freebsd-skq/contrib/gcc/cp/mangle.c
Pedro F. Giffuni 5bfc7db451 gcc: Add support for Apple's Block extension
Block objects [1] are a C-level syntactic and runtime feature. They
are similar to standard C functions, but in addition to executable
code they may also contain variable bindings to automatic (stack)
or managed (heap) memory. A block can therefore maintain a set of
state (data) that it can use to impact behavior when executed.

This port is based on Apple's GCC 5646 with some bugfixes from
Apple GCC 5666.3. It has some small differences with the support
in clang, which remains the recommended compiler.

Perhaps the most notable difference is that in GCC that __block
is not actually a keyword, but a macro. There will be workaround
for this issue in a near future. Other issues can be consulted in
the clang documentation [2]

For better compatiblity with Apple's GCC and llvm-gcc some related
fixes and features from Apple have been included. Support for the
non-standard nested functions in GCC is now off by default.

No effort was made to update the ObjC support since FreeBSD doesn't
carry ObjC in the base system, but some of the code crept in and
was more difficult to remove than to adjust.

Reference:
[1]
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Blocks/Articles/00_Introduction.html
[2]
http://clang.llvm.org/compatibility.html#block-variable-initialization

Obtained from:	Apple GCC 4.2
MFC after:	3 weeks
2014-01-05 00:43:28 +00:00

2932 lines
83 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Name mangling for the 3.0 C++ ABI.
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
Written by Alex Samuel <samuel@codesourcery.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* This file implements mangling of C++ names according to the IA64
C++ ABI specification. A mangled name encodes a function or
variable's name, scope, type, and/or template arguments into a text
identifier. This identifier is used as the function's or
variable's linkage name, to preserve compatibility between C++'s
language features (templates, scoping, and overloading) and C
linkers.
Additionally, g++ uses mangled names internally. To support this,
mangling of types is allowed, even though the mangled name of a
type should not appear by itself as an exported name. Ditto for
uninstantiated templates.
The primary entry point for this module is mangle_decl, which
returns an identifier containing the mangled name for a decl.
Additional entry points are provided to build mangled names of
particular constructs when the appropriate decl for that construct
is not available. These are:
mangle_typeinfo_for_type: typeinfo data
mangle_typeinfo_string_for_type: typeinfo type name
mangle_vtbl_for_type: virtual table data
mangle_vtt_for_type: VTT data
mangle_ctor_vtbl_for_type: `C-in-B' constructor virtual table data
mangle_thunk: thunk function or entry */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "tm_p.h"
#include "cp-tree.h"
#include "real.h"
#include "obstack.h"
#include "toplev.h"
#include "varray.h"
#include "flags.h"
#include "target.h"
/* Debugging support. */
/* Define DEBUG_MANGLE to enable very verbose trace messages. */
#ifndef DEBUG_MANGLE
#define DEBUG_MANGLE 0
#endif
/* Macros for tracing the write_* functions. */
#if DEBUG_MANGLE
# define MANGLE_TRACE(FN, INPUT) \
fprintf (stderr, " %-24s: %-24s\n", (FN), (INPUT))
# define MANGLE_TRACE_TREE(FN, NODE) \
fprintf (stderr, " %-24s: %-24s (%p)\n", \
(FN), tree_code_name[TREE_CODE (NODE)], (void *) (NODE))
#else
# define MANGLE_TRACE(FN, INPUT)
# define MANGLE_TRACE_TREE(FN, NODE)
#endif
/* Nonzero if NODE is a class template-id. We can't rely on
CLASSTYPE_USE_TEMPLATE here because of tricky bugs in the parser
that hard to distinguish A<T> from A, where A<T> is the type as
instantiated outside of the template, and A is the type used
without parameters inside the template. */
#define CLASSTYPE_TEMPLATE_ID_P(NODE) \
(TYPE_LANG_SPECIFIC (NODE) != NULL \
&& (TREE_CODE (NODE) == BOUND_TEMPLATE_TEMPLATE_PARM \
|| (CLASSTYPE_TEMPLATE_INFO (NODE) != NULL \
&& (PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (NODE))))))
/* Things we only need one of. This module is not reentrant. */
typedef struct globals GTY(())
{
/* An array of the current substitution candidates, in the order
we've seen them. */
VEC(tree,gc) *substitutions;
/* The entity that is being mangled. */
tree GTY ((skip)) entity;
/* True if the mangling will be different in a future version of the
ABI. */
bool need_abi_warning;
} globals;
static GTY (()) globals G;
/* The obstack on which we build mangled names. */
static struct obstack *mangle_obstack;
/* The obstack on which we build mangled names that are not going to
be IDENTIFIER_NODEs. */
static struct obstack name_obstack;
/* The first object on the name_obstack; we use this to free memory
allocated on the name_obstack. */
static void *name_base;
/* An incomplete mangled name. There will be no NUL terminator. If
there is no incomplete mangled name, this variable is NULL. */
static char *partially_mangled_name;
/* The number of characters in the PARTIALLY_MANGLED_NAME. */
static size_t partially_mangled_name_len;
/* Indices into subst_identifiers. These are identifiers used in
special substitution rules. */
typedef enum
{
SUBID_ALLOCATOR,
SUBID_BASIC_STRING,
SUBID_CHAR_TRAITS,
SUBID_BASIC_ISTREAM,
SUBID_BASIC_OSTREAM,
SUBID_BASIC_IOSTREAM,
SUBID_MAX
}
substitution_identifier_index_t;
/* For quick substitution checks, look up these common identifiers
once only. */
static GTY(()) tree subst_identifiers[SUBID_MAX];
/* Single-letter codes for builtin integer types, defined in
<builtin-type>. These are indexed by integer_type_kind values. */
static const char
integer_type_codes[itk_none] =
{
'c', /* itk_char */
'a', /* itk_signed_char */
'h', /* itk_unsigned_char */
's', /* itk_short */
't', /* itk_unsigned_short */
'i', /* itk_int */
'j', /* itk_unsigned_int */
'l', /* itk_long */
'm', /* itk_unsigned_long */
'x', /* itk_long_long */
'y' /* itk_unsigned_long_long */
};
static int decl_is_template_id (const tree, tree* const);
/* Functions for handling substitutions. */
static inline tree canonicalize_for_substitution (tree);
static void add_substitution (tree);
static inline int is_std_substitution (const tree,
const substitution_identifier_index_t);
static inline int is_std_substitution_char (const tree,
const substitution_identifier_index_t);
static int find_substitution (tree);
static void mangle_call_offset (const tree, const tree);
/* Functions for emitting mangled representations of things. */
static void write_mangled_name (const tree, bool);
static void write_encoding (const tree);
static void write_name (tree, const int);
static void write_unscoped_name (const tree);
static void write_unscoped_template_name (const tree);
static void write_nested_name (const tree);
static void write_prefix (const tree);
static void write_template_prefix (const tree);
static void write_unqualified_name (const tree);
static void write_conversion_operator_name (const tree);
static void write_source_name (tree);
static int hwint_to_ascii (unsigned HOST_WIDE_INT, const unsigned int, char *,
const unsigned int);
static void write_number (unsigned HOST_WIDE_INT, const int,
const unsigned int);
static void write_integer_cst (const tree);
static void write_real_cst (const tree);
static void write_identifier (const char *);
static void write_special_name_constructor (const tree);
static void write_special_name_destructor (const tree);
static void write_type (tree);
static int write_CV_qualifiers_for_type (const tree);
static void write_builtin_type (tree);
static void write_function_type (const tree);
static void write_bare_function_type (const tree, const int, const tree);
static void write_method_parms (tree, const int, const tree);
static void write_class_enum_type (const tree);
static void write_template_args (tree);
static void write_expression (tree);
static void write_template_arg_literal (const tree);
static void write_template_arg (tree);
static void write_template_template_arg (const tree);
