1_5540_5660 AFTER(T2_5250_5290)
{ 5760, 5800, 20, 0, 40, 40, NO_DFS, NO_PSCAN },
#define T1_5760_5800 AFTER(T1_5540_5660)
{ 5760, 5800, 30, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T2_5760_5800 AFTER(T1_5760_5800)
{ 5765, 5805, 30, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_5765_5805 AFTER(T2_5760_5800)
/*
* Below are the WWR frequencies
*/
{ 5210, 5250, 15, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
#define WT1_5210_5250 AFTER(T1_5765_5805)
{ 5290, 5290, 18, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
#define WT1_5290_5290 AFTER(WT1_5210_5250)
{ 5540, 5660, 20, 0, 40, 40, DFS_FCC3 | DFS_ETSI, PSCAN_WWR },
#define WT1_5540_5660 AFTER(WT1_5290_5290)
{ 5760, 5800, 20, 0, 40, 40, NO_DFS, PSCAN_WWR },
#define WT1_5760_5800 AFTER(WT1_5540_5660)
};
/*
* 2GHz 11b channel tags
*/
static REG_DMN_FREQ_BAND regDmn2GhzFreq[] = {
{ 2312, 2372, 5, 6, 20, 5, NO_DFS, NO_PSCAN },
#define F1_2312_2372 0
{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define F2_2312_2372 AFTER(F1_2312_2372)
{ 2412, 2472, 5, 6, 20, 5, NO_DFS, NO_PSCAN },
#define F1_2412_2472 AFTER(F2_2312_2372)
{ 2412, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA },
#define F2_2412_2472 AFTER(F1_2412_2472)
{ 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN },
#define F3_2412_2472 AFTER(F2_2412_2472)
{ 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN },
#define F1_2412_2462 AFTER(F3_2412_2472)
{ 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA },
#define F2_2412_2462 AFTER(F1_2412_2462)
{ 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define F1_2432_2442 AFTER(F2_2412_2462)
{ 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define F1_2457_2472 AFTER(F1_2432_2442)
{ 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA },
#define F1_2467_2472 AFTER(F1_2457_2472)
{ 2484, 2484, 5, 6, 20, 5, NO_DFS, NO_PSCAN },
#define F1_2484_2484 AFTER(F1_2467_2472)
{ 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA | PSCAN_MKKA1 | PSCAN_MKKA2 },
#define F2_2484_2484 AFTER(F1_2484_2484)
{ 2512, 2732, 5, 6, 20, 5, NO_DFS, NO_PSCAN },
#define F1_2512_2732 AFTER(F2_2484_2484)
/*
* WWR have powers opened up to 20dBm.
* Limits should often come from CTL/Max powers
*/
{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define W1_2312_2372 AFTER(F1_2512_2732)
{ 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define W1_2412_2412 AFTER(W1_2312_2372)
{ 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define W1_2417_2432 AFTER(W1_2412_2412)
{ 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define W1_2437_2442 AFTER(W1_2417_2432)
{ 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define W1_2447_2457 AFTER(W1_2437_2442)
{ 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define W1_2462_2462 AFTER(W1_2447_2457)
{ 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
#define W1_2467_2467 AFTER(W1_2462_2462)
{ 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
#define W2_2467_2467 AFTER(W1_2467_2467)
{ 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
#define W1_2472_2472 AFTER(W2_2467_2467)
{ 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
#define W2_2472_2472 AFTER(W1_2472_2472)
{ 2484, 2484, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
#define W1_2484_2484 AFTER(W2_2472_2472)
{ 2484, 2484, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
#define W2_2484_2484 AFTER(W1_2484_2484)
};
/*
* 2GHz 11g channel tags
*/
static REG_DMN_FREQ_BAND regDmn2Ghz11gFreq[] = {
{ 2312, 2372, 5, 6, 20, 5, NO_DFS, NO_PSCAN },
#define G1_2312_2372 0
{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define G2_2312_2372 AFTER(G1_2312_2372)
{ 2312, 2372, 5, 6, 10, 5, NO_DFS, NO_PSCAN },
#define G3_2312_2372 AFTER(G2_2312_2372)
{ 2312, 2372, 5, 6, 5, 5, NO_DFS, NO_PSCAN },
#define G4_2312_2372 AFTER(G3_2312_2372)
{ 2412, 2472, 5, 6, 20, 5, NO_DFS, NO_PSCAN },
#define G1_2412_2472 AFTER(G4_2312_2372)
{ 2412, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA_G },
#define G2_2412_2472 AFTER(G1_2412_2472)
{ 2412, 2472, 30, 0, 20, 5, NO_DFS, NO_PSCAN },
#define G3_2412_2472 AFTER(G2_2412_2472)
{ 2412, 2472, 5, 6, 10, 5, NO_DFS, NO_PSCAN },
#define G4_2412_2472 AFTER(G3_2412_2472)
{ 2412, 2472, 5, 6, 5, 5, NO_DFS, NO_PSCAN },
#define G5_2412_2472 AFTER(G4_2412_2472)
{ 2412, 2462, 27, 6, 20, 5, NO_DFS, NO_PSCAN },
#define G1_2412_2462 AFTER(G5_2412_2472)
{ 2412, 2462, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA_G },
#define G2_2412_2462 AFTER(G1_2412_2462)
{ 2412, 2462, 27, 6, 10, 5, NO_DFS, NO_PSCAN },
#define G3_2412_2462 AFTER(G2_2412_2462)
{ 2412, 2462, 27, 6, 5, 5, NO_DFS, NO_PSCAN },
#define G4_2412_2462 AFTER(G3_2412_2462)
{ 2432, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define G1_2432_2442 AFTER(G4_2412_2462)
{ 2457, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define G1_2457_2472 AFTER(G1_2432_2442)
{ 2512, 2732, 5, 6, 20, 5, NO_DFS, NO_PSCAN },
#define G1_2512_2732 AFTER(G1_2457_2472)
{ 2512, 2732, 5, 6, 10, 5, NO_DFS, NO_PSCAN },
#define G2_2512_2732 AFTER(G1_2512_2732)
{ 2512, 2732, 5, 6, 5, 5, NO_DFS, NO_PSCAN },
#define G3_2512_2732 AFTER(G2_2512_2732)
{ 2467, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_MKKA2 | PSCAN_MKKA },
