njl 6d63884eb3 Add support for probing EST settings from ACPI. This should handle more
modern CPUs that have multiple VID#s that aren't detectable via public
methods.  We use the control value from acpi_perf as the id16 for setting
a given frequency.
2005-03-21 06:43:25 +00:00

881 lines
26 KiB
C

/*-
* Copyright (c) 2004 Colin Percival
* Copyright (c) 2005 Nate Lawson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted providing that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include "cpufreq_if.h"
#include <machine/md_var.h>
/* Status/control registers (from the IA-32 System Programming Guide). */
#define MSR_PERF_STATUS 0x198
#define MSR_PERF_CTL 0x199
/* Register and bit for enabling SpeedStep. */
#define MSR_MISC_ENABLE 0x1a0
#define MSR_SS_ENABLE (1<<16)
/* Frequency and MSR control values. */
typedef struct {
uint16_t freq;
uint16_t volts;
uint16_t id16;
int power;
} freq_info;
/* Identifying characteristics of a processor and supported frequencies. */
typedef struct {
const char *vendor;
uint32_t id32;
uint32_t bus_clk;
freq_info *freqtab;
} cpu_info;
struct est_softc {
device_t dev;
int acpi_settings;
freq_info *freq_list;
};
/* Convert MHz and mV into IDs for passing to the MSR. */
#define ID16(MHz, mV, bus_clk) \
(((MHz / bus_clk) << 8) | ((mV ? mV - 700 : 0) >> 4))
#define ID32(MHz_hi, mV_hi, MHz_lo, mV_lo, bus_clk) \
((ID16(MHz_lo, mV_lo, bus_clk) << 16) | (ID16(MHz_hi, mV_hi, bus_clk)))
/* Format for storing IDs in our table. */
#define FREQ_INFO(MHz, mV, bus_clk) \
{ MHz, mV, ID16(MHz, mV, bus_clk), CPUFREQ_VAL_UNKNOWN }
#define INTEL(tab, zhi, vhi, zlo, vlo, bus_clk) \
{ GenuineIntel, ID32(zhi, vhi, zlo, vlo, bus_clk), bus_clk, tab }
const char GenuineIntel[] = "GenuineIntel";
/* Default bus clock value for Centrino processors. */
#define INTEL_BUS_CLK 100
/* XXX Update this if new CPUs have more settings. */
#define EST_MAX_SETTINGS 10
CTASSERT(EST_MAX_SETTINGS <= MAX_SETTINGS);
/* Estimate in microseconds of latency for performing a transition. */
#define EST_TRANS_LAT 10
/*
* Frequency (MHz) and voltage (mV) settings. Data from the
* Intel Pentium M Processor Datasheet (Order Number 252612), Table 5.
*
* Dothan processors have multiple VID#s with different settings for
* each VID#. Since we can't uniquely identify this info
* without undisclosed methods from Intel, we can't support newer
* processors with this table method. If ACPI Px states are supported,
* we get info from them.
*/
static freq_info PM17_130[] = {
/* 130nm 1.70GHz Pentium M */
FREQ_INFO(1700, 1484, INTEL_BUS_CLK),
FREQ_INFO(1400, 1308, INTEL_BUS_CLK),
FREQ_INFO(1200, 1228, INTEL_BUS_CLK),
FREQ_INFO(1000, 1116, INTEL_BUS_CLK),
FREQ_INFO( 800, 1004, INTEL_BUS_CLK),
FREQ_INFO( 600, 956, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM16_130[] = {