static void write_array_type (const tree);
static void write_pointer_to_member_type (const tree);
static void write_template_param (const tree);
static void write_template_template_param (const tree);
static void write_substitution (const int);
static int discriminator_for_local_entity (tree);
static int discriminator_for_string_literal (tree, tree);
static void write_discriminator (const int);
static void write_local_name (const tree, const tree, const tree);
static void dump_substitution_candidates (void);
static const char *mangle_decl_string (const tree);
/* Control functions. */
static inline void start_mangling (const tree, bool);
static inline const char *finish_mangling (const bool);
static tree mangle_special_for_type (const tree, const char *);
/* Foreign language functions. */
static void write_java_integer_type_codes (const tree);
/* Append a single character to the end of the mangled
representation. */
#define write_char(CHAR) \
obstack_1grow (mangle_obstack, (CHAR))
/* Append a sized buffer to the end of the mangled representation. */
#define write_chars(CHAR, LEN) \
obstack_grow (mangle_obstack, (CHAR), (LEN))
/* Append a NUL-terminated string to the end of the mangled
representation. */
#define write_string(STRING) \
obstack_grow (mangle_obstack, (STRING), strlen (STRING))
/* Nonzero if NODE1 and NODE2 are both TREE_LIST nodes and have the
same purpose (context, which may be a type) and value (template
decl). See write_template_prefix for more information on what this
is used for. */
#define NESTED_TEMPLATE_MATCH(NODE1, NODE2) \
(TREE_CODE (NODE1) == TREE_LIST \
&& TREE_CODE (NODE2) == TREE_LIST \
&& ((TYPE_P (TREE_PURPOSE (NODE1)) \
&& same_type_p (TREE_PURPOSE (NODE1), TREE_PURPOSE (NODE2))) \
|| TREE_PURPOSE (NODE1) == TREE_PURPOSE (NODE2)) \
&& TREE_VALUE (NODE1) == TREE_VALUE (NODE2))
/* Write out an unsigned quantity in base 10. */
#define write_unsigned_number(NUMBER) \
write_number ((NUMBER), /*unsigned_p=*/1, 10)
/* Save the current (incomplete) mangled name and release the obstack
storage holding it. This function should be used during mangling
when making a call that could result in a call to get_identifier,
as such a call will clobber the same obstack being used for
mangling. This function may not be called twice without an
intervening call to restore_partially_mangled_name. */
static void
save_partially_mangled_name (void)
{
if (mangle_obstack == &ident_hash->stack)
{
gcc_assert (!partially_mangled_name);
partially_mangled_name_len = obstack_object_size (mangle_obstack);
partially_mangled_name = XNEWVEC (char, partially_mangled_name_len);
memcpy (partially_mangled_name, obstack_base (mangle_obstack),
partially_mangled_name_len);
obstack_free (mangle_obstack, obstack_finish (mangle_obstack));
}
}
/* Restore the incomplete mangled name saved with
save_partially_mangled_name. */
static void
restore_partially_mangled_name (void)
{
if (partially_mangled_name)
{
obstack_grow (mangle_obstack, partially_mangled_name,
partially_mangled_name_len);
free (partially_mangled_name);
partially_mangled_name = NULL;
}
}
/* If DECL is a template instance, return nonzero and, if
TEMPLATE_INFO is non-NULL, set *TEMPLATE_INFO to its template info.
Otherwise return zero. */
static int
decl_is_template_id (const tree decl, tree* const template_info)
{
if (TREE_CODE (decl) == TYPE_DECL)
{
/* TYPE_DECLs are handled specially. Look at its type to decide
if this is a template instantiation. */
const tree type = TREE_TYPE (decl);
if (CLASS_TYPE_P (type) && CLASSTYPE_TEMPLATE_ID_P (type))
{
if (template_info != NULL)
/* For a templated TYPE_DECL, the template info is hanging
off the type. */
*template_info = TYPE_TEMPLATE_INFO (type);
return 1;
}
}
else
{
/* Check if this is a primary template. */
if (DECL_LANG_SPECIFIC (decl) != NULL
&& DECL_USE_TEMPLATE (decl)
&& PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (decl))
&& TREE_CODE (decl) != TEMPLATE_DECL)
{
if (template_info != NULL)
/* For most templated decls, the template info is hanging
off the decl. */
*template_info = DECL_TEMPLATE_INFO (decl);
return 1;
}
}
/* It's not a template id. */
return 0;
}
/* Produce debugging output of current substitution candidates. */
static void
dump_substitution_candidates (void)
{
unsigned i;
tree el;
fprintf (stderr, " ++ substitutions ");
for (i = 0; VEC_iterate (tree, G.substitutions, i, el); ++i)
{
const char *name = "???";
if (i > 0)
fprintf (stderr, " ");
if (DECL_P (el))
name = IDENTIFIER_POINTER (DECL_NAME (el));
else if (TREE_CODE (el) == TREE_LIST)
name = IDENTIFIER_POINTER (DECL_NAME (TREE_VALUE (el)));
else if (TYPE_NAME (el))
name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (el)));
fprintf (stderr, " S%d_ = ", i - 1);
if (TYPE_P (el) &&
(CP_TYPE_RESTRICT_P (el)
|| CP_TYPE_VOLATILE_P (el)
|| CP_TYPE_CONST_P (el)))
fprintf (stderr, "CV-");
fprintf (stderr, "%s (%s at %p)\n",
name, tree_code_name[TREE_CODE (el)], (void *) el);
}
}
/* Both decls and types can be substitution candidates, but sometimes
they refer to the same thing. For instance, a TYPE_DECL and
RECORD_TYPE for the same class refer to the same thing, and should
be treated accordingly in substitutions. This function returns a
canonicalized tree node representing NODE that is used when adding
and substitution candidates and finding matches. */
static inline tree
canonicalize_for_substitution (tree node)
{
/* For a TYPE_DECL, use the type instead. */
if (TREE_CODE (node) == TYPE_DECL)
node = TREE_TYPE (node);
if (TYPE_P (node))
node = canonical_type_variant (node);
return node;
}
/* Add NODE as a substitution candidate. NODE must not already be on
the list of candidates. */
static void
add_substitution (tree node)
{
tree c;
if (DEBUG_MANGLE)
fprintf (stderr, " ++ add_substitution (%s at %10p)\n",
tree_code_name[TREE_CODE (node)], (void *) node);
/* Get the canonicalized substitution candidate for NODE. */
c = canonicalize_for_substitution (node);
if (DEBUG_MANGLE && c != node)
fprintf (stderr, " ++ using candidate (%s at %10p)\n",
tree_code_name[TREE_CODE (node)], (void *) node);
node = c;
#if ENABLE_CHECKING
/* Make sure NODE isn't already a candidate. */
{
int i;
tree candidate;
for (i = 0; VEC_iterate (tree, G.substitutions, i, candidate); i++)
{
gcc_assert (!(DECL_P (node) && node == candidate));
gcc_assert (!(TYPE_P (node) && TYPE_P (candidate)
&& same_type_p (node, candidate)));
}
}
#endif /* ENABLE_CHECKING */
/* Put the decl onto the varray of substitution candidates. */
VEC_safe_push (tree, gc, G.substitutions, node);
if (DEBUG_MANGLE)
dump_substitution_candidates ();
}
/* Helper function for find_substitution. Returns nonzero if NODE,
which may be a decl or a CLASS_TYPE, is a template-id with template
name of substitution_index[INDEX] in the ::std namespace. */
static inline int
is_std_substitution (const tree node,
const substitution_identifier_index_t index)
{
tree type = NULL;
tree decl = NULL;
if (DECL_P (node))
{
type = TREE_TYPE (node);
decl = node;
}
else if (CLASS_TYPE_P (node))
{
type = node;
decl = TYPE_NAME (node);
}
else
/* These are not the droids you're looking for. */
return 0;
return (DECL_NAMESPACE_STD_P (CP_DECL_CONTEXT (decl))
&& TYPE_LANG_SPECIFIC (type)
&& TYPE_TEMPLATE_INFO (type)
&& (DECL_NAME (TYPE_TI_TEMPLATE (type))
== subst_identifiers[index]));
}
/* Helper function for find_substitution. Returns nonzero if NODE,
which may be a decl or a CLASS_TYPE, is the template-id
::std::identifier<char>, where identifier is
substitution_index[INDEX]. */
static inline int
is_std_substitution_char (const tree node,
const substitution_identifier_index_t index)
{
tree args;
/* Check NODE's name is ::std::identifier. */
if (!is_std_substitution (node, index))
return 0;
/* Figure out its template args. */
if (DECL_P (node))
args = DECL_TI_ARGS (node);
else if (CLASS_TYPE_P (node))
args = CLASSTYPE_TI_ARGS (node);
else
/* Oops, not a template. */
return 0;
/* NODE's template arg list should be <char>. */
return
TREE_VEC_LENGTH (args) == 1
&& TREE_VEC_ELT (args, 0) == char_type_node;
}
/* Check whether a substitution should be used to represent NODE in
the mangling.
