freebsd-skq/sys/dev/sound/pci/maestro3.c
scottl 4d495abb9d Mega busdma API commit.
Add two new arguments to bus_dma_tag_create(): lockfunc and lockfuncarg.
Lockfunc allows a driver to provide a function for managing its locking
semantics while using busdma.  At the moment, this is used for the
asynchronous busdma_swi and callback mechanism.  Two lockfunc implementations
are provided: busdma_lock_mutex() performs standard mutex operations on the
mutex that is specified from lockfuncarg.  dftl_lock() is a panic
implementation and is defaulted to when NULL, NULL are passed to
bus_dma_tag_create().  The only time that NULL, NULL should ever be used is
when the driver ensures that bus_dmamap_load() will not be deferred.
Drivers that do not provide their own locking can pass
busdma_lock_mutex,&Giant args in order to preserve the former behaviour.

sparc64 and powerpc do not provide real busdma_swi functions, so this is
largely a noop on those platforms.  The busdma_swi on is64 is not properly
locked yet, so warnings will be emitted on this platform when busdma
callback deferrals happen.

If anyone gets panics or warnings from dflt_lock() being called, please
let me know right away.

Reviewed by:	tmm, gibbs
2003-07-01 15:52:06 +00:00

1528 lines
42 KiB
C

/*-
* Copyright (c) 2001 Scott Long <scottl@freebsd.org>
* Copyright (c) 2001 Darrell Anderson <anderson@cs.duke.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Maestro-3/Allegro FreeBSD pcm sound driver
*
* executive status summary:
* (+) /dev/dsp multiple concurrent play channels.
* (+) /dev/dsp config (speed, mono/stereo, 8/16 bit).
* (+) /dev/mixer sets left/right volumes.
* (+) /dev/dsp recording works. Tested successfully with the cdrom channel
* (+) apm suspend/resume works, and works properly!.
* (-) hardware volme controls don't work =-(
* (-) setblocksize() does nothing.
*
* The real credit goes to:
*
* Zach Brown for his Linux driver core and helpful technical comments.
* <zab@zabbo.net>, http://www.zabbo.net/maestro3
*
* Cameron Grant created the pcm framework used here nearly verbatim.
* <cg@freebsd.org>, http://people.freebsd.org/~cg/template.c
*
* Taku YAMAMOTO for his Maestro-1/2 FreeBSD driver and sanity reference.
* <taku@cent.saitama-u.ac.jp>
*
* ESS docs explained a few magic registers and numbers.
* http://virgo.caltech.edu/~dmoore/maestro3.pdf.gz
*/
#include <dev/sound/pcm/sound.h>
#include <dev/sound/pcm/ac97.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <gnu/dev/sound/pci/maestro3_reg.h>
#include <gnu/dev/sound/pci/maestro3_dsp.h>
SND_DECLARE_FILE("$FreeBSD$");
/* -------------------------------------------------------------------- */
enum {CHANGE=0, CALL=1, INTR=2, BORING=3, NONE=-1};
#ifndef M3_DEBUG_LEVEL
#define M3_DEBUG_LEVEL NONE
#endif
#define M3_DEBUG(level, _msg) {if ((level) <= M3_DEBUG_LEVEL) {printf _msg;}}
/* -------------------------------------------------------------------- */
enum {
ESS_ALLEGRO_1,
ESS_MAESTRO3
};
static struct m3_card_type {
u_int32_t pci_id; int which; int delay1; int delay2; char *name;
} m3_card_types[] = {
{ 0x1988125d, ESS_ALLEGRO_1, 50, 800, "ESS Technology Allegro-1" },
{ 0x1998125d, ESS_MAESTRO3, 20, 500, "ESS Technology Maestro3" },
{ 0x199a125d, ESS_MAESTRO3, 20, 500, "ESS Technology Maestro3" },
{ 0, 0, 0, 0, NULL }
};
#define M3_BUFSIZE_DEFAULT 4096
#define M3_PCHANS 4 /* create /dev/dsp0.[0-N] to use more than one */
#define M3_RCHANS 1
#define M3_MAXADDR ((1 << 27) - 1)
struct sc_info;
struct sc_pchinfo {
u_int32_t spd;
u_int32_t fmt;
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct sc_info *parent;
u_int32_t bufsize;
u_int32_t dac_data;
u_int32_t dac_idx;
u_int32_t active;
};
struct sc_rchinfo {
u_int32_t spd;
u_int32_t fmt;
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct sc_info *parent;
u_int32_t bufsize;
u_int32_t adc_data;
u_int32_t adc_idx;
u_int32_t active;
};
struct sc_info {
device_t dev;
u_int32_t type;
int which;
int delay1;
int delay2;
bus_space_tag_t st;
bus_space_handle_t sh;
bus_dma_tag_t parent_dmat;
struct resource *reg;
struct resource *irq;
int regtype;
int regid;
int irqid;
void *ih;
struct sc_pchinfo pch[M3_PCHANS];
struct sc_rchinfo rch[M3_RCHANS];
int pch_cnt;
int rch_cnt;
int pch_active_cnt;
unsigned int bufsz;
u_int16_t *savemem;
};
/* -------------------------------------------------------------------- */
/* play channel interface */
static void *m3_pchan_init(kobj_t, void *, struct snd_dbuf *, struct pcm_channel *, int);
static int m3_pchan_free(kobj_t, void *);
static int m3_pchan_setformat(kobj_t, void *, u_int32_t);
static int m3_pchan_setspeed(kobj_t, void *, u_int32_t);
static int m3_pchan_setblocksize(kobj_t, void *, u_int32_t);
static int m3_pchan_trigger(kobj_t, void *, int);
static int m3_pchan_getptr(kobj_t, void *);
static struct pcmchan_caps *m3_pchan_getcaps(kobj_t, void *);
/* record channel interface */
static void *m3_rchan_init(kobj_t, void *, struct snd_dbuf *, struct pcm_channel *, int);
static int m3_rchan_free(kobj_t, void *);
static int m3_rchan_setformat(kobj_t, void *, u_int32_t);
static int m3_rchan_setspeed(kobj_t, void *, u_int32_t);
static int m3_rchan_setblocksize(kobj_t, void *, u_int32_t);
static int m3_rchan_trigger(kobj_t, void *, int);
static int m3_rchan_getptr(kobj_t, void *);
static struct pcmchan_caps *m3_rchan_getcaps(kobj_t, void *);
/* talk to the codec - called from ac97.c */
static int m3_initcd(kobj_t, void *);
static int m3_rdcd(kobj_t, void *, int);
static int m3_wrcd(kobj_t, void *, int, u_int32_t);
/* stuff */