/* 130nm 1.60GHz Pentium M */
FREQ_INFO(1600, 1484, INTEL_BUS_CLK),
FREQ_INFO(1400, 1420, INTEL_BUS_CLK),
FREQ_INFO(1200, 1276, INTEL_BUS_CLK),
FREQ_INFO(1000, 1164, INTEL_BUS_CLK),
FREQ_INFO( 800, 1036, INTEL_BUS_CLK),
FREQ_INFO( 600, 956, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM15_130[] = {
/* 130nm 1.50GHz Pentium M */
FREQ_INFO(1500, 1484, INTEL_BUS_CLK),
FREQ_INFO(1400, 1452, INTEL_BUS_CLK),
FREQ_INFO(1200, 1356, INTEL_BUS_CLK),
FREQ_INFO(1000, 1228, INTEL_BUS_CLK),
FREQ_INFO( 800, 1116, INTEL_BUS_CLK),
FREQ_INFO( 600, 956, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM14_130[] = {
/* 130nm 1.40GHz Pentium M */
FREQ_INFO(1400, 1484, INTEL_BUS_CLK),
FREQ_INFO(1200, 1436, INTEL_BUS_CLK),
FREQ_INFO(1000, 1308, INTEL_BUS_CLK),
FREQ_INFO( 800, 1180, INTEL_BUS_CLK),
FREQ_INFO( 600, 956, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM13_130[] = {
/* 130nm 1.30GHz Pentium M */
FREQ_INFO(1300, 1388, INTEL_BUS_CLK),
FREQ_INFO(1200, 1356, INTEL_BUS_CLK),
FREQ_INFO(1000, 1292, INTEL_BUS_CLK),
FREQ_INFO( 800, 1260, INTEL_BUS_CLK),
FREQ_INFO( 600, 956, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM13_LV_130[] = {
/* 130nm 1.30GHz Low Voltage Pentium M */
FREQ_INFO(1300, 1180, INTEL_BUS_CLK),
FREQ_INFO(1200, 1164, INTEL_BUS_CLK),
FREQ_INFO(1100, 1100, INTEL_BUS_CLK),
FREQ_INFO(1000, 1020, INTEL_BUS_CLK),
FREQ_INFO( 900, 1004, INTEL_BUS_CLK),
FREQ_INFO( 800, 988, INTEL_BUS_CLK),
FREQ_INFO( 600, 956, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM12_LV_130[] = {
/* 130 nm 1.20GHz Low Voltage Pentium M */
FREQ_INFO(1200, 1180, INTEL_BUS_CLK),
FREQ_INFO(1100, 1164, INTEL_BUS_CLK),
FREQ_INFO(1000, 1100, INTEL_BUS_CLK),
FREQ_INFO( 900, 1020, INTEL_BUS_CLK),
FREQ_INFO( 800, 1004, INTEL_BUS_CLK),
FREQ_INFO( 600, 956, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM11_LV_130[] = {
/* 130 nm 1.10GHz Low Voltage Pentium M */
FREQ_INFO(1100, 1180, INTEL_BUS_CLK),
FREQ_INFO(1000, 1164, INTEL_BUS_CLK),
FREQ_INFO( 900, 1100, INTEL_BUS_CLK),
FREQ_INFO( 800, 1020, INTEL_BUS_CLK),
FREQ_INFO( 600, 956, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM11_ULV_130[] = {
/* 130 nm 1.10GHz Ultra Low Voltage Pentium M */
FREQ_INFO(1100, 1004, INTEL_BUS_CLK),
FREQ_INFO(1000, 988, INTEL_BUS_CLK),
FREQ_INFO( 900, 972, INTEL_BUS_CLK),
FREQ_INFO( 800, 956, INTEL_BUS_CLK),
FREQ_INFO( 600, 844, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM10_ULV_130[] = {
/* 130 nm 1.00GHz Ultra Low Voltage Pentium M */
FREQ_INFO(1000, 1004, INTEL_BUS_CLK),
FREQ_INFO( 900, 988, INTEL_BUS_CLK),
FREQ_INFO( 800, 972, INTEL_BUS_CLK),
FREQ_INFO( 600, 844, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
/*
* Data from "Intel Pentium M Processor on 90nm Process with
* 2-MB L2 Cache Datasheet", Order Number 302189, Table 5.