First, check standard special-case substitutions.
<substitution> ::= St
# ::std
::= Sa
# ::std::allocator
::= Sb
# ::std::basic_string
::= Ss
# ::std::basic_string<char,
::std::char_traits<char>,
::std::allocator<char> >
::= Si
# ::std::basic_istream<char, ::std::char_traits<char> >
::= So
# ::std::basic_ostream<char, ::std::char_traits<char> >
::= Sd
# ::std::basic_iostream<char, ::std::char_traits<char> >
Then examine the stack of currently available substitution
candidates for entities appearing earlier in the same mangling
If a substitution is found, write its mangled representation and
return nonzero. If none is found, just return zero. */
static int
find_substitution (tree node)
{
int i;
const int size = VEC_length (tree, G.substitutions);
tree decl;
tree type;
if (DEBUG_MANGLE)
fprintf (stderr, " ++ find_substitution (%s at %p)\n",
tree_code_name[TREE_CODE (node)], (void *) node);
/* Obtain the canonicalized substitution representation for NODE.
This is what we'll compare against. */
node = canonicalize_for_substitution (node);
/* Check for builtin substitutions. */
decl = TYPE_P (node) ? TYPE_NAME (node) : node;
type = TYPE_P (node) ? node : TREE_TYPE (node);
/* Check for std::allocator. */
if (decl
&& is_std_substitution (decl, SUBID_ALLOCATOR)
&& !CLASSTYPE_USE_TEMPLATE (TREE_TYPE (decl)))
{
write_string ("Sa");
return 1;
}
/* Check for std::basic_string. */
if (decl && is_std_substitution (decl, SUBID_BASIC_STRING))
{
if (TYPE_P (node))
{
/* If this is a type (i.e. a fully-qualified template-id),
check for
std::basic_string <char,
std::char_traits<char>,
std::allocator<char> > . */
if (cp_type_quals (type) == TYPE_UNQUALIFIED
&& CLASSTYPE_USE_TEMPLATE (type))
{
tree args = CLASSTYPE_TI_ARGS (type);
if (TREE_VEC_LENGTH (args) == 3
&& same_type_p (TREE_VEC_ELT (args, 0), char_type_node)
&& is_std_substitution_char (TREE_VEC_ELT (args, 1),
SUBID_CHAR_TRAITS)
&& is_std_substitution_char (TREE_VEC_ELT (args, 2),
SUBID_ALLOCATOR))
{
write_string ("Ss");
return 1;
}
}
}
else
/* Substitute for the template name only if this isn't a type. */
{
write_string ("Sb");
return 1;
}
}
/* Check for basic_{i,o,io}stream. */
if (TYPE_P (node)
&& cp_type_quals (type) == TYPE_UNQUALIFIED
&& CLASS_TYPE_P (type)
&& CLASSTYPE_USE_TEMPLATE (type)
&& CLASSTYPE_TEMPLATE_INFO (type) != NULL)
{
/* First, check for the template
args <char, std::char_traits<char> > . */
tree args = CLASSTYPE_TI_ARGS (type);
if (TREE_VEC_LENGTH (args) == 2
&& TYPE_P (TREE_VEC_ELT (args, 0))
&& same_type_p (TREE_VEC_ELT (args, 0), char_type_node)
&& is_std_substitution_char (TREE_VEC_ELT (args, 1),
SUBID_CHAR_TRAITS))
{
/* Got them. Is this basic_istream? */
if (is_std_substitution (decl, SUBID_BASIC_ISTREAM))
{
write_string ("Si");
return 1;
}
/* Or basic_ostream? */
else if (is_std_substitution (decl, SUBID_BASIC_OSTREAM))
{
write_string ("So");
return 1;
}
/* Or basic_iostream? */
else if (is_std_substitution (decl, SUBID_BASIC_IOSTREAM))
{
write_string ("Sd");
return 1;
}
}
}
/* Check for namespace std. */
if (decl && DECL_NAMESPACE_STD_P (decl))
{
write_string ("St");
return 1;
}
/* Now check the list of available substitutions for this mangling
operation. */
for (i = 0; i < size; ++i)
{
tree candidate = VEC_index (tree, G.substitutions, i);
/* NODE is a matched to a candidate if it's the same decl node or
if it's the same type. */
if (decl == candidate
|| (TYPE_P (candidate) && type && TYPE_P (type)
&& same_type_p (type, candidate))
|| NESTED_TEMPLATE_MATCH (node, candidate))
{
write_substitution (i);
return 1;
}
}
/* No substitution found. */
return 0;
}
/* TOP_LEVEL is true, if this is being called at outermost level of
mangling. It should be false when mangling a decl appearing in an
expression within some other mangling.
<mangled-name> ::= _Z <encoding> */
static void
write_mangled_name (const tree decl, bool top_level)
{
MANGLE_TRACE_TREE ("mangled-name", decl);
if (/* The names of `extern "C"' functions are not mangled. */
DECL_EXTERN_C_FUNCTION_P (decl)
/* But overloaded operator names *are* mangled. */
&& !DECL_OVERLOADED_OPERATOR_P (decl))
{
unmangled_name:;
if (top_level)
write_string (IDENTIFIER_POINTER (DECL_NAME (decl)));
else
{
/* The standard notes: "The <encoding> of an extern "C"
function is treated like global-scope data, i.e. as its
<source-name> without a type." We cannot write
overloaded operators that way though, because it contains
characters invalid in assembler. */
if (abi_version_at_least (2))
write_string ("_Z");
else
G.need_abi_warning = true;
write_source_name (DECL_NAME (decl));
}
}
else if (TREE_CODE (decl) == VAR_DECL
/* The names of non-static global variables aren't mangled. */
&& DECL_EXTERNAL_LINKAGE_P (decl)
&& (CP_DECL_CONTEXT (decl) == global_namespace
/* And neither are `extern "C"' variables. */
|| DECL_EXTERN_C_P (decl)))
{
if (top_level || abi_version_at_least (2))
goto unmangled_name;
else
{
G.need_abi_warning = true;
goto mangled_name;
}
}
else
{
mangled_name:;
write_string ("_Z");
write_encoding (decl);
if (DECL_LANG_SPECIFIC (decl)
&& (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl)
|| DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (decl)))
/* We need a distinct mangled name for these entities, but
we should never actually output it. So, we append some
characters the assembler won't like. */
write_string (" *INTERNAL* ");
}
}
/* <encoding> ::= <function name> <bare-function-type>
::= <data name> */
static void
write_encoding (const tree decl)
{
MANGLE_TRACE_TREE ("encoding", decl);
if (DECL_LANG_SPECIFIC (decl) && DECL_EXTERN_C_FUNCTION_P (decl))
{
/* For overloaded operators write just the mangled name
without arguments. */
if (DECL_OVERLOADED_OPERATOR_P (decl))
write_name (decl, /*ignore_local_scope=*/0);
else
write_source_name (DECL_NAME (decl));
return;
}
write_name (decl, /*ignore_local_scope=*/0);
if (TREE_CODE (decl) == FUNCTION_DECL)
{
tree fn_type;
tree d;
if (decl_is_template_id (decl, NULL))
{
save_partially_mangled_name ();
fn_type = get_mostly_instantiated_function_type (decl);
restore_partially_mangled_name ();
/* FN_TYPE will not have parameter types for in-charge or
VTT parameters. Therefore, we pass NULL_TREE to
write_bare_function_type -- otherwise, it will get
confused about which artificial parameters to skip. */
d = NULL_TREE;
}
else
{
fn_type = TREE_TYPE (decl);
d = decl;
}
write_bare_function_type (fn_type,
(!DECL_CONSTRUCTOR_P (decl)
&& !DECL_DESTRUCTOR_P (decl)
&& !DECL_CONV_FN_P (decl)
&& decl_is_template_id (decl, NULL)),
d);
}
}
/* <name> ::= <unscoped-name>
::= <unscoped-template-name> <template-args>
::= <nested-name>
::= <local-name>
If IGNORE_LOCAL_SCOPE is nonzero, this production of <name> is
called from <local-name>, which mangles the enclosing scope
elsewhere and then uses this function to mangle just the part
underneath the function scope. So don't use the <local-name>
production, to avoid an infinite recursion. */