static void m3_intr(void *);
static int m3_power(struct sc_info *, int);
static int m3_init(struct sc_info *);
static int m3_uninit(struct sc_info *);
static u_int8_t m3_assp_halt(struct sc_info *);
static void m3_config(struct sc_info *);
static void m3_amp_enable(struct sc_info *);
static void m3_enable_ints(struct sc_info *);
static void m3_codec_reset(struct sc_info *);
/* -------------------------------------------------------------------- */
/* Codec descriptor */
static kobj_method_t m3_codec_methods[] = {
KOBJMETHOD(ac97_init, m3_initcd),
KOBJMETHOD(ac97_read, m3_rdcd),
KOBJMETHOD(ac97_write, m3_wrcd),
{ 0, 0 }
};
AC97_DECLARE(m3_codec);
/* -------------------------------------------------------------------- */
/* channel descriptors */
static u_int32_t m3_playfmt[] = {
AFMT_U8,
AFMT_STEREO | AFMT_U8,
AFMT_S16_LE,
AFMT_STEREO | AFMT_S16_LE,
0
};
static struct pcmchan_caps m3_playcaps = {8000, 48000, m3_playfmt, 0};
static kobj_method_t m3_pch_methods[] = {
KOBJMETHOD(channel_init, m3_pchan_init),
KOBJMETHOD(channel_setformat, m3_pchan_setformat),
KOBJMETHOD(channel_setspeed, m3_pchan_setspeed),
KOBJMETHOD(channel_setblocksize, m3_pchan_setblocksize),
KOBJMETHOD(channel_trigger, m3_pchan_trigger),
KOBJMETHOD(channel_getptr, m3_pchan_getptr),
KOBJMETHOD(channel_getcaps, m3_pchan_getcaps),
KOBJMETHOD(channel_free, m3_pchan_free),
{ 0, 0 }
};
CHANNEL_DECLARE(m3_pch);
static u_int32_t m3_recfmt[] = {
AFMT_U8,
AFMT_STEREO | AFMT_U8,
AFMT_S16_LE,
AFMT_STEREO | AFMT_S16_LE,
0
};
static struct pcmchan_caps m3_reccaps = {8000, 48000, m3_recfmt, 0};
static kobj_method_t m3_rch_methods[] = {
KOBJMETHOD(channel_init, m3_rchan_init),
KOBJMETHOD(channel_setformat, m3_rchan_setformat),
KOBJMETHOD(channel_setspeed, m3_rchan_setspeed),
KOBJMETHOD(channel_setblocksize, m3_rchan_setblocksize),
KOBJMETHOD(channel_trigger, m3_rchan_trigger),
KOBJMETHOD(channel_getptr, m3_rchan_getptr),
KOBJMETHOD(channel_getcaps, m3_rchan_getcaps),
KOBJMETHOD(channel_free, m3_rchan_free),
{ 0, 0 }
};
CHANNEL_DECLARE(m3_rch);
/* -------------------------------------------------------------------- */
/* some i/o convenience functions */
#define m3_rd_1(sc, regno) bus_space_read_1(sc->st, sc->sh, regno)
#define m3_rd_2(sc, regno) bus_space_read_2(sc->st, sc->sh, regno)
#define m3_rd_4(sc, regno) bus_space_read_4(sc->st, sc->sh, regno)
#define m3_wr_1(sc, regno, data) bus_space_write_1(sc->st, sc->sh, regno, data)
#define m3_wr_2(sc, regno, data) bus_space_write_2(sc->st, sc->sh, regno, data)
#define m3_wr_4(sc, regno, data) bus_space_write_4(sc->st, sc->sh, regno, data)
#define m3_rd_assp_code(sc, index) \
m3_rd_assp(sc, MEMTYPE_INTERNAL_CODE, index)
#define m3_wr_assp_code(sc, index, data) \
m3_wr_assp(sc, MEMTYPE_INTERNAL_CODE, index, data)
#define m3_rd_assp_data(sc, index) \
m3_rd_assp(sc, MEMTYPE_INTERNAL_DATA, index)
#define m3_wr_assp_data(sc, index, data) \
m3_wr_assp(sc, MEMTYPE_INTERNAL_DATA, index, data)
static __inline u_int16_t
m3_rd_assp(struct sc_info *sc, u_int16_t region, u_int16_t index)
{
m3_wr_2(sc, DSP_PORT_MEMORY_TYPE, region & MEMTYPE_MASK);
m3_wr_2(sc, DSP_PORT_MEMORY_INDEX, index);
return m3_rd_2(sc, DSP_PORT_MEMORY_DATA);
}
static __inline void
m3_wr_assp(struct sc_info *sc, u_int16_t region, u_int16_t index,
u_int16_t data)
{
m3_wr_2(sc, DSP_PORT_MEMORY_TYPE, region & MEMTYPE_MASK);
m3_wr_2(sc, DSP_PORT_MEMORY_INDEX, index);
m3_wr_2(sc, DSP_PORT_MEMORY_DATA, data);
}
static __inline int
m3_wait(struct sc_info *sc)
{
int i;
for (i=0 ; i<20 ; i++) {
if ((m3_rd_1(sc, CODEC_STATUS) & 1) == 0) {
return 0;
}
DELAY(2);
}
return -1;
}
/* -------------------------------------------------------------------- */
/* ac97 codec */
static int
m3_initcd(kobj_t kobj, void *devinfo)
{
struct sc_info *sc = (struct sc_info *)devinfo;
u_int32_t data;
M3_DEBUG(CALL, ("m3_initcd\n"));
/* init ac-link */
data = m3_rd_1(sc, CODEC_COMMAND);
return ((data & 0x1) ? 0 : 1);
}
static int
m3_rdcd(kobj_t kobj, void *devinfo, int regno)
{
struct sc_info *sc = (struct sc_info *)devinfo;
u_int32_t data;
if (m3_wait(sc)) {
device_printf(sc->dev, "m3_rdcd timed out.\n");
return -1;
}
m3_wr_1(sc, CODEC_COMMAND, (regno & 0x7f) | 0x80);
DELAY(50); /* ac97 cycle = 20.8 usec */
if (m3_wait(sc)) {
device_printf(sc->dev, "m3_rdcd timed out.\n");
return -1;
}
data = m3_rd_2(sc, CODEC_DATA);
return data;
}
static int
m3_wrcd(kobj_t kobj, void *devinfo, int regno, u_int32_t data)
{
struct sc_info *sc = (struct sc_info *)devinfo;
if (m3_wait(sc)) {
device_printf(sc->dev, "m3_wrcd timed out.\n");
return -1;;
}
m3_wr_2(sc, CODEC_DATA, data);
m3_wr_1(sc, CODEC_COMMAND, regno & 0x7f);
DELAY(50); /* ac97 cycle = 20.8 usec */
return 0;
}
/* -------------------------------------------------------------------- */
/* play channel interface */
#define LO(x) (((x) & 0x0000ffff) )
#define HI(x) (((x) & 0xffff0000) >> 16)
static void *
m3_pchan_init(kobj_t kobj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir)
{
struct sc_info *sc = devinfo;
struct sc_pchinfo *ch;
u_int32_t bus_addr, i;
int idx = sc->pch_cnt; /* dac instance number, no active reuse! */
int data_bytes = (((MINISRC_TMP_BUFFER_SIZE & ~1) +
(MINISRC_IN_BUFFER_SIZE & ~1) +
(MINISRC_OUT_BUFFER_SIZE & ~1) + 4) + 255) &~ 255;
int dac_data = 0x1100 + (data_bytes * idx);
int dsp_in_size = MINISRC_IN_BUFFER_SIZE - (0x20 * 2);
int dsp_out_size = MINISRC_OUT_BUFFER_SIZE - (0x20 * 2);
int dsp_in_buf = dac_data + (MINISRC_TMP_BUFFER_SIZE/2);
int dsp_out_buf = dsp_in_buf + (dsp_in_size/2) + 1;
M3_DEBUG(CHANGE, ("m3_pchan_init(dac=%d)\n", idx));