#define G1_2467_2472 AFTER(G3_2512_2732)
/*
* WWR open up the power to 20dBm
*/
{ 2312, 2372, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define WG1_2312_2372 AFTER(G1_2467_2472)
{ 2412, 2412, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define WG1_2412_2412 AFTER(WG1_2312_2372)
{ 2417, 2432, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define WG1_2417_2432 AFTER(WG1_2412_2412)
{ 2437, 2442, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define WG1_2437_2442 AFTER(WG1_2417_2432)
{ 2447, 2457, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define WG1_2447_2457 AFTER(WG1_2437_2442)
{ 2462, 2462, 20, 0, 20, 5, NO_DFS, NO_PSCAN },
#define WG1_2462_2462 AFTER(WG1_2447_2457)
{ 2467, 2467, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
#define WG1_2467_2467 AFTER(WG1_2462_2462)
{ 2467, 2467, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
#define WG2_2467_2467 AFTER(WG1_2467_2467)
{ 2472, 2472, 20, 0, 20, 5, NO_DFS, PSCAN_WWR | IS_ECM_CHAN },
#define WG1_2472_2472 AFTER(WG2_2467_2467)
{ 2472, 2472, 20, 0, 20, 5, NO_DFS, NO_PSCAN | IS_ECM_CHAN },
#define WG2_2472_2472 AFTER(WG1_2472_2472)
};
/*
* 2GHz Dynamic turbo tags
*/
static REG_DMN_FREQ_BAND regDmn2Ghz11gTurboFreq[] = {
{ 2312, 2372, 5, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_2312_2372 0
{ 2437, 2437, 5, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_2437_2437 AFTER(T1_2312_2372)
{ 2437, 2437, 20, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T2_2437_2437 AFTER(T1_2437_2437)
{ 2437, 2437, 18, 6, 40, 40, NO_DFS, PSCAN_WWR },
#define T3_2437_2437 AFTER(T2_2437_2437)
{ 2512, 2732, 5, 6, 40, 40, NO_DFS, NO_PSCAN },
#define T1_2512_2732 AFTER(T3_2437_2437)
};
typedef struct regDomain {
uint16_t regDmnEnum; /* value from EnumRd table */
uint8_t conformanceTestLimit;
uint32_t flags; /* Requirement flags (AdHoc disallow,
noise floor cal needed, etc) */
uint64_t dfsMask; /* DFS bitmask for 5Ghz tables */
uint64_t pscan; /* Bitmask for passive scan */
chanbmask_t chan11a; /* 11a channels */
chanbmask_t chan11a_turbo; /* 11a static turbo channels */
chanbmask_t chan11a_dyn_turbo; /* 11a dynamic turbo channels */
chanbmask_t chan11a_half; /* 11a 1/2 width channels */
chanbmask_t chan11a_quarter; /* 11a 1/4 width channels */
chanbmask_t chan11b; /* 11b channels */
chanbmask_t chan11g; /* 11g channels */
chanbmask_t chan11g_turbo; /* 11g dynamic turbo channels */
chanbmask_t chan11g_half; /* 11g 1/2 width channels */
chanbmask_t chan11g_quarter; /* 11g 1/4 width channels */
} REG_DOMAIN;
static REG_DOMAIN regDomains[] = {
{.regDmnEnum = DEBUG_REG_DMN,
.conformanceTestLimit = FCC,
.dfsMask = DFS_FCC3,
.chan11a = BM4(F1_4950_4980,
F1_5120_5240,
F1_5260_5700,
F1_5745_5825),
.chan11a_half = BM4(F1_4945_4985,
F2_5120_5240,
F2_5260_5700,
F7_5745_5825),
.chan11a_quarter = BM4(F1_4942_4987,
F3_5120_5240,
F3_5260_5700,
F8_5745_5825),
.chan11a_turbo = BM8(T1_5130_5210,
T1_5250_5330,
T1_5370_5490,
T1_5530_5650,
T1_5150_5190,
T1_5230_5310,
T1_5350_5470,
T1_5510_5670),
.chan11a_dyn_turbo = BM4(T1_5200_5240,
T1_5280_5280,
T1_5540_5660,
T1_5765_5805),
.chan11b = BM4(F1_2312_2372,
F1_2412_2472,
F1_2484_2484,
F1_2512_2732),
.chan11g = BM3(G1_2312_2372, G1_2412_2472, G1_2512_2732),
.chan11g_turbo = BM3(T1_2312_2372, T1_2437_2437, T1_2512_2732),
.chan11g_half = BM3(G2_2312_2372, G4_2412_2472, G2_2512_2732),
.chan11g_quarter = BM3(G3_2312_2372, G5_2412_2472, G3_2512_2732),
},
{.regDmnEnum = APL1,
.conformanceTestLimit = FCC,
.chan11a = BM1(F4_5745_5825),
},
{.regDmnEnum = APL2,
.conformanceTestLimit = FCC,
.chan11a = BM1(F1_5745_5805),
},
{.regDmnEnum = APL3,
.conformanceTestLimit = FCC,
.chan11a = BM2(F1_5280_5320, F2_5745_5805),
},
{.regDmnEnum = APL4,
.conformanceTestLimit = FCC,
.chan11a = BM2(F4_5180_5240, F3_5745_5825),
},
{.regDmnEnum = APL5,
.conformanceTestLimit = FCC,
.chan11a = BM1(F2_5745_5825),
},
{.regDmnEnum = APL6,
.conformanceTestLimit = ETSI,
.dfsMask = DFS_ETSI,
.pscan = PSCAN_FCC_T | PSCAN_FCC,
.chan11a = BM3(F4_5180_5240, F2_5260_5320, F3_5745_5825),
.chan11a_turbo = BM3(T2_5210_5210, T1_5250_5290, T1_5760_5800),
},
{.regDmnEnum = APL8,
.conformanceTestLimit = ETSI,
.flags = DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
.chan11a = BM2(F6_5260_5320, F4_5745_5825),
},
{.regDmnEnum = APL9,
.conformanceTestLimit = ETSI,
.dfsMask = DFS_ETSI,
.pscan = PSCAN_ETSI,
.flags = DISALLOW_ADHOC_11A|DISALLOW_ADHOC_11A_TURB,
.chan11a = BM3(F1_5180_5320, F1_5500_5620, F3_5745_5805),
},
{.regDmnEnum = ETSI1,
.conformanceTestLimit = ETSI,
.dfsMask = DFS_ETSI,
.pscan = PSCAN_ETSI,
.flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
.chan11a = BM3(W2_5180_5240, F2_5260_5320, F2_5500_5700),
},
{.regDmnEnum = ETSI2,
.conformanceTestLimit = ETSI,
.dfsMask = DFS_ETSI,
.pscan = PSCAN_ETSI,
.flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
.chan11a = BM1(F3_5180_5240),
},
{.regDmnEnum = ETSI3,
.conformanceTestLimit = ETSI,
.dfsMask = DFS_ETSI,
.pscan = PSCAN_ETSI,
.flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
.chan11a = BM2(W2_5180_5240, F2_5260_5320),
},
{.regDmnEnum = ETSI4,
.conformanceTestLimit = ETSI,
.dfsMask = DFS_ETSI,
.pscan = PSCAN_ETSI,
.flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