static void
write_name (tree decl, const int ignore_local_scope)
{
tree context;
MANGLE_TRACE_TREE ("name", decl);
if (TREE_CODE (decl) == TYPE_DECL)
{
/* In case this is a typedef, fish out the corresponding
TYPE_DECL for the main variant. */
decl = TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (decl)));
context = TYPE_CONTEXT (TYPE_MAIN_VARIANT (TREE_TYPE (decl)));
}
else
context = (DECL_CONTEXT (decl) == NULL) ? NULL : CP_DECL_CONTEXT (decl);
/* A decl in :: or ::std scope is treated specially. The former is
mangled using <unscoped-name> or <unscoped-template-name>, the
latter with a special substitution. Also, a name that is
directly in a local function scope is also mangled with
<unscoped-name> rather than a full <nested-name>. */
if (context == NULL
|| context == global_namespace
|| DECL_NAMESPACE_STD_P (context)
|| (ignore_local_scope && TREE_CODE (context) == FUNCTION_DECL))
{
tree template_info;
/* Is this a template instance? */
if (decl_is_template_id (decl, &template_info))
{
/* Yes: use <unscoped-template-name>. */
write_unscoped_template_name (TI_TEMPLATE (template_info));
write_template_args (TI_ARGS (template_info));
}
else
/* Everything else gets an <unqualified-name>. */
write_unscoped_name (decl);
}
else
{
/* Handle local names, unless we asked not to (that is, invoked
under <local-name>, to handle only the part of the name under
the local scope). */
if (!ignore_local_scope)
{
/* Scan up the list of scope context, looking for a
function. If we find one, this entity is in local
function scope. local_entity tracks context one scope
level down, so it will contain the element that's
directly in that function's scope, either decl or one of
its enclosing scopes. */
tree local_entity = decl;
while (context != NULL && context != global_namespace)
{
/* Make sure we're always dealing with decls. */
if (context != NULL && TYPE_P (context))
context = TYPE_NAME (context);
/* Is this a function? */
if (TREE_CODE (context) == FUNCTION_DECL)
{
/* Yes, we have local scope. Use the <local-name>
production for the innermost function scope. */
write_local_name (context, local_entity, decl);
return;
}
/* Up one scope level. */
local_entity = context;
context = CP_DECL_CONTEXT (context);
}
/* No local scope found? Fall through to <nested-name>. */
}
/* Other decls get a <nested-name> to encode their scope. */
write_nested_name (decl);
}
}
/* <unscoped-name> ::= <unqualified-name>
::= St <unqualified-name> # ::std:: */
static void
write_unscoped_name (const tree decl)
{
tree context = CP_DECL_CONTEXT (decl);
MANGLE_TRACE_TREE ("unscoped-name", decl);
/* Is DECL in ::std? */
if (DECL_NAMESPACE_STD_P (context))
{
write_string ("St");
write_unqualified_name (decl);
}
else
{
/* If not, it should be either in the global namespace, or directly
in a local function scope. */
gcc_assert (context == global_namespace
|| context == NULL
|| TREE_CODE (context) == FUNCTION_DECL);
write_unqualified_name (decl);
}
}
/* <unscoped-template-name> ::= <unscoped-name>
::= <substitution> */
static void
write_unscoped_template_name (const tree decl)
{
MANGLE_TRACE_TREE ("unscoped-template-name", decl);
if (find_substitution (decl))
return;
write_unscoped_name (decl);
add_substitution (decl);
}
/* Write the nested name, including CV-qualifiers, of DECL.
<nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E
::= N [<CV-qualifiers>] <template-prefix> <template-args> E
<CV-qualifiers> ::= [r] [V] [K] */
static void
write_nested_name (const tree decl)
{
tree template_info;
MANGLE_TRACE_TREE ("nested-name", decl);
write_char ('N');
/* Write CV-qualifiers, if this is a member function. */
if (TREE_CODE (decl) == FUNCTION_DECL
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
{
if (DECL_VOLATILE_MEMFUNC_P (decl))
write_char ('V');
if (DECL_CONST_MEMFUNC_P (decl))
write_char ('K');
}
/* Is this a template instance? */
if (decl_is_template_id (decl, &template_info))
{
/* Yes, use <template-prefix>. */
write_template_prefix (decl);
write_template_args (TI_ARGS (template_info));
}
else
{
/* No, just use <prefix> */
write_prefix (DECL_CONTEXT (decl));
write_unqualified_name (decl);
}
write_char ('E');
}
/* <prefix> ::= <prefix> <unqualified-name>
::= <template-param>
::= <template-prefix> <template-args>
::= # empty
::= <substitution> */
static void
write_prefix (const tree node)
{
tree decl;
/* Non-NULL if NODE represents a template-id. */
tree template_info = NULL;
MANGLE_TRACE_TREE ("prefix", node);
if (node == NULL
|| node == global_namespace)
return;
if (find_substitution (node))
return;
if (DECL_P (node))
{
/* If this is a function decl, that means we've hit function
scope, so this prefix must be for a local name. In this
case, we're under the <local-name> production, which encodes
the enclosing function scope elsewhere. So don't continue
here. */
if (TREE_CODE (node) == FUNCTION_DECL)
return;
decl = node;
decl_is_template_id (decl, &template_info);
}
else
{
/* Node is a type. */
decl = TYPE_NAME (node);
if (CLASSTYPE_TEMPLATE_ID_P (node))
template_info = TYPE_TEMPLATE_INFO (node);
}
/* In G++ 3.2, the name of the template parameter was used. */
if (TREE_CODE (node) == TEMPLATE_TYPE_PARM
&& !abi_version_at_least (2))
G.need_abi_warning = true;
if (TREE_CODE (node) == TEMPLATE_TYPE_PARM
&& abi_version_at_least (2))
write_template_param (node);
else if (template_info != NULL)
/* Templated. */
{
write_template_prefix (decl);
write_template_args (TI_ARGS (template_info));
}
else
/* Not templated. */
{
write_prefix (CP_DECL_CONTEXT (decl));
write_unqualified_name (decl);
}
add_substitution (node);
}
/* <template-prefix> ::= <prefix> <template component>
::= <template-param>
::= <substitution> */
static void
write_template_prefix (const tree node)
{
tree decl = DECL_P (node) ? node : TYPE_NAME (node);
tree type = DECL_P (node) ? TREE_TYPE (node) : node;
tree context = CP_DECL_CONTEXT (decl);
tree template_info;
tree template;
tree substitution;
MANGLE_TRACE_TREE ("template-prefix", node);
/* Find the template decl. */
if (decl_is_template_id (decl, &template_info))
template = TI_TEMPLATE (template_info);
else
{
gcc_assert (CLASSTYPE_TEMPLATE_ID_P (type));
template = TYPE_TI_TEMPLATE (type);
}
/* For a member template, though, the template name for the
innermost name must have all the outer template levels
instantiated. For instance, consider
template<typename T> struct Outer {
template<typename U> struct Inner {};
};
The template name for `Inner' in `Outer<int>::Inner<float>' is
`Outer<int>::Inner<U>'. In g++, we don't instantiate the template
levels separately, so there's no TEMPLATE_DECL available for this
(there's only `Outer<T>::Inner<U>').
In order to get the substitutions right, we create a special
TREE_LIST to represent the substitution candidate for a nested
template. The TREE_PURPOSE is the template's context, fully
instantiated, and the TREE_VALUE is the TEMPLATE_DECL for the inner
template.