*/
static freq_info PM_765A_90[] = {
/* 90 nm 2.10GHz Pentium M, VID #A */
FREQ_INFO(2100, 1340, INTEL_BUS_CLK),
FREQ_INFO(1800, 1276, INTEL_BUS_CLK),
FREQ_INFO(1600, 1228, INTEL_BUS_CLK),
FREQ_INFO(1400, 1180, INTEL_BUS_CLK),
FREQ_INFO(1200, 1132, INTEL_BUS_CLK),
FREQ_INFO(1000, 1084, INTEL_BUS_CLK),
FREQ_INFO( 800, 1036, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_765B_90[] = {
/* 90 nm 2.10GHz Pentium M, VID #B */
FREQ_INFO(2100, 1324, INTEL_BUS_CLK),
FREQ_INFO(1800, 1260, INTEL_BUS_CLK),
FREQ_INFO(1600, 1212, INTEL_BUS_CLK),
FREQ_INFO(1400, 1180, INTEL_BUS_CLK),
FREQ_INFO(1200, 1132, INTEL_BUS_CLK),
FREQ_INFO(1000, 1084, INTEL_BUS_CLK),
FREQ_INFO( 800, 1036, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_765C_90[] = {
/* 90 nm 2.10GHz Pentium M, VID #C */
FREQ_INFO(2100, 1308, INTEL_BUS_CLK),
FREQ_INFO(1800, 1244, INTEL_BUS_CLK),
FREQ_INFO(1600, 1212, INTEL_BUS_CLK),
FREQ_INFO(1400, 1164, INTEL_BUS_CLK),
FREQ_INFO(1200, 1116, INTEL_BUS_CLK),
FREQ_INFO(1000, 1084, INTEL_BUS_CLK),
FREQ_INFO( 800, 1036, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_765E_90[] = {
/* 90 nm 2.10GHz Pentium M, VID #E */
FREQ_INFO(2100, 1356, INTEL_BUS_CLK),
FREQ_INFO(1800, 1292, INTEL_BUS_CLK),
FREQ_INFO(1600, 1244, INTEL_BUS_CLK),
FREQ_INFO(1400, 1196, INTEL_BUS_CLK),
FREQ_INFO(1200, 1148, INTEL_BUS_CLK),
FREQ_INFO(1000, 1100, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_755A_90[] = {
/* 90 nm 2.00GHz Pentium M, VID #A */
FREQ_INFO(2000, 1340, INTEL_BUS_CLK),
FREQ_INFO(1800, 1292, INTEL_BUS_CLK),
FREQ_INFO(1600, 1244, INTEL_BUS_CLK),
FREQ_INFO(1400, 1196, INTEL_BUS_CLK),
FREQ_INFO(1200, 1148, INTEL_BUS_CLK),
FREQ_INFO(1000, 1100, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_755B_90[] = {
/* 90 nm 2.00GHz Pentium M, VID #B */
FREQ_INFO(2000, 1324, INTEL_BUS_CLK),
FREQ_INFO(1800, 1276, INTEL_BUS_CLK),
FREQ_INFO(1600, 1228, INTEL_BUS_CLK),
FREQ_INFO(1400, 1180, INTEL_BUS_CLK),
FREQ_INFO(1200, 1132, INTEL_BUS_CLK),
FREQ_INFO(1000, 1084, INTEL_BUS_CLK),
FREQ_INFO( 800, 1036, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_755C_90[] = {
/* 90 nm 2.00GHz Pentium M, VID #C */
FREQ_INFO(2000, 1308, INTEL_BUS_CLK),
FREQ_INFO(1800, 1276, INTEL_BUS_CLK),
FREQ_INFO(1600, 1228, INTEL_BUS_CLK),
FREQ_INFO(1400, 1180, INTEL_BUS_CLK),
FREQ_INFO(1200, 1132, INTEL_BUS_CLK),
FREQ_INFO(1000, 1084, INTEL_BUS_CLK),
FREQ_INFO( 800, 1036, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_755D_90[] = {
/* 90 nm 2.00GHz Pentium M, VID #D */
FREQ_INFO(2000, 1276, INTEL_BUS_CLK),
FREQ_INFO(1800, 1244, INTEL_BUS_CLK),
FREQ_INFO(1600, 1196, INTEL_BUS_CLK),
FREQ_INFO(1400, 1164, INTEL_BUS_CLK),
FREQ_INFO(1200, 1116, INTEL_BUS_CLK),
FREQ_INFO(1000, 1084, INTEL_BUS_CLK),
FREQ_INFO( 800, 1036, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_745A_90[] = {
/* 90 nm 1.80GHz Pentium M, VID #A */
FREQ_INFO(1800, 1340, INTEL_BUS_CLK),
FREQ_INFO(1600, 1292, INTEL_BUS_CLK),