.chan11a = BM2(F3_5180_5240, F1_5260_5320),
},
{.regDmnEnum = ETSI5,
.conformanceTestLimit = ETSI,
.dfsMask = DFS_ETSI,
.pscan = PSCAN_ETSI,
.flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
.chan11a = BM1(F1_5180_5240),
},
{.regDmnEnum = ETSI6,
.conformanceTestLimit = ETSI,
.dfsMask = DFS_ETSI,
.pscan = PSCAN_ETSI,
.flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
.chan11a = BM3(F5_5180_5240, F1_5260_5280, F3_5500_5700),
},
{.regDmnEnum = FCC1,
.conformanceTestLimit = FCC,
.chan11a = BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
.chan11a_turbo = BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
.chan11a_dyn_turbo = BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
},
{.regDmnEnum = FCC2,
.conformanceTestLimit = FCC,
.chan11a = BM3(F6_5180_5240, F5_5260_5320, F6_5745_5825),
.chan11a_dyn_turbo = BM3(T2_5200_5240, T1_5280_5280, T1_5765_5805),
},
{.regDmnEnum = FCC3,
.conformanceTestLimit = FCC,
.dfsMask = DFS_FCC3,
.pscan = PSCAN_FCC | PSCAN_FCC_T,
.chan11a = BM4(F2_5180_5240,
F3_5260_5320,
F1_5500_5700,
F5_5745_5825),
.chan11a_turbo = BM4(T1_5210_5210,
T1_5250_5250,
T1_5290_5290,
T2_5760_5800),
.chan11a_dyn_turbo = BM3(T1_5200_5240, T2_5280_5280, T1_5540_5660),
},
{.regDmnEnum = FCC4,
.conformanceTestLimit = FCC,
.dfsMask = DFS_FCC3,
.pscan = PSCAN_FCC | PSCAN_FCC_T,
.chan11a = BM1(F1_4950_4980),
.chan11a_half = BM1(F1_4945_4985),
.chan11a_quarter = BM1(F1_4942_4987),
},
/* FCC1 w/ 1/2 and 1/4 width channels */
{.regDmnEnum = FCC5,
.conformanceTestLimit = FCC,
.chan11a = BM3(F2_5180_5240, F4_5260_5320, F5_5745_5825),
.chan11a_turbo = BM3(T1_5210_5210, T2_5250_5290, T2_5760_5800),
.chan11a_dyn_turbo = BM3(T1_5200_5240, T1_5280_5280, T1_5765_5805),
.chan11a_half = BM3(F7_5180_5240, F7_5260_5320, F9_5745_5825),
.chan11a_quarter = BM3(F8_5180_5240, F8_5260_5320,F10_5745_5825),
},
{.regDmnEnum = MKK1,
.conformanceTestLimit = MKK,
.pscan = PSCAN_MKK1,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM1(F1_5170_5230),
},
{.regDmnEnum = MKK2,
.conformanceTestLimit = MKK,
.pscan = PSCAN_MKK2,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM3(F1_4920_4980, F1_5040_5080, F1_5170_5230),
.chan11a_half = BM4(F1_4915_4925,
F1_4935_4945,
F1_5035_5040,
F1_5055_5055),
},
/* UNI-1 even */
{.regDmnEnum = MKK3,
.conformanceTestLimit = MKK,
.pscan = PSCAN_MKK3,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM1(F4_5180_5240),
},
/* UNI-1 even + UNI-2 */
{.regDmnEnum = MKK4,
.conformanceTestLimit = MKK,
.dfsMask = DFS_MKK4,
.pscan = PSCAN_MKK3,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM2(F4_5180_5240, F2_5260_5320),
},
/* UNI-1 even + UNI-2 + mid-band */
{.regDmnEnum = MKK5,
.conformanceTestLimit = MKK,
.dfsMask = DFS_MKK4,
.pscan = PSCAN_MKK3,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM3(F4_5180_5240, F2_5260_5320, F4_5500_5700),
},
/* UNI-1 odd + even */
{.regDmnEnum = MKK6,
.conformanceTestLimit = MKK,
.pscan = PSCAN_MKK1,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM2(F2_5170_5230, F4_5180_5240),
},
/* UNI-1 odd + UNI-1 even + UNI-2 */
{.regDmnEnum = MKK7,
.conformanceTestLimit = MKK,
.dfsMask = DFS_MKK4,
.pscan = PSCAN_MKK1 | PSCAN_MKK3,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM3(F1_5170_5230, F4_5180_5240, F2_5260_5320),
},
/* UNI-1 odd + UNI-1 even + UNI-2 + mid-band */
{.regDmnEnum = MKK8,
.conformanceTestLimit = MKK,
.dfsMask = DFS_MKK4,
.pscan = PSCAN_MKK1 | PSCAN_MKK3,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM4(F1_5170_5230,
F4_5180_5240,
F2_5260_5320,
F4_5500_5700),
},
/* UNI-1 even + 4.9 GHZ */
{.regDmnEnum = MKK9,
.conformanceTestLimit = MKK,
.pscan = PSCAN_MKK3,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM7(F1_4915_4925,
F1_4935_4945,
F1_4920_4980,
F1_5035_5040,
F1_5055_5055,
F1_5040_5080,
F4_5180_5240),
},
/* UNI-1 even + UNI-2 + 4.9 GHZ */
{.regDmnEnum = MKK10,
.conformanceTestLimit = MKK,
.dfsMask = DFS_MKK4,
.pscan = PSCAN_MKK3,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11a = BM8(F1_4915_4925,
F1_4935_4945,
F1_4920_4980,
F1_5035_5040,
F1_5055_5055,
F1_5040_5080,
F4_5180_5240,
F2_5260_5320),
},
/* Defined here to use when 2G channels are authorised for country K2 */
{.regDmnEnum = APLD,
.conformanceTestLimit = NO_CTL,
.chan11b = BM2(F2_2312_2372,F2_2412_2472),
.chan11g = BM2(G2_2312_2372,G2_2412_2472),
},
{.regDmnEnum = ETSIA,
.conformanceTestLimit = NO_CTL,
.pscan = PSCAN_ETSIA,
.flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
.chan11b = BM1(F1_2457_2472),
.chan11g = BM1(G1_2457_2472),
.chan11g_turbo = BM1(T2_2437_2437)
},
{.regDmnEnum = ETSIB,
.conformanceTestLimit = ETSI,
.pscan = PSCAN_ETSIB,
.flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
.chan11b = BM1(F1_2432_2442),
.chan11g = BM1(G1_2432_2442),
.chan11g_turbo = BM1(T2_2437_2437)
},
{.regDmnEnum = ETSIC,
.conformanceTestLimit = ETSI,
.pscan = PSCAN_ETSIC,
.flags = DISALLOW_ADHOC_11A | DISALLOW_ADHOC_11A_TURB,
.chan11b = BM1(F3_2412_2472),
.chan11g = BM1(G3_2412_2472),
.chan11g_turbo = BM1(T2_2437_2437)
},
{.regDmnEnum = FCCA,
.conformanceTestLimit = FCC,
.chan11b = BM1(F1_2412_2462),
.chan11g = BM1(G1_2412_2462),
.chan11g_turbo = BM1(T2_2437_2437),
},
/* FCCA w/ 1/2 and 1/4 width channels */
{.regDmnEnum = FCCB,