So, for the example above, `Outer<int>::Inner' is represented as a
substitution candidate by a TREE_LIST whose purpose is `Outer<int>'
and whose value is `Outer<T>::Inner<U>'. */
if (TYPE_P (context))
substitution = build_tree_list (context, template);
else
substitution = template;
if (find_substitution (substitution))
return;
/* In G++ 3.2, the name of the template template parameter was used. */
if (TREE_CODE (TREE_TYPE (template)) == TEMPLATE_TEMPLATE_PARM
&& !abi_version_at_least (2))
G.need_abi_warning = true;
if (TREE_CODE (TREE_TYPE (template)) == TEMPLATE_TEMPLATE_PARM
&& abi_version_at_least (2))
write_template_param (TREE_TYPE (template));
else
{
write_prefix (context);
write_unqualified_name (decl);
}
add_substitution (substitution);
}
/* We don't need to handle thunks, vtables, or VTTs here. Those are
mangled through special entry points.
<unqualified-name> ::= <operator-name>
::= <special-name>
::= <source-name>
::= <local-source-name>
<local-source-name> ::= L <source-name> <discriminator> */
static void
write_unqualified_name (const tree decl)
{
MANGLE_TRACE_TREE ("unqualified-name", decl);
if (DECL_LANG_SPECIFIC (decl) != NULL && DECL_CONSTRUCTOR_P (decl))
write_special_name_constructor (decl);
else if (DECL_LANG_SPECIFIC (decl) != NULL && DECL_DESTRUCTOR_P (decl))
write_special_name_destructor (decl);
else if (DECL_NAME (decl) == NULL_TREE)
write_source_name (DECL_ASSEMBLER_NAME (decl));
else if (DECL_CONV_FN_P (decl))
{
/* Conversion operator. Handle it right here.
<operator> ::= cv <type> */
tree type;
if (decl_is_template_id (decl, NULL))
{
tree fn_type;
save_partially_mangled_name ();
fn_type = get_mostly_instantiated_function_type (decl);
restore_partially_mangled_name ();
type = TREE_TYPE (fn_type);
}
else
type = DECL_CONV_FN_TYPE (decl);
write_conversion_operator_name (type);
}
else if (DECL_OVERLOADED_OPERATOR_P (decl))
{
operator_name_info_t *oni;
if (DECL_ASSIGNMENT_OPERATOR_P (decl))
oni = assignment_operator_name_info;
else
oni = operator_name_info;
write_string (oni[DECL_OVERLOADED_OPERATOR_P (decl)].mangled_name);
}
else if (VAR_OR_FUNCTION_DECL_P (decl) && ! TREE_PUBLIC (decl)
&& DECL_NAMESPACE_SCOPE_P (decl)
&& decl_linkage (decl) == lk_internal)
{
MANGLE_TRACE_TREE ("local-source-name", decl);
write_char ('L');
write_source_name (DECL_NAME (decl));
/* The default discriminator is 1, and that's all we ever use,
so there's no code to output one here. */
}
else
write_source_name (DECL_NAME (decl));
}
/* Write the unqualified-name for a conversion operator to TYPE. */
static void
write_conversion_operator_name (const tree type)
{
write_string ("cv");
write_type (type);
}
/* Non-terminal <source-name>. IDENTIFIER is an IDENTIFIER_NODE.
<source-name> ::= </length/ number> <identifier> */
static void
write_source_name (tree identifier)
{
MANGLE_TRACE_TREE ("source-name", identifier);
/* Never write the whole template-id name including the template
arguments; we only want the template name. */
if (IDENTIFIER_TEMPLATE (identifier))
identifier = IDENTIFIER_TEMPLATE (identifier);
write_unsigned_number (IDENTIFIER_LENGTH (identifier));
write_identifier (IDENTIFIER_POINTER (identifier));
}
/* Convert NUMBER to ascii using base BASE and generating at least
MIN_DIGITS characters. BUFFER points to the _end_ of the buffer
into which to store the characters. Returns the number of
characters generated (these will be layed out in advance of where
BUFFER points). */
static int
hwint_to_ascii (unsigned HOST_WIDE_INT number, const unsigned int base,
char *buffer, const unsigned int min_digits)
{
static const char base_digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
unsigned digits = 0;
while (number)
{
unsigned HOST_WIDE_INT d = number / base;
*--buffer = base_digits[number - d * base];
digits++;
number = d;
}
while (digits < min_digits)
{
*--buffer = base_digits[0];
digits++;
}
return digits;
}
/* Non-terminal <number>.
<number> ::= [n] </decimal integer/> */
static void
write_number (unsigned HOST_WIDE_INT number, const int unsigned_p,
const unsigned int base)
{
char buffer[sizeof (HOST_WIDE_INT) * 8];
unsigned count = 0;
if (!unsigned_p && (HOST_WIDE_INT) number < 0)
{
write_char ('n');
number = -((HOST_WIDE_INT) number);
}
count = hwint_to_ascii (number, base, buffer + sizeof (buffer), 1);
write_chars (buffer + sizeof (buffer) - count, count);
}
/* Write out an integral CST in decimal. Most numbers are small, and
representable in a HOST_WIDE_INT. Occasionally we'll have numbers
bigger than that, which we must deal with. */
static inline void
write_integer_cst (const tree cst)
{
int sign = tree_int_cst_sgn (cst);
if (TREE_INT_CST_HIGH (cst) + (sign < 0))
{
/* A bignum. We do this in chunks, each of which fits in a
HOST_WIDE_INT. */
char buffer[sizeof (HOST_WIDE_INT) * 8 * 2];
unsigned HOST_WIDE_INT chunk;
unsigned chunk_digits;
char *ptr = buffer + sizeof (buffer);
unsigned count = 0;
tree n, base, type;
int done;
/* HOST_WIDE_INT must be at least 32 bits, so 10^9 is
representable. */
chunk = 1000000000;
chunk_digits = 9;
if (sizeof (HOST_WIDE_INT) >= 8)
{
/* It is at least 64 bits, so 10^18 is representable. */
chunk_digits = 18;
chunk *= chunk;
}
type = c_common_signed_or_unsigned_type (1, TREE_TYPE (cst));
base = build_int_cstu (type, chunk);
n = build_int_cst_wide (type,
TREE_INT_CST_LOW (cst), TREE_INT_CST_HIGH (cst));
if (sign < 0)
{
write_char ('n');
n = fold_build1 (NEGATE_EXPR, type, n);
}
do
{
tree d = fold_build2 (FLOOR_DIV_EXPR, type, n, base);
tree tmp = fold_build2 (MULT_EXPR, type, d, base);
unsigned c;
done = integer_zerop (d);
tmp = fold_build2 (MINUS_EXPR, type, n, tmp);
c = hwint_to_ascii (TREE_INT_CST_LOW (tmp), 10, ptr,
done ? 1 : chunk_digits);
ptr -= c;
count += c;
n = d;
}
while (!done);
write_chars (ptr, count);
}
else
{
/* A small num. */
unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (cst);
if (sign < 0)
{
write_char ('n');
low = -low;
}
write_unsigned_number (low);
}
}
/* Write out a floating-point literal.
"Floating-point literals are encoded using the bit pattern of the
target processor's internal representation of that number, as a
fixed-length lowercase hexadecimal string, high-order bytes first
(even if the target processor would store low-order bytes first).
The "n" prefix is not used for floating-point literals; the sign
bit is encoded with the rest of the number.
Here are some examples, assuming the IEEE standard representation
for floating point numbers. (Spaces are for readability, not
part of the encoding.)
1.0f Lf 3f80 0000 E
-1.0f Lf bf80 0000 E
1.17549435e-38f Lf 0080 0000 E
1.40129846e-45f Lf 0000 0001 E
0.0f Lf 0000 0000 E"
Caller is responsible for the Lx and the E. */
static void
write_real_cst (const tree value)
{
if (abi_version_at_least (2))
{
long target_real[4]; /* largest supported float */
char buffer[9]; /* eight hex digits in a 32-bit number */
int i, limit, dir;
tree type = TREE_TYPE (value);
int words = GET_MODE_BITSIZE (TYPE_MODE (type)) / 32;
real_to_target (target_real, &TREE_REAL_CST (value),
TYPE_MODE (type));
/* The value in target_real is in the target word order,
so we must write it out backward if that happens to be
little-endian. write_number cannot be used, it will
produce uppercase. */
if (FLOAT_WORDS_BIG_ENDIAN)
i = 0, limit = words, dir = 1;
else
i = words - 1, limit = -1, dir = -1;
for (; i != limit; i += dir)
{
sprintf (buffer, "%08lx", (unsigned long) target_real[i]);
write_chars (buffer, 8);
}
}
else
{
/* In G++ 3.3 and before the REAL_VALUE_TYPE was written out
literally. Note that compatibility with 3.2 is impossible,
because the old floating-point emulator used a different
format for REAL_VALUE_TYPE. */
size_t i;
for (i = 0; i < sizeof (TREE_REAL_CST (value)); ++i)
write_number (((unsigned char *) &TREE_REAL_CST (value))[i],
/*unsigned_p*/ 1,
/*base*/ 16);
G.need_abi_warning = 1;
}
}
/* Non-terminal <identifier>.