if (dir != PCMDIR_PLAY) {
device_printf(sc->dev, "m3_pchan_init not PCMDIR_PLAY\n");
return NULL;
}
ch = &sc->pch[idx];
ch->dac_idx = idx;
ch->dac_data = dac_data;
if (ch->dac_data + data_bytes/2 >= 0x1c00) {
device_printf(sc->dev, "m3_pchan_init: revb mem exhausted\n");
return NULL;
}
ch->buffer = b;
ch->parent = sc;
ch->channel = c;
ch->fmt = AFMT_U8;
ch->spd = DSP_DEFAULT_SPEED;
if (sndbuf_alloc(ch->buffer, sc->parent_dmat, sc->bufsz) == -1) {
device_printf(sc->dev, "m3_pchan_init chn_allocbuf failed\n");
return NULL;
}
ch->bufsize = sndbuf_getsize(ch->buffer);
/* host dma buffer pointers */
bus_addr = sndbuf_getbufaddr(ch->buffer);
if (bus_addr & 3) {
device_printf(sc->dev, "m3_pchan_init unaligned bus_addr\n");
bus_addr = (bus_addr + 4) & ~3;
}
m3_wr_assp_data(sc, ch->dac_data + CDATA_HOST_SRC_ADDRL, LO(bus_addr));
m3_wr_assp_data(sc, ch->dac_data + CDATA_HOST_SRC_ADDRH, HI(bus_addr));
m3_wr_assp_data(sc, ch->dac_data + CDATA_HOST_SRC_END_PLUS_1L,
LO(bus_addr + ch->bufsize));
m3_wr_assp_data(sc, ch->dac_data + CDATA_HOST_SRC_END_PLUS_1H,
HI(bus_addr + ch->bufsize));
m3_wr_assp_data(sc, ch->dac_data + CDATA_HOST_SRC_CURRENTL,
LO(bus_addr));
m3_wr_assp_data(sc, ch->dac_data + CDATA_HOST_SRC_CURRENTH,
HI(bus_addr));
/* dsp buffers */
m3_wr_assp_data(sc, ch->dac_data + CDATA_IN_BUF_BEGIN, dsp_in_buf);
m3_wr_assp_data(sc, ch->dac_data + CDATA_IN_BUF_END_PLUS_1,
dsp_in_buf + dsp_in_size/2);
m3_wr_assp_data(sc, ch->dac_data + CDATA_IN_BUF_HEAD, dsp_in_buf);
m3_wr_assp_data(sc, ch->dac_data + CDATA_IN_BUF_TAIL, dsp_in_buf);
m3_wr_assp_data(sc, ch->dac_data + CDATA_OUT_BUF_BEGIN, dsp_out_buf);
m3_wr_assp_data(sc, ch->dac_data + CDATA_OUT_BUF_END_PLUS_1,
dsp_out_buf + dsp_out_size/2);
m3_wr_assp_data(sc, ch->dac_data + CDATA_OUT_BUF_HEAD, dsp_out_buf);
m3_wr_assp_data(sc, ch->dac_data + CDATA_OUT_BUF_TAIL, dsp_out_buf);
/* some per client initializers */
m3_wr_assp_data(sc, ch->dac_data + SRC3_DIRECTION_OFFSET + 12,
ch->dac_data + 40 + 8);
m3_wr_assp_data(sc, ch->dac_data + SRC3_DIRECTION_OFFSET + 19,
0x400 + MINISRC_COEF_LOC);
/* enable or disable low pass filter? (0xff if rate> 45000) */
m3_wr_assp_data(sc, ch->dac_data + SRC3_DIRECTION_OFFSET + 22, 0);
/* tell it which way dma is going? */
m3_wr_assp_data(sc, ch->dac_data + CDATA_DMA_CONTROL,
DMACONTROL_AUTOREPEAT + DMAC_PAGE3_SELECTOR +
DMAC_BLOCKF_SELECTOR);
/* set an armload of static initializers */
for(i = 0 ; i < (sizeof(pv) / sizeof(pv[0])) ; i++) {
m3_wr_assp_data(sc, ch->dac_data + pv[i].addr, pv[i].val);
}
/* put us in the packed task lists */
m3_wr_assp_data(sc, KDATA_INSTANCE0_MINISRC +
(sc->pch_cnt + sc->rch_cnt),
ch->dac_data >> DP_SHIFT_COUNT);
m3_wr_assp_data(sc, KDATA_DMA_XFER0 + (sc->pch_cnt + sc->rch_cnt),
ch->dac_data >> DP_SHIFT_COUNT);
m3_wr_assp_data(sc, KDATA_MIXER_XFER0 + sc->pch_cnt,
ch->dac_data >> DP_SHIFT_COUNT);
m3_pchan_trigger(NULL, ch, PCMTRIG_START); /* gotta start before stop */
m3_pchan_trigger(NULL, ch, PCMTRIG_STOP); /* silence noise on load */
sc->pch_cnt++;
return ch;
}
static int
m3_pchan_free(kobj_t kobj, void *chdata)
{
struct sc_pchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
M3_DEBUG(CHANGE, ("m3_pchan_free(dac=%d)\n", ch->dac_idx));
/*
* should remove this exact instance from the packed lists, but all
* are released at once (and in a stopped state) so this is ok.
*/
m3_wr_assp_data(sc, KDATA_INSTANCE0_MINISRC +
(sc->pch_cnt - 1) + sc->rch_cnt, 0);
m3_wr_assp_data(sc, KDATA_DMA_XFER0 +
(sc->pch_cnt - 1) + sc->rch_cnt, 0);
m3_wr_assp_data(sc, KDATA_MIXER_XFER0 + (sc->pch_cnt-1), 0);
sc->pch_cnt--;
return 0;
}
static int
m3_pchan_setformat(kobj_t kobj, void *chdata, u_int32_t format)
{
struct sc_pchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
u_int32_t data;
M3_DEBUG(CHANGE,
("m3_pchan_setformat(dac=%d, format=0x%x{%s-%s})\n",
ch->dac_idx, format,
format & (AFMT_U8|AFMT_S8) ? "8bit":"16bit",
format & AFMT_STEREO ? "STEREO":"MONO"));
/* mono word */
data = (format & AFMT_STEREO) ? 0 : 1;
m3_wr_assp_data(sc, ch->dac_data + SRC3_MODE_OFFSET, data);
/* 8bit word */
data = ((format & AFMT_U8) || (format & AFMT_S8)) ? 1 : 0;
m3_wr_assp_data(sc, ch->dac_data + SRC3_WORD_LENGTH_OFFSET, data);
ch->fmt = format;
return 0;
}
static int
m3_pchan_setspeed(kobj_t kobj, void *chdata, u_int32_t speed)
{
struct sc_pchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
u_int32_t freq;
M3_DEBUG(CHANGE, ("m3_pchan_setspeed(dac=%d, speed=%d)\n",
ch->dac_idx, speed));
if ((freq = ((speed << 15) + 24000) / 48000) != 0) {
freq--;
}
m3_wr_assp_data(sc, ch->dac_data + CDATA_FREQUENCY, freq);
ch->spd = speed;
return speed; /* return closest possible speed */
}
static int
m3_pchan_setblocksize(kobj_t kobj, void *chdata, u_int32_t blocksize)
{
struct sc_pchinfo *ch = chdata;
M3_DEBUG(CHANGE, ("m3_pchan_setblocksize(dac=%d, blocksize=%d)\n",
ch->dac_idx, blocksize));
return blocksize;
}
static int
m3_pchan_trigger(kobj_t kobj, void *chdata, int go)
{
struct sc_pchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
u_int32_t data;
M3_DEBUG(go == PCMTRIG_START ? CHANGE :
go == PCMTRIG_STOP ? CHANGE :
go == PCMTRIG_ABORT ? CHANGE :
CALL,
("m3_pchan_trigger(dac=%d, go=0x%x{%s})\n", ch->dac_idx, go,
go == PCMTRIG_START ? "PCMTRIG_START" :
go == PCMTRIG_STOP ? "PCMTRIG_STOP" :
go == PCMTRIG_ABORT ? "PCMTRIG_ABORT" : "ignore"));
switch(go) {
case PCMTRIG_START:
if (ch->active) {
return 0;
}
ch->active = 1;
sc->pch_active_cnt++;
/*[[inc_timer_users]]*/
m3_wr_assp_data(sc, KDATA_TIMER_COUNT_RELOAD, 240);
m3_wr_assp_data(sc, KDATA_TIMER_COUNT_CURRENT, 240);