.conformanceTestLimit = FCC,
.chan11b = BM1(F1_2412_2462),
.chan11g = BM1(G1_2412_2462),
.chan11g_turbo = BM1(T2_2437_2437),
.chan11g_half = BM1(G3_2412_2462),
.chan11g_quarter = BM1(G4_2412_2462),
},
{.regDmnEnum = MKKA,
.conformanceTestLimit = MKK,
.pscan = PSCAN_MKKA | PSCAN_MKKA_G
| PSCAN_MKKA1 | PSCAN_MKKA1_G
| PSCAN_MKKA2 | PSCAN_MKKA2_G,
.flags = DISALLOW_ADHOC_11A_TURB,
.chan11b = BM3(F2_2412_2462, F1_2467_2472, F2_2484_2484),
.chan11g = BM2(G2_2412_2462, G1_2467_2472),
.chan11g_turbo = BM1(T2_2437_2437)
},
{.regDmnEnum = MKKC,
.conformanceTestLimit = MKK,
.chan11b = BM1(F2_2412_2472),
.chan11g = BM1(G2_2412_2472),
.chan11g_turbo = BM1(T2_2437_2437)
},
{.regDmnEnum = WORLD,
.conformanceTestLimit = ETSI,
.chan11b = BM1(F2_2412_2472),
.chan11g = BM1(G2_2412_2472),
.chan11g_turbo = BM1(T2_2437_2437)
},
{.regDmnEnum = WOR0_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = ADHOC_PER_11D,
.chan11a = BM5(W1_5260_5320,
W1_5180_5240,
W1_5170_5230,
W1_5745_5825,
W1_5500_5700),
.chan11a_turbo = BM3(WT1_5210_5250,
WT1_5290_5290,
WT1_5760_5800),
.chan11b = BM8(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W1_2472_2472,
W1_2417_2432,
W1_2447_2457,
W1_2467_2467,
W1_2484_2484),
.chan11g = BM7(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG1_2472_2472,
WG1_2417_2432,
WG1_2447_2457,
WG1_2467_2467),
.chan11g_turbo = BM1(T3_2437_2437)
},
{.regDmnEnum = WOR01_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = ADHOC_PER_11D,
.chan11a = BM5(W1_5260_5320,
W1_5180_5240,
W1_5170_5230,
W1_5745_5825,
W1_5500_5700),
.chan11a_turbo = BM3(WT1_5210_5250,
WT1_5290_5290,
WT1_5760_5800),
.chan11b = BM5(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W1_2417_2432,
W1_2447_2457),
.chan11g = BM5(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG1_2417_2432,
WG1_2447_2457),
.chan11g_turbo = BM1(T3_2437_2437)},
{.regDmnEnum = WOR02_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = ADHOC_PER_11D,
.chan11a = BM5(W1_5260_5320,
W1_5180_5240,
W1_5170_5230,
W1_5745_5825,
W1_5500_5700),
.chan11a_turbo = BM3(WT1_5210_5250,
WT1_5290_5290,
WT1_5760_5800),
.chan11b = BM7(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W1_2472_2472,
W1_2417_2432,
W1_2447_2457,
W1_2467_2467),
.chan11g = BM7(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG1_2472_2472,
WG1_2417_2432,
WG1_2447_2457,
WG1_2467_2467),
.chan11g_turbo = BM1(T3_2437_2437)},
{.regDmnEnum = EU1_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = ADHOC_PER_11D,
.chan11a = BM5(W1_5260_5320,
W1_5180_5240,
W1_5170_5230,
W1_5745_5825,
W1_5500_5700),
.chan11a_turbo = BM3(WT1_5210_5250,
WT1_5290_5290,
WT1_5760_5800),
.chan11b = BM7(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W2_2472_2472,
W1_2417_2432,
W1_2447_2457,
W2_2467_2467),
.chan11g = BM7(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG2_2472_2472,
WG1_2417_2432,
WG1_2447_2457,
WG2_2467_2467),
.chan11g_turbo = BM1(T3_2437_2437)},
{.regDmnEnum = WOR1_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = DISALLOW_ADHOC_11A,
.chan11a = BM5(W1_5260_5320,
W1_5180_5240,
W1_5170_5230,
W1_5745_5825,
W1_5500_5700),
.chan11b = BM8(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W1_2472_2472,
W1_2417_2432,
W1_2447_2457,
W1_2467_2467,
W1_2484_2484),
.chan11g = BM7(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG1_2472_2472,
WG1_2417_2432,
WG1_2447_2457,
WG1_2467_2467),
.chan11g_turbo = BM1(T3_2437_2437)
},
{.regDmnEnum = WOR2_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = DISALLOW_ADHOC_11A,
.chan11a = BM5(W1_5260_5320,
W1_5180_5240,
W1_5170_5230,
W1_5745_5825,
W1_5500_5700),
.chan11a_turbo = BM3(WT1_5210_5250,
WT1_5290_5290,
WT1_5760_5800),
.chan11b = BM8(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W1_2472_2472,
W1_2417_2432,
W1_2447_2457,
W1_2467_2467,
W1_2484_2484),
.chan11g = BM7(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG1_2472_2472,
WG1_2417_2432,
WG1_2447_2457,
WG1_2467_2467),
.chan11g_turbo = BM1(T3_2437_2437)},
{.regDmnEnum = WOR3_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = ADHOC_PER_11D,
.chan11a = BM4(W1_5260_5320,
W1_5180_5240,
W1_5170_5230,
W1_5745_5825),
.chan11a_turbo = BM3(WT1_5210_5250,
WT1_5290_5290,
WT1_5760_5800),
.chan11b = BM7(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W1_2472_2472,
W1_2417_2432,
W1_2447_2457,
W1_2467_2467),
.chan11g = BM7(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG1_2472_2472,
WG1_2417_2432,
WG1_2447_2457,
WG1_2467_2467),
.chan11g_turbo = BM1(T3_2437_2437)},
{.regDmnEnum = WOR4_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = DISALLOW_ADHOC_11A,
.chan11a = BM4(W2_5260_5320,
W2_5180_5240,
F2_5745_5805,
W2_5825_5825),
.chan11a_turbo = BM3(WT1_5210_5250,
WT1_5290_5290,
WT1_5760_5800),
.chan11b = BM5(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W1_2417_2432,
W1_2447_2457),
.chan11g = BM5(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG1_2417_2432,
WG1_2447_2457),
.chan11g_turbo = BM1(T3_2437_2437)},
{.regDmnEnum = WOR5_ETSIC,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = DISALLOW_ADHOC_11A,
.chan11a = BM3(W1_5260_5320, W2_5180_5240, F6_5745_5825),
.chan11b = BM7(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W2_2472_2472,
W1_2417_2432,