<identifier> ::= </unqualified source code identifier> */
static void
write_identifier (const char *identifier)
{
MANGLE_TRACE ("identifier", identifier);
write_string (identifier);
}
/* Handle constructor productions of non-terminal <special-name>.
CTOR is a constructor FUNCTION_DECL.
<special-name> ::= C1 # complete object constructor
::= C2 # base object constructor
::= C3 # complete object allocating constructor
Currently, allocating constructors are never used.
We also need to provide mangled names for the maybe-in-charge
constructor, so we treat it here too. mangle_decl_string will
append *INTERNAL* to that, to make sure we never emit it. */
static void
write_special_name_constructor (const tree ctor)
{
if (DECL_BASE_CONSTRUCTOR_P (ctor))
write_string ("C2");
else
{
gcc_assert (DECL_COMPLETE_CONSTRUCTOR_P (ctor)
/* Even though we don't ever emit a definition of
the old-style destructor, we still have to
consider entities (like static variables) nested
inside it. */
|| DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (ctor));
write_string ("C1");
}
}
/* Handle destructor productions of non-terminal <special-name>.
DTOR is a destructor FUNCTION_DECL.
<special-name> ::= D0 # deleting (in-charge) destructor
::= D1 # complete object (in-charge) destructor
::= D2 # base object (not-in-charge) destructor
We also need to provide mangled names for the maybe-incharge
destructor, so we treat it here too. mangle_decl_string will
append *INTERNAL* to that, to make sure we never emit it. */
static void
write_special_name_destructor (const tree dtor)
{
if (DECL_DELETING_DESTRUCTOR_P (dtor))
write_string ("D0");
else if (DECL_BASE_DESTRUCTOR_P (dtor))
write_string ("D2");
else
{
gcc_assert (DECL_COMPLETE_DESTRUCTOR_P (dtor)
/* Even though we don't ever emit a definition of
the old-style destructor, we still have to
consider entities (like static variables) nested
inside it. */
|| DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (dtor));
write_string ("D1");
}
}
/* Return the discriminator for ENTITY appearing inside
FUNCTION. The discriminator is the lexical ordinal of VAR among
entities with the same name in the same FUNCTION. */
static int
discriminator_for_local_entity (tree entity)
{
/* Assume this is the only local entity with this name. */
int discriminator = 0;
if (DECL_DISCRIMINATOR_P (entity) && DECL_LANG_SPECIFIC (entity))
discriminator = DECL_DISCRIMINATOR (entity);
else if (TREE_CODE (entity) == TYPE_DECL)
{
int ix;
/* Scan the list of local classes. */
entity = TREE_TYPE (entity);
for (ix = 0; ; ix++)
{
tree type = VEC_index (tree, local_classes, ix);
if (type == entity)
break;
if (TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (entity)
&& TYPE_CONTEXT (type) == TYPE_CONTEXT (entity))
++discriminator;
}
}
return discriminator;
}
/* Return the discriminator for STRING, a string literal used inside
FUNCTION. The discriminator is the lexical ordinal of STRING among
string literals used in FUNCTION. */
static int
discriminator_for_string_literal (tree function ATTRIBUTE_UNUSED,
tree string ATTRIBUTE_UNUSED)
{
/* For now, we don't discriminate amongst string literals. */
return 0;
}
/* <discriminator> := _ <number>
The discriminator is used only for the second and later occurrences
of the same name within a single function. In this case <number> is
n - 2, if this is the nth occurrence, in lexical order. */
static void
write_discriminator (const int discriminator)
{
/* If discriminator is zero, don't write anything. Otherwise... */
if (discriminator > 0)
{
write_char ('_');
write_unsigned_number (discriminator - 1);
}
}
/* Mangle the name of a function-scope entity. FUNCTION is the
FUNCTION_DECL for the enclosing function. ENTITY is the decl for
the entity itself. LOCAL_ENTITY is the entity that's directly
scoped in FUNCTION_DECL, either ENTITY itself or an enclosing scope
of ENTITY.
<local-name> := Z <function encoding> E <entity name> [<discriminator>]
:= Z <function encoding> E s [<discriminator>] */
static void
write_local_name (const tree function, const tree local_entity,
const tree entity)
{
MANGLE_TRACE_TREE ("local-name", entity);
write_char ('Z');
write_encoding (function);
write_char ('E');
if (TREE_CODE (entity) == STRING_CST)
{
write_char ('s');
write_discriminator (discriminator_for_string_literal (function,
entity));
}
else
{
/* Now the <entity name>. Let write_name know its being called
from <local-name>, so it doesn't try to process the enclosing
function scope again. */
write_name (entity, /*ignore_local_scope=*/1);
write_discriminator (discriminator_for_local_entity (local_entity));
}
}
/* Non-terminals <type> and <CV-qualifier>.
<type> ::= <builtin-type>
::= <function-type>
::= <class-enum-type>
::= <array-type>
::= <pointer-to-member-type>
::= <template-param>
::= <substitution>
::= <CV-qualifier>
::= P <type> # pointer-to
::= R <type> # reference-to
::= C <type> # complex pair (C 2000)
::= G <type> # imaginary (C 2000) [not supported]
::= U <source-name> <type> # vendor extended type qualifier
TYPE is a type node. */
static void
write_type (tree type)
{
/* This gets set to nonzero if TYPE turns out to be a (possibly
CV-qualified) builtin type. */
int is_builtin_type = 0;
MANGLE_TRACE_TREE ("type", type);
if (type == error_mark_node)
return;
if (find_substitution (type))
return;
if (write_CV_qualifiers_for_type (type) > 0)
/* If TYPE was CV-qualified, we just wrote the qualifiers; now
mangle the unqualified type. The recursive call is needed here
since both the qualified and unqualified types are substitution
candidates. */
write_type (TYPE_MAIN_VARIANT (type));
else if (TREE_CODE (type) == ARRAY_TYPE)
/* It is important not to use the TYPE_MAIN_VARIANT of TYPE here
so that the cv-qualification of the element type is available
in write_array_type. */
write_array_type (type);
else
{
/* See through any typedefs. */
type = TYPE_MAIN_VARIANT (type);
if (TYPE_PTRMEM_P (type))
write_pointer_to_member_type (type);
else switch (TREE_CODE (type))
{
case VOID_TYPE:
case BOOLEAN_TYPE:
case INTEGER_TYPE: /* Includes wchar_t. */
case REAL_TYPE:
{
/* Handle any target-specific fundamental types. */
const char *target_mangling
= targetm.mangle_fundamental_type (type);
if (target_mangling)
{
write_string (target_mangling);
return;
}
/* If this is a typedef, TYPE may not be one of
the standard builtin type nodes, but an alias of one. Use
TYPE_MAIN_VARIANT to get to the underlying builtin type. */
write_builtin_type (TYPE_MAIN_VARIANT (type));
++is_builtin_type;
break;
}
case COMPLEX_TYPE:
write_char ('C');
write_type (TREE_TYPE (type));
break;
case FUNCTION_TYPE:
case METHOD_TYPE:
write_function_type (type);
break;
case UNION_TYPE:
case RECORD_TYPE:
case ENUMERAL_TYPE:
/* A pointer-to-member function is represented as a special
RECORD_TYPE, so check for this first. */
if (TYPE_PTRMEMFUNC_P (type))
write_pointer_to_member_type (type);
else
write_class_enum_type (type);
break;
case TYPENAME_TYPE:
case UNBOUND_CLASS_TEMPLATE:
/* We handle TYPENAME_TYPEs and UNBOUND_CLASS_TEMPLATEs like
ordinary nested names. */
write_nested_name (TYPE_STUB_DECL (type));
break;
case POINTER_TYPE:
write_char ('P');
write_type (TREE_TYPE (type));
break;
/* APPLE LOCAL begin blocks 6040305 */
case BLOCK_POINTER_TYPE:
write_string ("U13block_pointer");
write_type (TREE_TYPE (type));
break;
/* APPLE LOCAL end blocks 6040305 */
case REFERENCE_TYPE:
write_char ('R');
write_type (TREE_TYPE (type));
break;
case TEMPLATE_TYPE_PARM:
case TEMPLATE_PARM_INDEX:
write_template_param (type);
break;
case TEMPLATE_TEMPLATE_PARM:
write_template_template_param (type);
break;
case BOUND_TEMPLATE_TEMPLATE_PARM:
write_template_template_param (type);
write_template_args
(TI_ARGS (TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (type)));
break;
case VECTOR_TYPE:
write_string ("U8__vector");
write_type (TREE_TYPE (type));
break;
default:
gcc_unreachable ();
}
}
/* Types other than builtin types are substitution candidates. */
if (!is_builtin_type)
add_substitution (type);
}
/* Non-terminal <CV-qualifiers> for type nodes. Returns the number of
CV-qualifiers written for TYPE.