data = m3_rd_2(sc, HOST_INT_CTRL);
m3_wr_2(sc, HOST_INT_CTRL, data | CLKRUN_GEN_ENABLE);
m3_wr_assp_data(sc, ch->dac_data + CDATA_INSTANCE_READY, 1);
m3_wr_assp_data(sc, KDATA_MIXER_TASK_NUMBER,
sc->pch_active_cnt);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
if (ch->active == 0) {
return 0;
}
ch->active = 0;
sc->pch_active_cnt--;
/* XXX should the channel be drained? */
/*[[dec_timer_users]]*/
m3_wr_assp_data(sc, KDATA_TIMER_COUNT_RELOAD, 0);
m3_wr_assp_data(sc, KDATA_TIMER_COUNT_CURRENT, 0);
data = m3_rd_2(sc, HOST_INT_CTRL);
m3_wr_2(sc, HOST_INT_CTRL, data & ~CLKRUN_GEN_ENABLE);
m3_wr_assp_data(sc, ch->dac_data + CDATA_INSTANCE_READY, 0);
m3_wr_assp_data(sc, KDATA_MIXER_TASK_NUMBER,
sc->pch_active_cnt);
break;
case PCMTRIG_EMLDMAWR:
/* got play irq, transfer next buffer - ignore if using dma */
case PCMTRIG_EMLDMARD:
/* got rec irq, transfer next buffer - ignore if using dma */
default:
break;
}
return 0;
}
static int
m3_pchan_getptr(kobj_t kobj, void *chdata)
{
struct sc_pchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
u_int32_t hi, lo, bus_crnt;
u_int32_t bus_base = sndbuf_getbufaddr(ch->buffer);
hi = m3_rd_assp_data(sc, ch->dac_data + CDATA_HOST_SRC_CURRENTH);
lo = m3_rd_assp_data(sc, ch->dac_data + CDATA_HOST_SRC_CURRENTL);
bus_crnt = lo | (hi << 16);
M3_DEBUG(CALL, ("m3_pchan_getptr(dac=%d) result=%d\n",
ch->dac_idx, bus_crnt - bus_base));
return (bus_crnt - bus_base); /* current byte offset of channel */
}
static struct pcmchan_caps *
m3_pchan_getcaps(kobj_t kobj, void *chdata)
{
struct sc_pchinfo *ch = chdata;
M3_DEBUG(CALL, ("m3_pchan_getcaps(dac=%d)\n", ch->dac_idx));
return &m3_playcaps;
}
/* -------------------------------------------------------------------- */
/* rec channel interface */
static void *
m3_rchan_init(kobj_t kobj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir)
{
struct sc_info *sc = devinfo;
struct sc_rchinfo *ch;
u_int32_t bus_addr, i;
int idx = sc->rch_cnt; /* adc instance number, no active reuse! */
int data_bytes = (((MINISRC_TMP_BUFFER_SIZE & ~1) +
(MINISRC_IN_BUFFER_SIZE & ~1) +
(MINISRC_OUT_BUFFER_SIZE & ~1) + 4) + 255) &~ 255;
int adc_data = 0x1100 + (data_bytes * idx) + data_bytes/2;
int dsp_in_size = MINISRC_IN_BUFFER_SIZE + (0x10 * 2);
int dsp_out_size = MINISRC_OUT_BUFFER_SIZE - (0x10 * 2);
int dsp_in_buf = adc_data + (MINISRC_TMP_BUFFER_SIZE / 2);
int dsp_out_buf = dsp_in_buf + (dsp_in_size / 2) + 1;
M3_DEBUG(CHANGE, ("m3_rchan_init(adc=%d)\n", idx));
if (dir != PCMDIR_REC) {
device_printf(sc->dev, "m3_pchan_init not PCMDIR_REC\n");
return NULL;
}
ch = &sc->rch[idx];
ch->adc_idx = idx;
ch->adc_data = adc_data;
if (ch->adc_data + data_bytes/2 >= 0x1c00) {
device_printf(sc->dev, "m3_rchan_init: revb mem exhausted\n");
return NULL;
}
ch->buffer = b;
ch->parent = sc;
ch->channel = c;
ch->fmt = AFMT_U8;
ch->spd = DSP_DEFAULT_SPEED;
if (sndbuf_alloc(ch->buffer, sc->parent_dmat, sc->bufsz) == -1) {
device_printf(sc->dev, "m3_rchan_init chn_allocbuf failed\n");
return NULL;
}
ch->bufsize = sndbuf_getsize(ch->buffer);
/* host dma buffer pointers */
bus_addr = sndbuf_getbufaddr(ch->buffer);
if (bus_addr & 3) {
device_printf(sc->dev, "m3_rchan_init unaligned bus_addr\n");
bus_addr = (bus_addr + 4) & ~3;
}
m3_wr_assp_data(sc, ch->adc_data + CDATA_HOST_SRC_ADDRL, LO(bus_addr));
m3_wr_assp_data(sc, ch->adc_data + CDATA_HOST_SRC_ADDRH, HI(bus_addr));
m3_wr_assp_data(sc, ch->adc_data + CDATA_HOST_SRC_END_PLUS_1L,
LO(bus_addr + ch->bufsize));
m3_wr_assp_data(sc, ch->adc_data + CDATA_HOST_SRC_END_PLUS_1H,
HI(bus_addr + ch->bufsize));
m3_wr_assp_data(sc, ch->adc_data + CDATA_HOST_SRC_CURRENTL,
LO(bus_addr));
m3_wr_assp_data(sc, ch->adc_data + CDATA_HOST_SRC_CURRENTH,
HI(bus_addr));
/* dsp buffers */
m3_wr_assp_data(sc, ch->adc_data + CDATA_IN_BUF_BEGIN, dsp_in_buf);
m3_wr_assp_data(sc, ch->adc_data + CDATA_IN_BUF_END_PLUS_1,
dsp_in_buf + dsp_in_size/2);
m3_wr_assp_data(sc, ch->adc_data + CDATA_IN_BUF_HEAD, dsp_in_buf);
m3_wr_assp_data(sc, ch->adc_data + CDATA_IN_BUF_TAIL, dsp_in_buf);
m3_wr_assp_data(sc, ch->adc_data + CDATA_OUT_BUF_BEGIN, dsp_out_buf);
m3_wr_assp_data(sc, ch->adc_data + CDATA_OUT_BUF_END_PLUS_1,
dsp_out_buf + dsp_out_size/2);
m3_wr_assp_data(sc, ch->adc_data + CDATA_OUT_BUF_HEAD, dsp_out_buf);
m3_wr_assp_data(sc, ch->adc_data + CDATA_OUT_BUF_TAIL, dsp_out_buf);
/* some per client initializers */
m3_wr_assp_data(sc, ch->adc_data + SRC3_DIRECTION_OFFSET + 12,
ch->adc_data + 40 + 8);
m3_wr_assp_data(sc, ch->adc_data + CDATA_DMA_CONTROL,
DMACONTROL_DIRECTION + DMACONTROL_AUTOREPEAT +
DMAC_PAGE3_SELECTOR + DMAC_BLOCKF_SELECTOR);
/* set an armload of static initializers */
for(i = 0 ; i < (sizeof(rv) / sizeof(rv[0])) ; i++) {
m3_wr_assp_data(sc, ch->adc_data + rv[i].addr, rv[i].val);
}
/* put us in the packed task lists */
m3_wr_assp_data(sc, KDATA_INSTANCE0_MINISRC +
(sc->pch_cnt + sc->rch_cnt),
ch->adc_data >> DP_SHIFT_COUNT);
m3_wr_assp_data(sc, KDATA_DMA_XFER0 + (sc->pch_cnt + sc->rch_cnt),
ch->adc_data >> DP_SHIFT_COUNT);
m3_wr_assp_data(sc, KDATA_ADC1_XFER0 + sc->rch_cnt,
ch->adc_data >> DP_SHIFT_COUNT);
m3_rchan_trigger(NULL, ch, PCMTRIG_START); /* gotta start before stop */
m3_rchan_trigger(NULL, ch, PCMTRIG_STOP); /* stop on init */
sc->rch_cnt++;
return ch;
}
static int
m3_rchan_free(kobj_t kobj, void *chdata)
{
struct sc_rchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
M3_DEBUG(CHANGE, ("m3_rchan_free(adc=%d)\n", ch->adc_idx));
/*
* should remove this exact instance from the packed lists, but all
* are released at once (and in a stopped state) so this is ok.