W1_2447_2457,
W2_2467_2467),
.chan11g = BM7(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG2_2472_2472,
WG1_2417_2432,
WG1_2447_2457,
WG2_2467_2467),
.chan11g_turbo = BM1(T3_2437_2437)},
{.regDmnEnum = WOR9_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = DISALLOW_ADHOC_11A,
.chan11a = BM4(W1_5260_5320,
W1_5180_5240,
W1_5745_5825,
W1_5500_5700),
.chan11a_turbo = BM3(WT1_5210_5250,
WT1_5290_5290,
WT1_5760_5800),
.chan11b = BM5(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W1_2417_2432,
W1_2447_2457),
.chan11g = BM5(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG1_2417_2432,
WG1_2447_2457),
.chan11g_turbo = BM1(T3_2437_2437)},
{.regDmnEnum = WORA_WORLD,
.conformanceTestLimit = NO_CTL,
.dfsMask = DFS_FCC3 | DFS_ETSI,
.pscan = PSCAN_WWR,
.flags = DISALLOW_ADHOC_11A,
.chan11a = BM4(W1_5260_5320,
W1_5180_5240,
W1_5745_5825,
W1_5500_5700),
.chan11b = BM7(W1_2412_2412,
W1_2437_2442,
W1_2462_2462,
W1_2472_2472,
W1_2417_2432,
W1_2447_2457,
W1_2467_2467),
.chan11g = BM7(WG1_2412_2412,
WG1_2437_2442,
WG1_2462_2462,
WG1_2472_2472,
WG1_2417_2432,
WG1_2447_2457,
WG1_2467_2467),
.chan11g_turbo = BM1(T3_2437_2437)},
{.regDmnEnum = NULL1,
.conformanceTestLimit = NO_CTL,
}
};
struct cmode {
u_int mode;
u_int flags;
};
static const struct cmode modes[] = {
{ HAL_MODE_TURBO, IEEE80211_CHAN_ST },
{ HAL_MODE_11A, IEEE80211_CHAN_A },
{ HAL_MODE_11B, IEEE80211_CHAN_B },
{ HAL_MODE_11G, IEEE80211_CHAN_G },
{ HAL_MODE_11G_TURBO, IEEE80211_CHAN_108G },
{ HAL_MODE_11A_TURBO, IEEE80211_CHAN_108A },
{ HAL_MODE_11A_QUARTER_RATE,
IEEE80211_CHAN_A | IEEE80211_CHAN_QUARTER },
{ HAL_MODE_11A_HALF_RATE,
IEEE80211_CHAN_A | IEEE80211_CHAN_HALF },
{ HAL_MODE_11G_QUARTER_RATE,
IEEE80211_CHAN_G | IEEE80211_CHAN_QUARTER },
{ HAL_MODE_11G_HALF_RATE,
IEEE80211_CHAN_G | IEEE80211_CHAN_HALF },
{ HAL_MODE_11NG_HT20, IEEE80211_CHAN_G | IEEE80211_CHAN_HT20 },
{ HAL_MODE_11NG_HT40PLUS,
IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U },
{ HAL_MODE_11NG_HT40MINUS,
IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D },
{ HAL_MODE_11NA_HT20, IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 },
{ HAL_MODE_11NA_HT40PLUS,
IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U },
{ HAL_MODE_11NA_HT40MINUS,
IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D },
};
static OS_INLINE uint16_t
getEepromRD(struct ath_hal *ah)
{
return AH_PRIVATE(ah)->ah_currentRD &~ WORLDWIDE_ROAMING_FLAG;
}
/*
* Test to see if the bitmask array is all zeros
*/
static HAL_BOOL
isChanBitMaskZero(const uint64_t *bitmask)
{
#if BMLEN > 2
#error "add more cases"
#endif
#if BMLEN > 1
if (bitmask[1] != 0)
return AH_FALSE;
#endif
return (bitmask[0] == 0);
}
/*
* Return whether or not the regulatory domain/country in EEPROM
* is acceptable.
*/
static HAL_BOOL
isEepromValid(struct ath_hal *ah)
{
uint16_t rd = getEepromRD(ah);
int i;
if (rd & COUNTRY_ERD_FLAG) {
uint16_t cc = rd &~ COUNTRY_ERD_FLAG;
for (i = 0; i < N(allCountries); i++)
if (allCountries[i].countryCode == cc)
return AH_TRUE;
} else {
for (i = 0; i < N(regDomainPairs); i++)
if (regDomainPairs[i].regDmnEnum == rd)
return AH_TRUE;
}
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: invalid regulatory domain/country code 0x%x\n", __func__, rd);
return AH_FALSE;
}
/*
* Find the pointer to the country element in the country table
* corresponding to the country code
*/
static COUNTRY_CODE_TO_ENUM_RD*
findCountry(HAL_CTRY_CODE countryCode)
{
int i;
for (i = 0; i < N(allCountries); i++) {
if (allCountries[i].countryCode == countryCode)
return &allCountries[i];
}
return AH_NULL;
}
static REG_DOMAIN *
findRegDmn(int regDmn)
{
int i;
for (i = 0; i < N(regDomains); i++) {
if (regDomains[i].regDmnEnum == regDmn)
return &regDomains[i];
}
return AH_NULL;
}
static REG_DMN_PAIR_MAPPING *
findRegDmnPair(int regDmnPair)
{
int i;
if (regDmnPair != NO_ENUMRD) {
for (i = 0; i < N(regDomainPairs); i++) {
if (regDomainPairs[i].regDmnEnum == regDmnPair)
return &regDomainPairs[i];
}
}
return AH_NULL;
}
/*
* Calculate a default country based on the EEPROM setting.
*/
static HAL_CTRY_CODE
getDefaultCountry(struct ath_hal *ah)
{
REG_DMN_PAIR_MAPPING *regpair;
uint16_t rd;
rd = getEepromRD(ah);
if (rd & COUNTRY_ERD_FLAG) {
COUNTRY_CODE_TO_ENUM_RD *country;
uint16_t cc = rd & ~COUNTRY_ERD_FLAG;
country = findCountry(cc);
if (country != AH_NULL)
return cc;
}
/*
* Check reg domains that have only one country
*/
regpair = findRegDmnPair(rd);
return (regpair != AH_NULL) ? regpair->singleCC : CTRY_DEFAULT;
}
static HAL_BOOL
IS_BIT_SET(int bit, const uint64_t bitmask[])
{
int byteOffset, bitnum;
uint64_t val;
byteOffset = bit/64;
bitnum = bit - byteOffset*64;
val = ((uint64_t) 1) << bitnum;
return (bitmask[byteOffset] & val) != 0;
}
static HAL_STATUS
getregstate(struct ath_hal *ah, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
COUNTRY_CODE_TO_ENUM_RD **pcountry,
REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
{
COUNTRY_CODE_TO_ENUM_RD *country;
REG_DOMAIN *rd5GHz, *rd2GHz;
if (cc == CTRY_DEFAULT && regDmn == SKU_NONE) {
/*
* Validate the EEPROM setting and setup defaults
*/
if (!isEepromValid(ah)) {
/*
* Don't return any channels if the EEPROM has an
* invalid regulatory domain/country code setting.