FREQ_INFO(1400, 1228, INTEL_BUS_CLK),
FREQ_INFO(1200, 1164, INTEL_BUS_CLK),
FREQ_INFO(1000, 1116, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_745B_90[] = {
/* 90 nm 1.80GHz Pentium M, VID #B */
FREQ_INFO(1800, 1324, INTEL_BUS_CLK),
FREQ_INFO(1600, 1276, INTEL_BUS_CLK),
FREQ_INFO(1400, 1212, INTEL_BUS_CLK),
FREQ_INFO(1200, 1164, INTEL_BUS_CLK),
FREQ_INFO(1000, 1116, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_745C_90[] = {
/* 90 nm 1.80GHz Pentium M, VID #C */
FREQ_INFO(1800, 1308, INTEL_BUS_CLK),
FREQ_INFO(1600, 1260, INTEL_BUS_CLK),
FREQ_INFO(1400, 1212, INTEL_BUS_CLK),
FREQ_INFO(1200, 1148, INTEL_BUS_CLK),
FREQ_INFO(1000, 1100, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_745D_90[] = {
/* 90 nm 1.80GHz Pentium M, VID #D */
FREQ_INFO(1800, 1276, INTEL_BUS_CLK),
FREQ_INFO(1600, 1228, INTEL_BUS_CLK),
FREQ_INFO(1400, 1180, INTEL_BUS_CLK),
FREQ_INFO(1200, 1132, INTEL_BUS_CLK),
FREQ_INFO(1000, 1084, INTEL_BUS_CLK),
FREQ_INFO( 800, 1036, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_735A_90[] = {
/* 90 nm 1.70GHz Pentium M, VID #A */
FREQ_INFO(1700, 1340, INTEL_BUS_CLK),
FREQ_INFO(1400, 1244, INTEL_BUS_CLK),
FREQ_INFO(1200, 1180, INTEL_BUS_CLK),
FREQ_INFO(1000, 1116, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_735B_90[] = {
/* 90 nm 1.70GHz Pentium M, VID #B */
FREQ_INFO(1700, 1324, INTEL_BUS_CLK),
FREQ_INFO(1400, 1244, INTEL_BUS_CLK),
FREQ_INFO(1200, 1180, INTEL_BUS_CLK),
FREQ_INFO(1000, 1116, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_735C_90[] = {
/* 90 nm 1.70GHz Pentium M, VID #C */
FREQ_INFO(1700, 1308, INTEL_BUS_CLK),
FREQ_INFO(1400, 1228, INTEL_BUS_CLK),
FREQ_INFO(1200, 1164, INTEL_BUS_CLK),
FREQ_INFO(1000, 1116, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_735D_90[] = {
/* 90 nm 1.70GHz Pentium M, VID #D */
FREQ_INFO(1700, 1276, INTEL_BUS_CLK),
FREQ_INFO(1400, 1212, INTEL_BUS_CLK),
FREQ_INFO(1200, 1148, INTEL_BUS_CLK),
FREQ_INFO(1000, 1100, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_725A_90[] = {
/* 90 nm 1.60GHz Pentium M, VID #A */
FREQ_INFO(1600, 1340, INTEL_BUS_CLK),
FREQ_INFO(1400, 1276, INTEL_BUS_CLK),
FREQ_INFO(1200, 1212, INTEL_BUS_CLK),
FREQ_INFO(1000, 1132, INTEL_BUS_CLK),
FREQ_INFO( 800, 1068, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_725B_90[] = {
/* 90 nm 1.60GHz Pentium M, VID #B */
FREQ_INFO(1600, 1324, INTEL_BUS_CLK),
FREQ_INFO(1400, 1260, INTEL_BUS_CLK),
FREQ_INFO(1200, 1196, INTEL_BUS_CLK),
FREQ_INFO(1000, 1132, INTEL_BUS_CLK),
FREQ_INFO( 800, 1068, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_725C_90[] = {
/* 90 nm 1.60GHz Pentium M, VID #C */
FREQ_INFO(1600, 1308, INTEL_BUS_CLK),
FREQ_INFO(1400, 1244, INTEL_BUS_CLK),
FREQ_INFO(1200, 1180, INTEL_BUS_CLK),
FREQ_INFO(1000, 1116, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_725D_90[] = {
/* 90 nm 1.60GHz Pentium M, VID #D */
FREQ_INFO(1600, 1276, INTEL_BUS_CLK),
FREQ_INFO(1400, 1228, INTEL_BUS_CLK),
FREQ_INFO(1200, 1164, INTEL_BUS_CLK),