*/
m3_wr_assp_data(sc, KDATA_INSTANCE0_MINISRC +
(sc->rch_cnt - 1) + sc->pch_cnt, 0);
m3_wr_assp_data(sc, KDATA_DMA_XFER0 +
(sc->rch_cnt - 1) + sc->pch_cnt, 0);
m3_wr_assp_data(sc, KDATA_ADC1_XFER0 + (sc->rch_cnt - 1), 0);
sc->rch_cnt--;
return 0;
}
static int
m3_rchan_setformat(kobj_t kobj, void *chdata, u_int32_t format)
{
struct sc_rchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
u_int32_t data;
M3_DEBUG(CHANGE,
("m3_rchan_setformat(dac=%d, format=0x%x{%s-%s})\n",
ch->adc_idx, format,
format & (AFMT_U8|AFMT_S8) ? "8bit":"16bit",
format & AFMT_STEREO ? "STEREO":"MONO"));
/* mono word */
data = (format & AFMT_STEREO) ? 0 : 1;
m3_wr_assp_data(sc, ch->adc_data + SRC3_MODE_OFFSET, data);
/* 8bit word */
data = ((format & AFMT_U8) || (format & AFMT_S8)) ? 1 : 0;
m3_wr_assp_data(sc, ch->adc_data + SRC3_WORD_LENGTH_OFFSET, data);
ch->fmt = format;
return 0;
}
static int
m3_rchan_setspeed(kobj_t kobj, void *chdata, u_int32_t speed)
{
struct sc_rchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
u_int32_t freq;
M3_DEBUG(CHANGE, ("m3_rchan_setspeed(adc=%d, speed=%d)\n",
ch->adc_idx, speed));
if ((freq = ((speed << 15) + 24000) / 48000) != 0) {
freq--;
}
m3_wr_assp_data(sc, ch->adc_data + CDATA_FREQUENCY, freq);
ch->spd = speed;
return speed; /* return closest possible speed */
}
static int
m3_rchan_setblocksize(kobj_t kobj, void *chdata, u_int32_t blocksize)
{
struct sc_rchinfo *ch = chdata;
M3_DEBUG(CHANGE, ("m3_rchan_setblocksize(adc=%d, blocksize=%d)\n",
ch->adc_idx, blocksize));
return blocksize;
}
static int
m3_rchan_trigger(kobj_t kobj, void *chdata, int go)
{
struct sc_rchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
u_int32_t data;
M3_DEBUG(go == PCMTRIG_START ? CHANGE :
go == PCMTRIG_STOP ? CHANGE :
go == PCMTRIG_ABORT ? CHANGE :
CALL,
("m3_rchan_trigger(adc=%d, go=0x%x{%s})\n", ch->adc_idx, go,
go == PCMTRIG_START ? "PCMTRIG_START" :
go == PCMTRIG_STOP ? "PCMTRIG_STOP" :
go == PCMTRIG_ABORT ? "PCMTRIG_ABORT" : "ignore"));
switch(go) {
case PCMTRIG_START:
if (ch->active) {
return 0;
}
ch->active = 1;
/*[[inc_timer_users]]*/
m3_wr_assp_data(sc, KDATA_TIMER_COUNT_RELOAD, 240);
m3_wr_assp_data(sc, KDATA_TIMER_COUNT_CURRENT, 240);
data = m3_rd_2(sc, HOST_INT_CTRL);
m3_wr_2(sc, HOST_INT_CTRL, data | CLKRUN_GEN_ENABLE);
m3_wr_assp_data(sc, KDATA_ADC1_REQUEST, 1);
m3_wr_assp_data(sc, ch->adc_data + CDATA_INSTANCE_READY, 1);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
if (ch->active == 0) {
return 0;
}
ch->active = 0;
/*[[dec_timer_users]]*/
m3_wr_assp_data(sc, KDATA_TIMER_COUNT_RELOAD, 0);
m3_wr_assp_data(sc, KDATA_TIMER_COUNT_CURRENT, 0);
data = m3_rd_2(sc, HOST_INT_CTRL);
m3_wr_2(sc, HOST_INT_CTRL, data & ~CLKRUN_GEN_ENABLE);
m3_wr_assp_data(sc, ch->adc_data + CDATA_INSTANCE_READY, 0);
m3_wr_assp_data(sc, KDATA_ADC1_REQUEST, 0);
break;
case PCMTRIG_EMLDMAWR:
/* got play irq, transfer next buffer - ignore if using dma */
case PCMTRIG_EMLDMARD:
/* got rec irq, transfer next buffer - ignore if using dma */
default:
break;
}
return 0;
}
static int
m3_rchan_getptr(kobj_t kobj, void *chdata)
{
struct sc_rchinfo *ch = chdata;
struct sc_info *sc = ch->parent;
u_int32_t hi, lo, bus_crnt;
u_int32_t bus_base = sndbuf_getbufaddr(ch->buffer);
hi = m3_rd_assp_data(sc, ch->adc_data + CDATA_HOST_SRC_CURRENTH);
lo = m3_rd_assp_data(sc, ch->adc_data + CDATA_HOST_SRC_CURRENTL);
bus_crnt = lo | (hi << 16);
M3_DEBUG(CALL, ("m3_rchan_getptr(adc=%d) result=%d\n",
ch->adc_idx, bus_crnt - bus_base));
return (bus_crnt - bus_base); /* current byte offset of channel */
}
static struct pcmchan_caps *
m3_rchan_getcaps(kobj_t kobj, void *chdata)
{
struct sc_rchinfo *ch = chdata;
M3_DEBUG(CALL, ("m3_rchan_getcaps(adc=%d)\n", ch->adc_idx));
return &m3_reccaps;
}
/* -------------------------------------------------------------------- */
/* The interrupt handler */
static void
m3_intr(void *p)
{
struct sc_info *sc = (struct sc_info *)p;
u_int32_t status, ctl, i;
M3_DEBUG(INTR, ("m3_intr\n"));
status = m3_rd_1(sc, HOST_INT_STATUS);
if (!status)
return;
m3_wr_1(sc, HOST_INT_STATUS, 0xff); /* ack the int? */
if (status & HV_INT_PENDING) {
u_int8_t event;
event = m3_rd_1(sc, HW_VOL_COUNTER_MASTER);
switch (event) {
case 0x99:
mixer_hwvol_mute(sc->dev);
break;
case 0xaa:
mixer_hwvol_step(sc->dev, 1, 1);
break;
case 0x66:
mixer_hwvol_step(sc->dev, -1, -1);
break;
case 0x88:
break;
default:
device_printf(sc->dev, "Unknown HWVOL event\n");
}
m3_wr_1(sc, HW_VOL_COUNTER_MASTER, 0x88);
}
if (status & ASSP_INT_PENDING) {
ctl = m3_rd_1(sc, ASSP_CONTROL_B);
if (!(ctl & STOP_ASSP_CLOCK)) {
ctl = m3_rd_1(sc, ASSP_HOST_INT_STATUS);
if (ctl & DSP2HOST_REQ_TIMER) {
m3_wr_1(sc, ASSP_HOST_INT_STATUS,
DSP2HOST_REQ_TIMER);
/*[[ess_update_ptr]]*/
}
}
}
for (i=0 ; i<sc->pch_cnt ; i++) {
if (sc->pch[i].active) {
chn_intr(sc->pch[i].channel);
}
}
for (i=0 ; i<sc->rch_cnt ; i++) {
if (sc->rch[i].active) {
chn_intr(sc->rch[i].channel);