*/
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: invalid EEPROM contents\n",__func__);
return HAL_EEBADREG;
}
cc = getDefaultCountry(ah);
country = findCountry(cc);
if (country == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"NULL Country!, cc %d\n", cc);
return HAL_EEBADCC;
}
regDmn = country->regDmnEnum;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: EEPROM cc %u rd 0x%x\n",
__func__, cc, regDmn);
if (country->countryCode == CTRY_DEFAULT) {
/*
* Check EEPROM; SKU may be for a country, single
* domain, or multiple domains (WWR).
*/
uint16_t rdnum = getEepromRD(ah);
if ((rdnum & COUNTRY_ERD_FLAG) == 0 &&
(findRegDmn(rdnum) != AH_NULL ||
findRegDmnPair(rdnum) != AH_NULL)) {
regDmn = rdnum;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: EEPROM rd 0x%x\n", __func__, rdnum);
}
}
} else {
country = findCountry(cc);
if (country == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"unknown country, cc %d\n", cc);
return HAL_EINVAL;
}
if (regDmn == SKU_NONE)
regDmn = country->regDmnEnum;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u rd 0x%x\n",
__func__, cc, regDmn);
}
/*
* Setup per-band state.
*/
if ((regDmn & MULTI_DOMAIN_MASK) == 0) {
REG_DMN_PAIR_MAPPING *regpair = findRegDmnPair(regDmn);
if (regpair == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: no reg domain pair %u for country %u\n",
__func__, regDmn, country->countryCode);
return HAL_EINVAL;
}
rd5GHz = findRegDmn(regpair->regDmn5GHz);
if (rd5GHz == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: no 5GHz reg domain %u for country %u\n",
__func__, regpair->regDmn5GHz, country->countryCode);
return HAL_EINVAL;
}
rd2GHz = findRegDmn(regpair->regDmn2GHz);
if (rd2GHz == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: no 2GHz reg domain %u for country %u\n",
__func__, regpair->regDmn2GHz, country->countryCode);
return HAL_EINVAL;
}
} else {
rd5GHz = rd2GHz = findRegDmn(regDmn);
if (rd2GHz == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: no unitary reg domain %u for country %u\n",
__func__, regDmn, country->countryCode);
return HAL_EINVAL;
}
}
if (pcountry != AH_NULL)
*pcountry = country;
*prd2GHz = rd2GHz;
*prd5GHz = rd5GHz;
return HAL_OK;
}
/*
* Construct the channel list for the specified regulatory config.
*/
static HAL_STATUS
getchannels(struct ath_hal *ah,
struct ieee80211_channel chans[], u_int maxchans, int *nchans,
u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
HAL_BOOL enableExtendedChannels,
COUNTRY_CODE_TO_ENUM_RD **pcountry,
REG_DOMAIN **prd2GHz, REG_DOMAIN **prd5GHz)
{
#define CHANNEL_HALF_BW 10
#define CHANNEL_QUARTER_BW 5
#define HAL_MODE_11A_ALL \
(HAL_MODE_11A | HAL_MODE_11A_TURBO | HAL_MODE_TURBO | \
HAL_MODE_11A_QUARTER_RATE | HAL_MODE_11A_HALF_RATE)
REG_DOMAIN *rd5GHz, *rd2GHz;
u_int modesAvail;
const struct cmode *cm;
struct ieee80211_channel *ic;
int next, b;
HAL_STATUS status;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u regDmn 0x%x mode 0x%x%s\n",
__func__, cc, regDmn, modeSelect,
enableExtendedChannels ? " ecm" : "");
status = getregstate(ah, cc, regDmn, pcountry, &rd2GHz, &rd5GHz);
if (status != HAL_OK)
return status;
/* get modes that HW is capable of */
modesAvail = ath_hal_getWirelessModes(ah);
/* optimize work below if no 11a channels */
if (isChanBitMaskZero(rd5GHz->chan11a) &&
(modesAvail & HAL_MODE_11A_ALL)) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: disallow all 11a\n", __func__);
modesAvail &= ~HAL_MODE_11A_ALL;
}
next = 0;
ic = &chans[0];
for (cm = modes; cm < &modes[N(modes)]; cm++) {
uint16_t c, c_hi, c_lo;
uint64_t *channelBM = AH_NULL;
REG_DMN_FREQ_BAND *fband = AH_NULL,*freqs;
int low_adj, hi_adj, channelSep, lastc;
uint32_t rdflags;
uint64_t dfsMask;
uint64_t pscan;
if ((cm->mode & modeSelect) == 0) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: skip mode 0x%x flags 0x%x\n",
__func__, cm->mode, cm->flags);
continue;
}
if ((cm->mode & modesAvail) == 0) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: !avail mode 0x%x (0x%x) flags 0x%x\n",
__func__, modesAvail, cm->mode, cm->flags);
continue;
}
if (!ath_hal_getChannelEdges(ah, cm->flags, &c_lo, &c_hi)) {
/* channel not supported by hardware, skip it */
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: channels 0x%x not supported by hardware\n",
__func__,cm->flags);
continue;
}
switch (cm->mode) {
case HAL_MODE_TURBO:
case HAL_MODE_11A_TURBO:
rdflags = rd5GHz->flags;
dfsMask = rd5GHz->dfsMask;
pscan = rd5GHz->pscan;
if (cm->mode == HAL_MODE_TURBO)
channelBM = rd5GHz->chan11a_turbo;
else
channelBM = rd5GHz->chan11a_dyn_turbo;
freqs = &regDmn5GhzTurboFreq[0];
break;
case HAL_MODE_11G_TURBO:
rdflags = rd2GHz->flags;
dfsMask = rd2GHz->dfsMask;
pscan = rd2GHz->pscan;
channelBM = rd2GHz->chan11g_turbo;
freqs = &regDmn2Ghz11gTurboFreq[0];
break;
case HAL_MODE_11A:
case HAL_MODE_11A_HALF_RATE:
case HAL_MODE_11A_QUARTER_RATE:
case HAL_MODE_11NA_HT20:
case HAL_MODE_11NA_HT40PLUS:
case HAL_MODE_11NA_HT40MINUS:
rdflags = rd5GHz->flags;
dfsMask = rd5GHz->dfsMask;
pscan = rd5GHz->pscan;
if (cm->mode == HAL_MODE_11A_HALF_RATE)
channelBM = rd5GHz->chan11a_half;
else if (cm->mode == HAL_MODE_11A_QUARTER_RATE)
channelBM = rd5GHz->chan11a_quarter;
else
channelBM = rd5GHz->chan11a;
freqs = &regDmn5GhzFreq[0];
break;
case HAL_MODE_11B:
case HAL_MODE_11G:
case HAL_MODE_11G_HALF_RATE:
case HAL_MODE_11G_QUARTER_RATE:
case HAL_MODE_11NG_HT20:
case HAL_MODE_11NG_HT40PLUS:
case HAL_MODE_11NG_HT40MINUS:
rdflags = rd2GHz->flags;
dfsMask = rd2GHz->dfsMask;
pscan = rd2GHz->pscan;
if (cm->mode == HAL_MODE_11G_HALF_RATE)
channelBM = rd2GHz->chan11g_half;
else if (cm->mode == HAL_MODE_11G_QUARTER_RATE)
channelBM = rd2GHz->chan11g_quarter;
else if (cm->mode == HAL_MODE_11B)
channelBM = rd2GHz->chan11b;
else
channelBM = rd2GHz->chan11g;
if (cm->mode == HAL_MODE_11B)
freqs = &regDmn2GhzFreq[0];
else
freqs = &regDmn2Ghz11gFreq[0];
break;
default:
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: Unkonwn HAL mode 0x%x\n", __func__, cm->mode);
continue;
}
if (isChanBitMaskZero(channelBM))
continue;
/*
* Setup special handling for HT40 channels; e.g.