FREQ_INFO(1000, 1116, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_715A_90[] = {
/* 90 nm 1.50GHz Pentium M, VID #A */
FREQ_INFO(1500, 1340, INTEL_BUS_CLK),
FREQ_INFO(1200, 1228, INTEL_BUS_CLK),
FREQ_INFO(1000, 1148, INTEL_BUS_CLK),
FREQ_INFO( 800, 1068, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_715B_90[] = {
/* 90 nm 1.50GHz Pentium M, VID #B */
FREQ_INFO(1500, 1324, INTEL_BUS_CLK),
FREQ_INFO(1200, 1212, INTEL_BUS_CLK),
FREQ_INFO(1000, 1148, INTEL_BUS_CLK),
FREQ_INFO( 800, 1068, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_715C_90[] = {
/* 90 nm 1.50GHz Pentium M, VID #C */
FREQ_INFO(1500, 1308, INTEL_BUS_CLK),
FREQ_INFO(1200, 1212, INTEL_BUS_CLK),
FREQ_INFO(1000, 1132, INTEL_BUS_CLK),
FREQ_INFO( 800, 1068, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_715D_90[] = {
/* 90 nm 1.50GHz Pentium M, VID #D */
FREQ_INFO(1500, 1276, INTEL_BUS_CLK),
FREQ_INFO(1200, 1180, INTEL_BUS_CLK),
FREQ_INFO(1000, 1116, INTEL_BUS_CLK),
FREQ_INFO( 800, 1052, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_738_90[] = {
/* 90 nm 1.40GHz Low Voltage Pentium M */
FREQ_INFO(1400, 1116, INTEL_BUS_CLK),
FREQ_INFO(1300, 1116, INTEL_BUS_CLK),
FREQ_INFO(1200, 1100, INTEL_BUS_CLK),
FREQ_INFO(1100, 1068, INTEL_BUS_CLK),
FREQ_INFO(1000, 1052, INTEL_BUS_CLK),
FREQ_INFO( 900, 1036, INTEL_BUS_CLK),
FREQ_INFO( 800, 1020, INTEL_BUS_CLK),
FREQ_INFO( 600, 988, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_733_90[] = {
/* 90 nm 1.10GHz Ultra Low Voltage Pentium M */
FREQ_INFO(1100, 940, INTEL_BUS_CLK),
FREQ_INFO(1000, 924, INTEL_BUS_CLK),
FREQ_INFO( 900, 892, INTEL_BUS_CLK),
FREQ_INFO( 800, 876, INTEL_BUS_CLK),
FREQ_INFO( 600, 812, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static freq_info PM_723_90[] = {
/* 90 nm 1.00GHz Ultra Low Voltage Pentium M */
FREQ_INFO(1000, 940, INTEL_BUS_CLK),
FREQ_INFO( 900, 908, INTEL_BUS_CLK),
FREQ_INFO( 800, 876, INTEL_BUS_CLK),
FREQ_INFO( 600, 812, INTEL_BUS_CLK),
FREQ_INFO( 0, 0, 1),
};
static cpu_info ESTprocs[] = {
INTEL(PM17_130, 1700, 1484, 600, 956, INTEL_BUS_CLK),
INTEL(PM16_130, 1600, 1484, 600, 956, INTEL_BUS_CLK),
INTEL(PM15_130, 1500, 1484, 600, 956, INTEL_BUS_CLK),
INTEL(PM14_130, 1400, 1484, 600, 956, INTEL_BUS_CLK),
INTEL(PM13_130, 1300, 1388, 600, 956, INTEL_BUS_CLK),
INTEL(PM13_LV_130, 1300, 1180, 600, 956, INTEL_BUS_CLK),
INTEL(PM12_LV_130, 1200, 1180, 600, 956, INTEL_BUS_CLK),
INTEL(PM11_LV_130, 1100, 1180, 600, 956, INTEL_BUS_CLK),
INTEL(PM11_ULV_130, 1100, 1004, 600, 844, INTEL_BUS_CLK),
INTEL(PM10_ULV_130, 1000, 1004, 600, 844, INTEL_BUS_CLK),
INTEL(PM_765A_90, 2100, 1340, 600, 988, INTEL_BUS_CLK),
INTEL(PM_765B_90, 2100, 1324, 600, 988, INTEL_BUS_CLK),
INTEL(PM_765C_90, 2100, 1308, 600, 988, INTEL_BUS_CLK),
INTEL(PM_765E_90, 2100, 1356, 600, 988, INTEL_BUS_CLK),
INTEL(PM_755A_90, 2000, 1340, 600, 988, INTEL_BUS_CLK),
INTEL(PM_755B_90, 2000, 1324, 600, 988, INTEL_BUS_CLK),