}
}
}
/* -------------------------------------------------------------------- */
/* stuff */
static int
m3_power(struct sc_info *sc, int state)
{
u_int32_t data;
M3_DEBUG(CHANGE, ("m3_power(%d)\n", state));
data = pci_read_config(sc->dev, 0x34, 1);
if (pci_read_config(sc->dev, data, 1) == 1) {
pci_write_config(sc->dev, data + 4, state, 1);
}
return 0;
}
static int
m3_init(struct sc_info *sc)
{
u_int32_t data, i, size;
u_int8_t reset_state;
M3_DEBUG(CHANGE, ("m3_init\n"));
/* diable legacy emulations. */
data = pci_read_config(sc->dev, PCI_LEGACY_AUDIO_CTRL, 2);
data |= DISABLE_LEGACY;
pci_write_config(sc->dev, PCI_LEGACY_AUDIO_CTRL, data, 2);
m3_config(sc);
reset_state = m3_assp_halt(sc);
m3_codec_reset(sc);
/* [m3_assp_init] */
/* zero kernel data */
size = REV_B_DATA_MEMORY_UNIT_LENGTH * NUM_UNITS_KERNEL_DATA;
for(i = 0 ; i < size / 2 ; i++) {
m3_wr_assp_data(sc, KDATA_BASE_ADDR + i, 0);
}
/* zero mixer data? */
size = REV_B_DATA_MEMORY_UNIT_LENGTH * NUM_UNITS_KERNEL_DATA;
for(i = 0 ; i < size / 2 ; i++) {
m3_wr_assp_data(sc, KDATA_BASE_ADDR2 + i, 0);
}
/* init dma pointer */
m3_wr_assp_data(sc, KDATA_CURRENT_DMA,
KDATA_DMA_XFER0);
/* write kernel into code memory */
size = sizeof(assp_kernel_image);
for(i = 0 ; i < size / 2; i++) {
m3_wr_assp_code(sc, REV_B_CODE_MEMORY_BEGIN + i,
assp_kernel_image[i]);
}
/*
* We only have this one client and we know that 0x400 is free in
* our kernel's mem map, so lets just drop it there. It seems that
* the minisrc doesn't need vectors, so we won't bother with them..
*/
size = sizeof(assp_minisrc_image);
for(i = 0 ; i < size / 2; i++) {
m3_wr_assp_code(sc, 0x400 + i, assp_minisrc_image[i]);
}
/* write the coefficients for the low pass filter? */
size = sizeof(minisrc_lpf_image);
for(i = 0; i < size / 2 ; i++) {
m3_wr_assp_code(sc,0x400 + MINISRC_COEF_LOC + i,
minisrc_lpf_image[i]);
}
m3_wr_assp_code(sc, 0x400 + MINISRC_COEF_LOC + size, 0x8000);
/* the minisrc is the only thing on our task list */
m3_wr_assp_data(sc, KDATA_TASK0, 0x400);
/* init the mixer number */
m3_wr_assp_data(sc, KDATA_MIXER_TASK_NUMBER, 0);
/* extreme kernel master volume */
m3_wr_assp_data(sc, KDATA_DAC_LEFT_VOLUME, ARB_VOLUME);
m3_wr_assp_data(sc, KDATA_DAC_RIGHT_VOLUME, ARB_VOLUME);
m3_amp_enable(sc);
/* [m3_assp_client_init] (only one client at index 0) */
for (i=0x1100 ; i<0x1c00 ; i++) {
m3_wr_assp_data(sc, i, 0); /* zero entire dac/adc area */
}
/* [m3_assp_continue] */
m3_wr_1(sc, DSP_PORT_CONTROL_REG_B, reset_state | REGB_ENABLE_RESET);
return 0;
}
static int
m3_uninit(struct sc_info *sc)
{
M3_DEBUG(CHANGE, ("m3_uninit\n"));
return 0;
}
/* -------------------------------------------------------------------- */
/* Probe and attach the card */
static int
m3_pci_probe(device_t dev)
{
struct m3_card_type *card;
M3_DEBUG(CALL, ("m3_pci_probe(0x%x)\n", pci_get_devid(dev)));
for (card = m3_card_types ; card->pci_id ; card++) {
if (pci_get_devid(dev) == card->pci_id) {
device_set_desc(dev, card->name);
return 0;
}
}
return ENXIO;
}
static int
m3_pci_attach(device_t dev)
{
struct sc_info *sc;
struct ac97_info *codec = NULL;
u_int32_t data, i;
char status[SND_STATUSLEN];
struct m3_card_type *card;
int len;
M3_DEBUG(CALL, ("m3_pci_attach\n"));
if ((sc = malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
device_printf(dev, "cannot allocate softc\n");
return ENXIO;
}
sc->dev = dev;
sc->type = pci_get_devid(dev);
for (card = m3_card_types ; card->pci_id ; card++) {
if (sc->type == card->pci_id) {
sc->which = card->which;
sc->delay1 = card->delay1;
sc->delay2 = card->delay2;
break;
}
}
data = pci_read_config(dev, PCIR_COMMAND, 2);
data |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, data, 2);
sc->regid = PCIR_MAPS;
sc->regtype = SYS_RES_MEMORY;
sc->reg = bus_alloc_resource(dev, sc->regtype, &sc->regid,
0, ~0, 1, RF_ACTIVE);
if (!sc->reg) {
sc->regtype = SYS_RES_IOPORT;
sc->reg = bus_alloc_resource(dev, sc->regtype, &sc->regid,
0, ~0, 1, RF_ACTIVE);
}
if (!sc->reg) {
device_printf(dev, "unable to allocate register space\n");
goto bad;
}
sc->st = rman_get_bustag(sc->reg);
sc->sh = rman_get_bushandle(sc->reg);
sc->irqid = 0;
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irqid,
0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
if (!sc->irq) {
device_printf(dev, "unable to allocate interrupt\n");
goto bad;
}
if (snd_setup_intr(dev, sc->irq, 0, m3_intr, sc, &sc->ih)) {
device_printf(dev, "unable to setup interrupt\n");
goto bad;
}
sc->bufsz = pcm_getbuffersize(dev, 1024, M3_BUFSIZE_DEFAULT, 65536);
if (bus_dma_tag_create(/*parent*/NULL, /*alignment*/2, /*boundary*/0,
/*lowaddr*/M3_MAXADDR,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/sc->bufsz, /*nsegments*/1,
/*maxsegz*/0x3ffff,
/*flags*/0, /*lockfunc*/busdma_lock_mutex,
/*lockarg*/&Giant, &sc->parent_dmat) != 0) {
device_printf(dev, "unable to create dma tag\n");
goto bad;
}
m3_power(sc, 0); /* power up */