* 5G HT40 channels require 40Mhz channel separation.
*/
hi_adj = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
cm->mode == HAL_MODE_11NG_HT40PLUS) ? -20 : 0;
low_adj = (cm->mode == HAL_MODE_11NA_HT40MINUS ||
cm->mode == HAL_MODE_11NG_HT40MINUS) ? 20 : 0;
channelSep = (cm->mode == HAL_MODE_11NA_HT40PLUS ||
cm->mode == HAL_MODE_11NA_HT40MINUS) ? 40 : 0;
for (b = 0; b < 64*BMLEN; b++) {
if (!IS_BIT_SET(b, channelBM))
continue;
fband = &freqs[b];
lastc = 0;
for (c = fband->lowChannel + low_adj;
c <= fband->highChannel + hi_adj;
c += fband->channelSep) {
if (!(c_lo <= c && c <= c_hi)) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: c %u out of range [%u..%u]\n",
__func__, c, c_lo, c_hi);
continue;
}
if (next >= maxchans){
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: too many channels for channel table\n",
__func__);
goto done;
}
if ((fband->usePassScan & IS_ECM_CHAN) &&
!enableExtendedChannels) {
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"skip ecm channel\n");
continue;
}
if ((fband->useDfs & dfsMask) &&
(cm->flags & IEEE80211_CHAN_HT40)) {
/* NB: DFS and HT40 don't mix */
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"skip HT40 chan, DFS required\n");
continue;
}
/*
* Make sure that channel separation
* meets the requirement.
*/
if (lastc && channelSep &&
(c-lastc) < channelSep)
continue;
lastc = c;
OS_MEMZERO(ic, sizeof(*ic));
ic->ic_freq = c;
ic->ic_flags = cm->flags;
ic->ic_maxregpower = fband->powerDfs;
ath_hal_getpowerlimits(ah, ic);
ic->ic_maxantgain = fband->antennaMax;
if (fband->usePassScan & pscan)
ic->ic_flags |= IEEE80211_CHAN_PASSIVE;
if (fband->useDfs & dfsMask)
ic->ic_flags |= IEEE80211_CHAN_DFS;
if (IEEE80211_IS_CHAN_5GHZ(ic) &&
(rdflags & DISALLOW_ADHOC_11A))
ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
if (IEEE80211_IS_CHAN_TURBO(ic) &&
(rdflags & DISALLOW_ADHOC_11A_TURB))
ic->ic_flags |= IEEE80211_CHAN_NOADHOC;
if (rdflags & NO_HOSTAP)
ic->ic_flags |= IEEE80211_CHAN_NOHOSTAP;
if (rdflags & LIMIT_FRAME_4MS)
ic->ic_flags |= IEEE80211_CHAN_4MSXMIT;
if (rdflags & NEED_NFC)
ic->ic_flags |= CHANNEL_NFCREQUIRED;
ic++, next++;
}
}
}
done:
*nchans = next;
/* NB: pcountry set above by getregstate */
if (prd2GHz != AH_NULL)
*prd2GHz = rd2GHz;
if (prd5GHz != AH_NULL)
*prd5GHz = rd5GHz;
return HAL_OK;
#undef HAL_MODE_11A_ALL
#undef CHANNEL_HALF_BW
#undef CHANNEL_QUARTER_BW
}
/*
* Retrieve a channel list without affecting runtime state.
*/
HAL_STATUS
ath_hal_getchannels(struct ath_hal *ah,
struct ieee80211_channel chans[], u_int maxchans, int *nchans,
u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
HAL_BOOL enableExtendedChannels)
{
return getchannels(ah, chans, maxchans, nchans, modeSelect,
cc, regDmn, enableExtendedChannels, AH_NULL, AH_NULL, AH_NULL);
}
/*
* Handle frequency mapping from 900Mhz range to 2.4GHz range
* for GSM radios. This is done when we need the h/w frequency
* and the channel is marked IEEE80211_CHAN_GSM.
*/
static int
ath_hal_mapgsm(int sku, int freq)
{
if (sku == SKU_XR9)
return 1520 + freq;
if (sku == SKU_GZ901)
return 1544 + freq;
if (sku == SKU_SR9)
return 3344 - freq;
HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
"%s: cannot map freq %u unknown gsm sku %u\n",
__func__, freq, sku);
return freq;
}
/*
* Setup the internal/private channel state given a table of
* net80211 channels. We collapse entries for the same frequency
* and record the frequency for doing noise floor processing
* where we don't have net80211 channel context.
*/
static HAL_BOOL
assignPrivateChannels(struct ath_hal *ah,
struct ieee80211_channel chans[], int nchans, int sku)
{
HAL_CHANNEL_INTERNAL *ic;
int i, j, next, freq;
next = 0;
for (i = 0; i < nchans; i++) {
struct ieee80211_channel *c = &chans[i];
for (j = i-1; j >= 0; j--)
if (chans[j].ic_freq == c->ic_freq) {
c->ic_devdata = chans[j].ic_devdata;
break;
}
if (j < 0) {
/* new entry, assign a private channel entry */
if (next >= N(AH_PRIVATE(ah)->ah_channels)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: too many channels, max %zu\n",
__func__, N(AH_PRIVATE(ah)->ah_channels));
return AH_FALSE;
}
/*
* Handle frequency mapping for 900MHz devices.