<CV-qualifiers> ::= [r] [V] [K] */
static int
write_CV_qualifiers_for_type (const tree type)
{
int num_qualifiers = 0;
/* The order is specified by:
"In cases where multiple order-insensitive qualifiers are
present, they should be ordered 'K' (closest to the base type),
'V', 'r', and 'U' (farthest from the base type) ..."
Note that we do not use cp_type_quals below; given "const
int[3]", the "const" is emitted with the "int", not with the
array. */
if (TYPE_QUALS (type) & TYPE_QUAL_RESTRICT)
{
write_char ('r');
++num_qualifiers;
}
if (TYPE_QUALS (type) & TYPE_QUAL_VOLATILE)
{
write_char ('V');
++num_qualifiers;
}
if (TYPE_QUALS (type) & TYPE_QUAL_CONST)
{
write_char ('K');
++num_qualifiers;
}
return num_qualifiers;
}
/* Non-terminal <builtin-type>.
<builtin-type> ::= v # void
::= b # bool
::= w # wchar_t
::= c # char
::= a # signed char
::= h # unsigned char
::= s # short
::= t # unsigned short
::= i # int
::= j # unsigned int
::= l # long
::= m # unsigned long
::= x # long long, __int64
::= y # unsigned long long, __int64
::= n # __int128
::= o # unsigned __int128
::= f # float
::= d # double
::= e # long double, __float80
::= g # __float128 [not supported]
::= u <source-name> # vendor extended type */
static void
write_builtin_type (tree type)
{
switch (TREE_CODE (type))
{
case VOID_TYPE:
write_char ('v');
break;
case BOOLEAN_TYPE:
write_char ('b');
break;
case INTEGER_TYPE:
/* If this is size_t, get the underlying int type. */
if (TYPE_IS_SIZETYPE (type))
type = TYPE_DOMAIN (type);
/* TYPE may still be wchar_t, since that isn't in
integer_type_nodes. */
if (type == wchar_type_node)
write_char ('w');
else if (TYPE_FOR_JAVA (type))
write_java_integer_type_codes (type);
else
{
size_t itk;
/* Assume TYPE is one of the shared integer type nodes. Find
it in the array of these nodes. */
iagain:
for (itk = 0; itk < itk_none; ++itk)
if (type == integer_types[itk])
{
/* Print the corresponding single-letter code. */
write_char (integer_type_codes[itk]);
break;
}
if (itk == itk_none)
{
tree t = c_common_type_for_mode (TYPE_MODE (type),
TYPE_UNSIGNED (type));
if (type != t)
{
type = t;
goto iagain;
}
if (TYPE_PRECISION (type) == 128)
write_char (TYPE_UNSIGNED (type) ? 'o' : 'n');
else
{
/* Allow for cases where TYPE is not one of the shared
integer type nodes and write a "vendor extended builtin
type" with a name the form intN or uintN, respectively.
Situations like this can happen if you have an
__attribute__((__mode__(__SI__))) type and use exotic
switches like '-mint8' on AVR. Of course, this is
undefined by the C++ ABI (and '-mint8' is not even
Standard C conforming), but when using such special
options you're pretty much in nowhere land anyway. */
const char *prefix;
char prec[11]; /* up to ten digits for an unsigned */
prefix = TYPE_UNSIGNED (type) ? "uint" : "int";
sprintf (prec, "%u", (unsigned) TYPE_PRECISION (type));
write_char ('u'); /* "vendor extended builtin type" */
write_unsigned_number (strlen (prefix) + strlen (prec));
write_string (prefix);
write_string (prec);
}
}
}
break;
case REAL_TYPE:
if (type == float_type_node
|| type == java_float_type_node)
write_char ('f');
else if (type == double_type_node
|| type == java_double_type_node)
write_char ('d');
else if (type == long_double_type_node)
write_char ('e');
else
gcc_unreachable ();
break;
default:
gcc_unreachable ();
}
}
/* Non-terminal <function-type>. NODE is a FUNCTION_TYPE or
METHOD_TYPE. The return type is mangled before the parameter
types.
<function-type> ::= F [Y] <bare-function-type> E */
static void
write_function_type (const tree type)
{
MANGLE_TRACE_TREE ("function-type", type);
/* For a pointer to member function, the function type may have
cv-qualifiers, indicating the quals for the artificial 'this'
parameter. */
if (TREE_CODE (type) == METHOD_TYPE)
{
/* The first parameter must be a POINTER_TYPE pointing to the
`this' parameter. */
tree this_type = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type)));
write_CV_qualifiers_for_type (this_type);
}
write_char ('F');
/* We don't track whether or not a type is `extern "C"'. Note that
you can have an `extern "C"' function that does not have
`extern "C"' type, and vice versa:
extern "C" typedef void function_t();
function_t f; // f has C++ linkage, but its type is
// `extern "C"'
typedef void function_t();
extern "C" function_t f; // Vice versa.
See [dcl.link]. */
write_bare_function_type (type, /*include_return_type_p=*/1,
/*decl=*/NULL);
write_char ('E');
}
/* Non-terminal <bare-function-type>. TYPE is a FUNCTION_TYPE or
METHOD_TYPE. If INCLUDE_RETURN_TYPE is nonzero, the return value
is mangled before the parameter types. If non-NULL, DECL is
FUNCTION_DECL for the function whose type is being emitted.
If DECL is a member of a Java type, then a literal 'J'
is output and the return type is mangled as if INCLUDE_RETURN_TYPE
were nonzero.
<bare-function-type> ::= [J]</signature/ type>+ */
static void
write_bare_function_type (const tree type, const int include_return_type_p,
const tree decl)
{
int java_method_p;
MANGLE_TRACE_TREE ("bare-function-type", type);
/* Detect Java methods and emit special encoding. */
if (decl != NULL
&& DECL_FUNCTION_MEMBER_P (decl)
&& TYPE_FOR_JAVA (DECL_CONTEXT (decl))
&& !DECL_CONSTRUCTOR_P (decl)
&& !DECL_DESTRUCTOR_P (decl)
&& !DECL_CONV_FN_P (decl))
{
java_method_p = 1;
write_char ('J');
}
else
{
java_method_p = 0;
}
/* Mangle the return type, if requested. */
if (include_return_type_p || java_method_p)
write_type (TREE_TYPE (type));
/* Now mangle the types of the arguments. */
write_method_parms (TYPE_ARG_TYPES (type),
TREE_CODE (type) == METHOD_TYPE,
decl);
}
/* Write the mangled representation of a method parameter list of
types given in PARM_TYPES. If METHOD_P is nonzero, the function is
considered a non-static method, and the this parameter is omitted.
If non-NULL, DECL is the FUNCTION_DECL for the function whose
parameters are being emitted. */
static void
write_method_parms (tree parm_types, const int method_p, const tree decl)
{
tree first_parm_type;
tree parm_decl = decl ? DECL_ARGUMENTS (decl) : NULL_TREE;
/* Assume this parameter type list is variable-length. If it ends
with a void type, then it's not. */
int varargs_p = 1;
/* If this is a member function, skip the first arg, which is the
this pointer.