INTEL(PM_755C_90, 2000, 1308, 600, 988, INTEL_BUS_CLK),
INTEL(PM_755D_90, 2000, 1276, 600, 988, INTEL_BUS_CLK),
INTEL(PM_745A_90, 1800, 1340, 600, 988, INTEL_BUS_CLK),
INTEL(PM_745B_90, 1800, 1324, 600, 988, INTEL_BUS_CLK),
INTEL(PM_745C_90, 1800, 1308, 600, 988, INTEL_BUS_CLK),
INTEL(PM_745D_90, 1800, 1276, 600, 988, INTEL_BUS_CLK),
INTEL(PM_735A_90, 1700, 1340, 600, 988, INTEL_BUS_CLK),
INTEL(PM_735B_90, 1700, 1324, 600, 988, INTEL_BUS_CLK),
INTEL(PM_735C_90, 1700, 1308, 600, 988, INTEL_BUS_CLK),
INTEL(PM_735D_90, 1700, 1276, 600, 988, INTEL_BUS_CLK),
INTEL(PM_725A_90, 1600, 1340, 600, 988, INTEL_BUS_CLK),
INTEL(PM_725B_90, 1600, 1324, 600, 988, INTEL_BUS_CLK),
INTEL(PM_725C_90, 1600, 1308, 600, 988, INTEL_BUS_CLK),
INTEL(PM_725D_90, 1600, 1276, 600, 988, INTEL_BUS_CLK),
INTEL(PM_715A_90, 1500, 1340, 600, 988, INTEL_BUS_CLK),
INTEL(PM_715B_90, 1500, 1324, 600, 988, INTEL_BUS_CLK),
INTEL(PM_715C_90, 1500, 1308, 600, 988, INTEL_BUS_CLK),
INTEL(PM_715D_90, 1500, 1276, 600, 988, INTEL_BUS_CLK),
INTEL(PM_738_90, 1400, 1116, 600, 988, INTEL_BUS_CLK),
INTEL(PM_733_90, 1100, 940, 600, 812, INTEL_BUS_CLK),
INTEL(PM_723_90, 1000, 940, 600, 812, INTEL_BUS_CLK),
{ NULL, 0, 0, NULL },
};
static void est_identify(driver_t *driver, device_t parent);
static int est_probe(device_t parent);
static int est_attach(device_t parent);
static int est_detach(device_t parent);
static int est_get_info(device_t dev);
static int est_acpi_info(device_t dev, freq_info **freqs);
static int est_table_info(device_t dev, uint64_t msr, uint32_t bus_clk,
freq_info **freqs);
static freq_info *est_get_current(freq_info *freq_list);
static int est_settings(device_t dev, struct cf_setting *sets, int *count);
static int est_set(device_t dev, const struct cf_setting *set);
static int est_get(device_t dev, struct cf_setting *set);
static int est_type(device_t dev, int *type);
static device_method_t est_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, est_identify),
DEVMETHOD(device_probe, est_probe),
DEVMETHOD(device_attach, est_attach),
DEVMETHOD(device_detach, est_detach),
/* cpufreq interface */
DEVMETHOD(cpufreq_drv_set, est_set),
DEVMETHOD(cpufreq_drv_get, est_get),
DEVMETHOD(cpufreq_drv_type, est_type),
DEVMETHOD(cpufreq_drv_settings, est_settings),
{0, 0}
};
static driver_t est_driver = {
"est",
est_methods,
sizeof(struct est_softc),
};
static devclass_t est_devclass;
DRIVER_MODULE(est, cpu, est_driver, est_devclass, 0, 0);
static void
est_identify(driver_t *driver, device_t parent)
{
u_int p[4];
/* Make sure we're not being doubly invoked. */
if (device_find_child(parent, "est", -1) != NULL)
return;
/* Check that CPUID is supported and the vendor is Intel.*/
if (cpu_high == 0 || strcmp(cpu_vendor, GenuineIntel) != 0)
return;
/* Read capability bits and check if the CPU supports EST. */
do_cpuid(1, p);
if ((p[2] & 0x80) == 0)
return;
/*
* We add a child for each CPU since settings must be performed
* on each CPU in the SMP case.