* The hardware uses 2.4GHz frequencies that are
* down-converted. The 802.11 layer uses the
* true frequencies.
*/
freq = IEEE80211_IS_CHAN_GSM(c) ?
ath_hal_mapgsm(sku, c->ic_freq) : c->ic_freq;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN,
"%s: private[%3u] %u/0x%x -> channel %u\n",
__func__, next, c->ic_freq, c->ic_flags, freq);
ic = &AH_PRIVATE(ah)->ah_channels[next];
/*
* NB: This clears privFlags which means ancillary
* code like ANI and IQ calibration will be
* restarted and re-setup any per-channel state.
*/
OS_MEMZERO(ic, sizeof(*ic));
ic->channel = freq;
c->ic_devdata = next;
next++;
}
}
AH_PRIVATE(ah)->ah_nchan = next;
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: %u public, %u private channels\n",
__func__, nchans, next);
return AH_TRUE;
}
/*
* Setup the channel list based on the information in the EEPROM.
*/
HAL_STATUS
ath_hal_init_channels(struct ath_hal *ah,
struct ieee80211_channel chans[], u_int maxchans, int *nchans,
u_int modeSelect, HAL_CTRY_CODE cc, HAL_REG_DOMAIN regDmn,
HAL_BOOL enableExtendedChannels)
{
COUNTRY_CODE_TO_ENUM_RD *country;
REG_DOMAIN *rd5GHz, *rd2GHz;
HAL_STATUS status;
status = getchannels(ah, chans, maxchans, nchans, modeSelect,
cc, regDmn, enableExtendedChannels, &country, &rd2GHz, &rd5GHz);
if (status == HAL_OK &&
assignPrivateChannels(ah, chans, *nchans, AH_PRIVATE(ah)->ah_currentRD)) {
AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
ah->ah_countryCode = country->countryCode;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
__func__, ah->ah_countryCode);
} else
status = HAL_EINVAL;
return status;
}
/*
* Set the channel list.
*/
HAL_STATUS
ath_hal_set_channels(struct ath_hal *ah,
struct ieee80211_channel chans[], int nchans,
HAL_CTRY_CODE cc, HAL_REG_DOMAIN rd)
{
COUNTRY_CODE_TO_ENUM_RD *country;
REG_DOMAIN *rd5GHz, *rd2GHz;
HAL_STATUS status;
switch (rd) {
case SKU_SR9:
case SKU_XR9:
case SKU_GZ901:
/*
* Map 900MHz sku's. The frequencies will be mapped
* according to the sku to compensate for the down-converter.
* We use the FCC for these sku's as the mapped channel
* list is known compatible (will need to change if/when
* vendors do different mapping in different locales).
*/
status = getregstate(ah, CTRY_DEFAULT, SKU_FCC,
&country, &rd2GHz, &rd5GHz);
break;
default:
status = getregstate(ah, cc, rd,
&country, &rd2GHz, &rd5GHz);
rd = AH_PRIVATE(ah)->ah_currentRD;
break;
}
if (status == HAL_OK && assignPrivateChannels(ah, chans, nchans, rd)) {
AH_PRIVATE(ah)->ah_rd2GHz = rd2GHz;
AH_PRIVATE(ah)->ah_rd5GHz = rd5GHz;
ah->ah_countryCode = country->countryCode;
HALDEBUG(ah, HAL_DEBUG_REGDOMAIN, "%s: cc %u\n",
__func__, ah->ah_countryCode);
} else
status = HAL_EINVAL;
return status;
}
#ifdef AH_DEBUG
/*
* Return the internal channel corresponding to a public channel.
* NB: normally this routine is inline'd (see ah_internal.h)
*/
HAL_CHANNEL_INTERNAL *
ath_hal_checkchannel(struct ath_hal *ah, const struct ieee80211_channel *c)
{
HAL_CHANNEL_INTERNAL *cc = &AH_PRIVATE(ah)->ah_channels[c->ic_devdata];
if (c->ic_devdata < AH_PRIVATE(ah)->ah_nchan &&
(c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c)))
return cc;
if (c->ic_devdata >= AH_PRIVATE(ah)->ah_nchan) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: bad mapping, devdata %u nchans %u\n",
__func__, c->ic_devdata, AH_PRIVATE(ah)->ah_nchan);
HALASSERT(c->ic_devdata < AH_PRIVATE(ah)->ah_nchan);
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no match for %u/0x%x devdata %u channel %u\n",
__func__, c->ic_freq, c->ic_flags, c->ic_devdata,
cc->channel);
HALASSERT(c->ic_freq == cc->channel || IEEE80211_IS_CHAN_GSM(c));
}
return AH_NULL;
}
#endif /* AH_DEBUG */
#define isWwrSKU(_ah) \
((getEepromRD((_ah)) & WORLD_SKU_MASK) == WORLD_SKU_PREFIX || \
getEepromRD(_ah) == WORLD)
/*
* Return the test group for the specific channel based on
* the current regulatory setup.
*/
u_int
ath_hal_getctl(struct ath_hal *ah, const struct ieee80211_channel *c)
{
u_int ctl;
if (AH_PRIVATE(ah)->ah_rd2GHz == AH_PRIVATE(ah)->ah_rd5GHz ||
(ah->ah_countryCode == CTRY_DEFAULT && isWwrSKU(ah)))
ctl = SD_NO_CTL;
else if (IEEE80211_IS_CHAN_2GHZ(c))
ctl = AH_PRIVATE(ah)->ah_rd2GHz->conformanceTestLimit;
else
ctl = AH_PRIVATE(ah)->ah_rd5GHz->conformanceTestLimit;
if (IEEE80211_IS_CHAN_B(c))
return ctl | CTL_11B;
if (IEEE80211_IS_CHAN_G(c))
return ctl | CTL_11G;
if (IEEE80211_IS_CHAN_108G(c))
return ctl | CTL_108G;
if (IEEE80211_IS_CHAN_TURBO(c))
return ctl | CTL_TURBO;
if (IEEE80211_IS_CHAN_A(c))
return ctl | CTL_11A;
return ctl;
}
/*
* Return the max allowed antenna gain and apply any regulatory
* domain specific changes.
*
* NOTE: a negative reduction is possible in RD's that only
* measure radiated power (e.g., ETSI) which would increase
* that actual conducted output power (though never beyond
* the calibrated target power).
*/
u_int
ath_hal_getantennareduction(struct ath_hal *ah,
const struct ieee80211_channel *chan, u_int twiceGain)
{
int8_t antennaMax = twiceGain - chan->ic_maxantgain*2;
return (antennaMax < 0) ? 0 : antennaMax;
}