/* init chip */
if (m3_init(sc) == -1) {
device_printf(dev, "unable to initialize the card\n");
goto bad;
}
/* create/init mixer */
codec = AC97_CREATE(dev, sc, m3_codec);
if (codec == NULL) {
device_printf(dev, "ac97_create error\n");
goto bad;
}
if (mixer_init(dev, ac97_getmixerclass(), codec)) {
device_printf(dev, "mixer_init error\n");
goto bad;
}
m3_enable_ints(sc);
if (pcm_register(dev, sc, M3_PCHANS, M3_RCHANS)) {
device_printf(dev, "pcm_register error\n");
goto bad;
}
for (i=0 ; i<M3_PCHANS ; i++) {
if (pcm_addchan(dev, PCMDIR_PLAY, &m3_pch_class, sc)) {
device_printf(dev, "pcm_addchan (play) error\n");
goto bad;
}
}
for (i=0 ; i<M3_RCHANS ; i++) {
if (pcm_addchan(dev, PCMDIR_REC, &m3_rch_class, sc)) {
device_printf(dev, "pcm_addchan (rec) error\n");
goto bad;
}
}
snprintf(status, SND_STATUSLEN, "at %s 0x%lx irq %ld",
(sc->regtype == SYS_RES_IOPORT)? "io" : "memory",
rman_get_start(sc->reg), rman_get_start(sc->irq));
if (pcm_setstatus(dev, status)) {
device_printf(dev, "attach: pcm_setstatus error\n");
goto bad;
}
mixer_hwvol_init(dev);
/* Create the buffer for saving the card state during suspend */
len = sizeof(u_int16_t) * (REV_B_CODE_MEMORY_LENGTH +
REV_B_DATA_MEMORY_LENGTH);
sc->savemem = (u_int16_t*)malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->savemem == NULL) {
device_printf(dev, "Failed to create suspend buffer\n");
goto bad;
}
return 0;
bad:
if (codec) {
ac97_destroy(codec);
}
if (sc->reg) {
bus_release_resource(dev, sc->regtype, sc->regid, sc->reg);
}
if (sc->ih) {
bus_teardown_intr(dev, sc->irq, sc->ih);
}
if (sc->irq) {
bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irq);
}
if (sc->parent_dmat) {
bus_dma_tag_destroy(sc->parent_dmat);
}
free(sc, M_DEVBUF);
return ENXIO;
}
static int
m3_pci_detach(device_t dev)
{
struct sc_info *sc = pcm_getdevinfo(dev);
int r;
M3_DEBUG(CALL, ("m3_pci_detach\n"));
if ((r = pcm_unregister(dev)) != 0) {
return r;
}
m3_uninit(sc); /* shutdown chip */
m3_power(sc, 3); /* power off */
bus_release_resource(dev, sc->regtype, sc->regid, sc->reg);
bus_teardown_intr(dev, sc->irq, sc->ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irq);
bus_dma_tag_destroy(sc->parent_dmat);
free(sc->savemem, M_DEVBUF);
free(sc, M_DEVBUF);
return 0;
}
static int
m3_pci_suspend(device_t dev)
{
struct sc_info *sc = pcm_getdevinfo(dev);
int i, index = 0;
M3_DEBUG(CHANGE, ("m3_pci_suspend\n"));
for (i=0 ; i<sc->pch_cnt ; i++) {
if (sc->pch[i].active) {
m3_pchan_trigger(NULL, &sc->pch[i], PCMTRIG_STOP);
}
}
for (i=0 ; i<sc->rch_cnt ; i++) {
if (sc->rch[i].active) {
m3_rchan_trigger(NULL, &sc->rch[i], PCMTRIG_STOP);
}
}
DELAY(10 * 1000); /* give things a chance to stop */
/* Disable interrupts */
m3_wr_2(sc, HOST_INT_CTRL, 0);
m3_wr_1(sc, ASSP_CONTROL_C, 0);
m3_assp_halt(sc);
/* Save the state of the ASSP */
for (i = REV_B_CODE_MEMORY_BEGIN; i <= REV_B_CODE_MEMORY_END; i++)
sc->savemem[index++] = m3_rd_assp_code(sc, i);
for (i = REV_B_DATA_MEMORY_BEGIN; i <= REV_B_DATA_MEMORY_END; i++)
sc->savemem[index++] = m3_rd_assp_data(sc, i);
/* Power down the card to D3 state */
m3_power(sc, 3);
return 0;
}
static int
m3_pci_resume(device_t dev)
{
struct sc_info *sc = pcm_getdevinfo(dev);
int i, index = 0;
u_int8_t reset_state;
M3_DEBUG(CHANGE, ("m3_pci_resume\n"));
/* Power the card back to D0 */
m3_power(sc, 0);
m3_config(sc);
reset_state = m3_assp_halt(sc);
m3_codec_reset(sc);
/* Restore the ASSP state */
for (i = REV_B_CODE_MEMORY_BEGIN; i <= REV_B_CODE_MEMORY_END; i++)
m3_wr_assp_code(sc, i, sc->savemem[index++]);
for (i = REV_B_DATA_MEMORY_BEGIN; i <= REV_B_DATA_MEMORY_END; i++)
m3_wr_assp_data(sc, i, sc->savemem[index++]);
/* Restart the DMA engine */
m3_wr_assp_data(sc, KDATA_DMA_ACTIVE, 0);
/* [m3_assp_continue] */
m3_wr_1(sc, DSP_PORT_CONTROL_REG_B, reset_state | REGB_ENABLE_RESET);
m3_amp_enable(sc);
m3_enable_ints(sc);
if (mixer_reinit(dev) == -1) {
device_printf(dev, "unable to reinitialize the mixer\n");
return ENXIO;
}
/* Turn the channels back on */
for (i=0 ; i<sc->pch_cnt ; i++) {
if (sc->pch[i].active) {
m3_pchan_trigger(NULL, &sc->pch[i], PCMTRIG_START);
}
}
for (i=0 ; i<sc->rch_cnt ; i++) {
if (sc->rch[i].active) {
m3_rchan_trigger(NULL, &sc->rch[i], PCMTRIG_START);
}
}
return 0;
}
static int
m3_pci_shutdown(device_t dev)
{
struct sc_info *sc = pcm_getdevinfo(dev);
M3_DEBUG(CALL, ("m3_pci_shutdown\n"));
m3_power(sc, 3); /* power off */
return 0;
}
static u_int8_t
m3_assp_halt(struct sc_info *sc)
{
u_int8_t data, reset_state;
data = m3_rd_1(sc, DSP_PORT_CONTROL_REG_B);
reset_state = data & ~REGB_STOP_CLOCK; /* remember for continue */
DELAY(10 * 1000);
m3_wr_1(sc, DSP_PORT_CONTROL_REG_B, reset_state & ~REGB_ENABLE_RESET);
DELAY(10 * 1000); /* necessary? */
return reset_state;
}
static void
m3_config(struct sc_info *sc)
{
u_int32_t data, hv_cfg;
int hint;
/*
* The volume buttons can be wired up via two different sets of pins.