*/
if (BUS_ADD_CHILD(parent, 0, "est", -1) == NULL)
device_printf(parent, "add est child failed\n");
}
static int
est_probe(device_t dev)
{
device_t perf_dev;
uint64_t msr;
int error, type;
if (resource_disabled("est", 0))
return (ENXIO);
/*
* If the ACPI perf driver has attached and is not just offering
* info, let it manage things.
*/
perf_dev = device_find_child(device_get_parent(dev), "acpi_perf", -1);
if (perf_dev && device_is_attached(perf_dev)) {
error = CPUFREQ_DRV_TYPE(perf_dev, &type);
if (error == 0 && (type & CPUFREQ_FLAG_INFO_ONLY) == 0)
return (ENXIO);
}
/* Attempt to enable SpeedStep if not currently enabled. */
msr = rdmsr(MSR_MISC_ENABLE);
if ((msr & MSR_SS_ENABLE) == 0) {
wrmsr(MSR_MISC_ENABLE, msr | MSR_SS_ENABLE);
if (bootverbose)
device_printf(dev, "enabling SpeedStep\n");
/* Check if the enable failed. */
msr = rdmsr(MSR_MISC_ENABLE);
if ((msr & MSR_SS_ENABLE) == 0) {
device_printf(dev, "failed to enable SpeedStep\n");
return (ENXIO);
}
}
device_set_desc(dev, "Enhanced SpeedStep Frequency Control");
return (0);
}
static int
est_attach(device_t dev)
{
struct est_softc *sc;
sc = device_get_softc(dev);
sc->dev = dev;
/* Check CPU for supported settings. */
if (est_get_info(dev))
return (ENXIO);
cpufreq_register(dev);
return (0);
}
static int
est_detach(device_t dev)
{
struct est_softc *sc;
sc = device_get_softc(dev);
if (sc->acpi_settings)
free(sc->freq_list, M_DEVBUF);
return (ENXIO);
}
/*
* Probe for supported CPU settings. First, check our static table of
* settings. If no match, try using the ones offered by acpi_perf
* (i.e., _PSS). We use ACPI second because some systems (IBM R/T40
* series) export both legacy SMM IO-based access and direct MSR access
* but the direct access specifies invalid values for _PSS.
*/
static int
est_get_info(device_t dev)
{
struct est_softc *sc;
uint64_t msr;
int error;
sc = device_get_softc(dev);
msr = rdmsr(MSR_PERF_STATUS);
error = est_table_info(dev, msr, INTEL_BUS_CLK, &sc->freq_list);
if (error)
error = est_acpi_info(dev, &sc->freq_list);
if (error) {
printf(
"est: CPU supports Enhanced Speedstep, but is not recognized.\n"
"est: Please update driver or contact the maintainer.\n"
"est: cpu_vendor %s, msr %0jx, bus_clk, %x\n",
cpu_vendor, msr, INTEL_BUS_CLK);
return (ENXIO);
}
return (0);
}
static int
est_acpi_info(device_t dev, freq_info **freqs)
{
struct est_softc *sc;
struct cf_setting *sets;
freq_info *table;
device_t perf_dev;
int count, error, i;
perf_dev = device_find_child(device_get_parent(dev), "acpi_perf", -1);
if (perf_dev == NULL || !device_is_attached(perf_dev))
return (ENXIO);
/* Fetch settings from acpi_perf. */
sc = device_get_softc(dev);
table = NULL;
sets = malloc(MAX_SETTINGS * sizeof(*sets), M_TEMP, M_NOWAIT);
if (sets == NULL)
return (ENOMEM);
error = CPUFREQ_DRV_SETTINGS(perf_dev, sets, &count);
if (error)
goto out;
/* Parse settings into our local table format. */
table = malloc(count * sizeof(freq_info), M_DEVBUF, M_NOWAIT);
if (table == NULL) {
error = ENOMEM;
goto out;
}
for (i = 0; i < count; i++) {
/*
* XXX Figure out validity checks for id16. At least some
* systems support both SMM access via SystemIO and the
* direct MSR access but only report the SystemIO values
* via _PSS. However, since we don't know what should be
* valid for this processor, it's hard to know what to check.