* This presents a problem since we can't tell which way it's
* configured. Allow the user to set a hint in order to twiddle
* the proper bits.
*/
if (resource_int_value(device_get_name(sc->dev),
device_get_unit(sc->dev),
"hwvol_config", &hint) == 0)
hv_cfg = (hint > 0) ? HV_BUTTON_FROM_GD : 0;
else
hv_cfg = HV_BUTTON_FROM_GD;
data = pci_read_config(sc->dev, PCI_ALLEGRO_CONFIG, 4);
data &= ~HV_BUTTON_FROM_GD;
data |= REDUCED_DEBOUNCE | HV_CTRL_ENABLE | hv_cfg;
data |= PM_CTRL_ENABLE | CLK_DIV_BY_49 | USE_PCI_TIMING;
pci_write_config(sc->dev, PCI_ALLEGRO_CONFIG, data, 4);
m3_wr_1(sc, ASSP_CONTROL_B, RESET_ASSP);
data = pci_read_config(sc->dev, PCI_ALLEGRO_CONFIG, 4);
data &= ~INT_CLK_SELECT;
if (sc->which == ESS_MAESTRO3) {
data &= ~INT_CLK_MULT_ENABLE;
data |= INT_CLK_SRC_NOT_PCI;
}
data &= ~(CLK_MULT_MODE_SELECT | CLK_MULT_MODE_SELECT_2);
pci_write_config(sc->dev, PCI_ALLEGRO_CONFIG, data, 4);
if (sc->which == ESS_ALLEGRO_1) {
data = pci_read_config(sc->dev, PCI_USER_CONFIG, 4);
data |= IN_CLK_12MHZ_SELECT;
pci_write_config(sc->dev, PCI_USER_CONFIG, data, 4);
}
data = m3_rd_1(sc, ASSP_CONTROL_A);
data &= ~(DSP_CLK_36MHZ_SELECT | ASSP_CLK_49MHZ_SELECT);
data |= ASSP_CLK_49MHZ_SELECT; /*XXX assumes 49MHZ dsp XXX*/
data |= ASSP_0_WS_ENABLE;
m3_wr_1(sc, ASSP_CONTROL_A, data);
m3_wr_1(sc, ASSP_CONTROL_B, RUN_ASSP);
}
static void
m3_enable_ints(struct sc_info *sc)
{
u_int8_t data;
m3_wr_2(sc, HOST_INT_CTRL, ASSP_INT_ENABLE | HV_INT_ENABLE);
data = m3_rd_1(sc, ASSP_CONTROL_C);
m3_wr_1(sc, ASSP_CONTROL_C, data | ASSP_HOST_INT_ENABLE);
}
static void
m3_amp_enable(struct sc_info *sc)
{
u_int32_t gpo, polarity_port, polarity;
u_int16_t data;
switch (sc->which) {
case ESS_ALLEGRO_1:
polarity_port = 0x1800;
break;
case ESS_MAESTRO3:
polarity_port = 0x1100;
break;
default:
panic("bad sc->which");
}
gpo = (polarity_port >> 8) & 0x0f;
polarity = polarity_port >> 12;
polarity = !polarity; /* enable */
polarity = polarity << gpo;
gpo = 1 << gpo;
m3_wr_2(sc, GPIO_MASK, ~gpo);
data = m3_rd_2(sc, GPIO_DIRECTION);
m3_wr_2(sc, GPIO_DIRECTION, data | gpo);
data = GPO_SECONDARY_AC97 | GPO_PRIMARY_AC97 | polarity;
m3_wr_2(sc, GPIO_DATA, data);
m3_wr_2(sc, GPIO_MASK, ~0);
}
static void
m3_codec_reset(struct sc_info *sc)
{
u_int16_t data, dir;
int retry = 0;
do {
data = m3_rd_2(sc, GPIO_DIRECTION);
dir = data | 0x10; /* assuming pci bus master? */
/* [[remote_codec_config]] */
data = m3_rd_2(sc, RING_BUS_CTRL_B);
m3_wr_2(sc, RING_BUS_CTRL_B, data & ~SECOND_CODEC_ID_MASK);
data = m3_rd_2(sc, SDO_OUT_DEST_CTRL);
m3_wr_2(sc, SDO_OUT_DEST_CTRL, data & ~COMMAND_ADDR_OUT);
data = m3_rd_2(sc, SDO_IN_DEST_CTRL);
m3_wr_2(sc, SDO_IN_DEST_CTRL, data & ~STATUS_ADDR_IN);
m3_wr_2(sc, RING_BUS_CTRL_A, IO_SRAM_ENABLE);
DELAY(20);
m3_wr_2(sc, GPIO_DIRECTION, dir & ~GPO_PRIMARY_AC97);
m3_wr_2(sc, GPIO_MASK, ~GPO_PRIMARY_AC97);
m3_wr_2(sc, GPIO_DATA, 0);
m3_wr_2(sc, GPIO_DIRECTION, dir | GPO_PRIMARY_AC97);
DELAY(sc->delay1 * 1000); /*delay1 (ALLEGRO:50, MAESTRO3:20)*/
m3_wr_2(sc, GPIO_DATA, GPO_PRIMARY_AC97);
DELAY(5);
m3_wr_2(sc, RING_BUS_CTRL_A, IO_SRAM_ENABLE |
SERIAL_AC_LINK_ENABLE);
m3_wr_2(sc, GPIO_MASK, ~0);
DELAY(sc->delay2 * 1000); /*delay2 (ALLEGRO:800, MAESTRO3:500)*/
/* [[try read vendor]] */
data = m3_rdcd(NULL, sc, 0x7c);
if ((data == 0) || (data == 0xffff)) {
retry++;
if (retry > 3) {
device_printf(sc->dev, "Codec reset failed\n");
break;
}
device_printf(sc->dev, "Codec reset retry\n");
} else retry = 0;
} while (retry);
}
static device_method_t m3_methods[] = {
DEVMETHOD(device_probe, m3_pci_probe),
DEVMETHOD(device_attach, m3_pci_attach),
DEVMETHOD(device_detach, m3_pci_detach),
DEVMETHOD(device_suspend, m3_pci_suspend),
DEVMETHOD(device_resume, m3_pci_resume),
DEVMETHOD(device_shutdown, m3_pci_shutdown),
{ 0, 0 }
};
static driver_t m3_driver = {
"pcm",
m3_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_maestro3, pci, m3_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(snd_maestro3, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER);
MODULE_VERSION(snd_maestro3, 1);