*/
table[i].freq = sets[i].freq;
table[i].volts = sets[i].volts;
table[i].id16 = sets[i].spec[0];
table[i].power = sets[i].power;
}
sc->acpi_settings = TRUE;
*freqs = table;
error = 0;
out:
if (sets)
free(sets, M_TEMP);
if (error && table)
free(table, M_DEVBUF);
return (error);
}
static int
est_table_info(device_t dev, uint64_t msr, uint32_t bus_clk, freq_info **freqs)
{
cpu_info *p;
uint32_t id;
/* Find a table which matches (vendor, id, bus_clk). */
id = msr >> 32;
for (p = ESTprocs; p->id32 != 0; p++) {
if (strcmp(p->vendor, cpu_vendor) == 0 && p->id32 == id &&
p->bus_clk == bus_clk)
break;
}
if (p->id32 == 0)
return (EOPNOTSUPP);
/* Make sure the current setpoint is valid. */
if (est_get_current(p->freqtab) == NULL) {
device_printf(dev, "current setting not found in table\n");
return (EOPNOTSUPP);
}
*freqs = p->freqtab;
return (0);
}
static freq_info *
est_get_current(freq_info *freq_list)
{
freq_info *f;
int i;
uint16_t id16;
/*
* Try a few times to get a valid value. Sometimes, if the CPU
* is in the middle of an asynchronous transition (i.e., P4TCC),
* we get a temporary invalid result.
*/
for (i = 0; i < 5; i++) {
id16 = rdmsr(MSR_PERF_STATUS) & 0xffff;
for (f = freq_list; f->id16 != 0; f++) {
if (f->id16 == id16)
return (f);
}
DELAY(100);
}
return (NULL);
}
static int
est_settings(device_t dev, struct cf_setting *sets, int *count)
{
struct est_softc *sc;
freq_info *f;
int i;
sc = device_get_softc(dev);
if (*count < EST_MAX_SETTINGS)
return (E2BIG);
i = 0;
for (f = sc->freq_list; f->freq != 0; f++, i++) {
sets[i].freq = f->freq;
sets[i].volts = f->volts;
sets[i].power = f->power;
sets[i].lat = EST_TRANS_LAT;
sets[i].dev = dev;
}
*count = i;
return (0);
}
static int
est_set(device_t dev, const struct cf_setting *set)
{
struct est_softc *sc;
freq_info *f;
uint64_t msr;
/* Find the setting matching the requested one. */
sc = device_get_softc(dev);
for (f = sc->freq_list; f->freq != 0; f++) {
if (f->freq == set->freq)
break;
}
if (f->freq == 0)
return (EINVAL);
/* Read the current register, mask out the old, set the new id. */
msr = rdmsr(MSR_PERF_CTL);
msr = (msr & ~0xffff) | f->id16;
wrmsr(MSR_PERF_CTL, msr);
/* Wait a short while for the new setting. XXX Is this necessary? */
DELAY(EST_TRANS_LAT);
return (0);
}
static int
est_get(device_t dev, struct cf_setting *set)
{
struct est_softc *sc;
freq_info *f;
sc = device_get_softc(dev);
f = est_get_current(sc->freq_list);
if (f == NULL)
return (ENXIO);
set->freq = f->freq;
set->volts = f->volts;
set->power = f->power;
set->lat = EST_TRANS_LAT;
set->dev = dev;
return (0);
}
static int
est_type(device_t dev, int *type)
{
if (type == NULL)
return (EINVAL);
*type = CPUFREQ_TYPE_ABSOLUTE;
return (0);
}