"Member functions do not encode the type of their implicit this
parameter."
Similarly, there's no need to mangle artificial parameters, like
the VTT parameters for constructors and destructors. */
if (method_p)
{
parm_types = TREE_CHAIN (parm_types);
parm_decl = parm_decl ? TREE_CHAIN (parm_decl) : NULL_TREE;
while (parm_decl && DECL_ARTIFICIAL (parm_decl))
{
parm_types = TREE_CHAIN (parm_types);
parm_decl = TREE_CHAIN (parm_decl);
}
}
for (first_parm_type = parm_types;
parm_types;
parm_types = TREE_CHAIN (parm_types))
{
tree parm = TREE_VALUE (parm_types);
if (parm == void_type_node)
{
/* "Empty parameter lists, whether declared as () or
conventionally as (void), are encoded with a void parameter
(v)." */
if (parm_types == first_parm_type)
write_type (parm);
/* If the parm list is terminated with a void type, it's
fixed-length. */
varargs_p = 0;
/* A void type better be the last one. */
gcc_assert (TREE_CHAIN (parm_types) == NULL);
}
else
write_type (parm);
}
if (varargs_p)
/* <builtin-type> ::= z # ellipsis */
write_char ('z');
}
/* <class-enum-type> ::= <name> */
static void
write_class_enum_type (const tree type)
{
write_name (TYPE_NAME (type), /*ignore_local_scope=*/0);
}
/* Non-terminal <template-args>. ARGS is a TREE_VEC of template
arguments.
<template-args> ::= I <template-arg>+ E */
static void
write_template_args (tree args)
{
int i;
int length = TREE_VEC_LENGTH (args);
MANGLE_TRACE_TREE ("template-args", args);
write_char ('I');
gcc_assert (length > 0);
if (TREE_CODE (TREE_VEC_ELT (args, 0)) == TREE_VEC)
{
/* We have nested template args. We want the innermost template
argument list. */
args = TREE_VEC_ELT (args, length - 1);
length = TREE_VEC_LENGTH (args);
}
for (i = 0; i < length; ++i)
write_template_arg (TREE_VEC_ELT (args, i));
write_char ('E');
}
/* <expression> ::= <unary operator-name> <expression>
::= <binary operator-name> <expression> <expression>
::= <expr-primary>
<expr-primary> ::= <template-param>
::= L <type> <value number> E # literal
::= L <mangled-name> E # external name
::= sr <type> <unqualified-name>
::= sr <type> <unqualified-name> <template-args> */
static void
write_expression (tree expr)
{
enum tree_code code;
code = TREE_CODE (expr);
/* Skip NOP_EXPRs. They can occur when (say) a pointer argument
is converted (via qualification conversions) to another
type. */
while (TREE_CODE (expr) == NOP_EXPR
|| TREE_CODE (expr) == NON_LVALUE_EXPR)
{
expr = TREE_OPERAND (expr, 0);
code = TREE_CODE (expr);
}
if (code == BASELINK)
{
expr = BASELINK_FUNCTIONS (expr);
code = TREE_CODE (expr);
}
/* Handle pointers-to-members by making them look like expression
nodes. */
if (code == PTRMEM_CST)
{
expr = build_nt (ADDR_EXPR,
build_qualified_name (/*type=*/NULL_TREE,
PTRMEM_CST_CLASS (expr),
PTRMEM_CST_MEMBER (expr),
/*template_p=*/false));
code = TREE_CODE (expr);
}
/* Handle template parameters. */
if (code == TEMPLATE_TYPE_PARM
|| code == TEMPLATE_TEMPLATE_PARM
|| code == BOUND_TEMPLATE_TEMPLATE_PARM
|| code == TEMPLATE_PARM_INDEX)
write_template_param (expr);
/* Handle literals. */
else if (TREE_CODE_CLASS (code) == tcc_constant
|| (abi_version_at_least (2) && code == CONST_DECL))
write_template_arg_literal (expr);
else if (DECL_P (expr))
{
/* G++ 3.2 incorrectly mangled non-type template arguments of
enumeration type using their names. */
if (code == CONST_DECL)
G.need_abi_warning = 1;
write_char ('L');
write_mangled_name (expr, false);
write_char ('E');
}
else if (TREE_CODE (expr) == SIZEOF_EXPR
&& TYPE_P (TREE_OPERAND (expr, 0)))
{
write_string ("st");
write_type (TREE_OPERAND (expr, 0));
}
else if (abi_version_at_least (2) && TREE_CODE (expr) == SCOPE_REF)
{
tree scope = TREE_OPERAND (expr, 0);
tree member = TREE_OPERAND (expr, 1);
/* If the MEMBER is a real declaration, then the qualifying
scope was not dependent. Ideally, we would not have a
SCOPE_REF in those cases, but sometimes we do. If the second
argument is a DECL, then the name must not have been
dependent. */
if (DECL_P (member))
write_expression (member);
else
{
tree template_args;
write_string ("sr");
write_type (scope);
/* If MEMBER is a template-id, separate the template
from the arguments. */
if (TREE_CODE (member) == TEMPLATE_ID_EXPR)
{
template_args = TREE_OPERAND (member, 1);
member = TREE_OPERAND (member, 0);
}
else
template_args = NULL_TREE;
/* Write out the name of the MEMBER. */
if (IDENTIFIER_TYPENAME_P (member))
write_conversion_operator_name (TREE_TYPE (member));
else if (IDENTIFIER_OPNAME_P (member))
{
int i;
const char *mangled_name = NULL;
/* Unfortunately, there is no easy way to go from the
name of the operator back to the corresponding tree
code. */
for (i = 0; i < LAST_CPLUS_TREE_CODE; ++i)
if (operator_name_info[i].identifier == member)
{
/* The ABI says that we prefer binary operator
names to unary operator names. */
if (operator_name_info[i].arity == 2)
{
mangled_name = operator_name_info[i].mangled_name;
break;
}
else if (!mangled_name)
mangled_name = operator_name_info[i].mangled_name;
}
else if (assignment_operator_name_info[i].identifier
== member)
{
mangled_name
= assignment_operator_name_info[i].mangled_name;
break;
}
write_string (mangled_name);
}
else
write_source_name (member);
/* Write out the template arguments. */
if (template_args)
write_template_args (template_args);
}
}
else
{
int i;
/* When we bind a variable or function to a non-type template
argument with reference type, we create an ADDR_EXPR to show
the fact that the entity's address has been taken. But, we
don't actually want to output a mangling code for the `&'. */
if (TREE_CODE (expr) == ADDR_EXPR
&& TREE_TYPE (expr)
&& TREE_CODE (TREE_TYPE (expr)) == REFERENCE_TYPE)
{
expr = TREE_OPERAND (expr, 0);
if (DECL_P (expr))
{
write_expression (expr);
return;
}
code = TREE_CODE (expr);
}
/* If it wasn't any of those, recursively expand the expression. */
write_string (operator_name_info[(int) code].mangled_name);
switch (code)
{
case CALL_EXPR:
sorry ("call_expr cannot be mangled due to a defect in the C++ ABI");
break;
case CAST_EXPR:
write_type (TREE_TYPE (expr));
/* There is no way to mangle a zero-operand cast like
"T()". */
if (!TREE_OPERAND (expr, 0))
sorry ("zero-operand casts cannot be mangled due to a defect "
"in the C++ ABI");
else
write_expression (TREE_VALUE (TREE_OPERAND (expr, 0)));
break;
case STATIC_CAST_EXPR:
case CONST_CAST_EXPR:
write_type (TREE_TYPE (expr));
write_expression (TREE_OPERAND (expr, 0));
break;
/* Handle pointers-to-members specially. */
case SCOPE_REF:
write_type (TREE_OPERAND (expr, 0));
if (TREE_CODE (TREE_OPERAND (expr, 1)) == IDENTIFIER_NODE)
write_source_name (TREE_OPERAND (expr, 1));
else if (TREE_CODE (TREE_OPERAND (expr, 1)) == TEMPLATE_ID_EXPR)
{
tree template_id;
tree name;
template_id = TREE_OPERAND (expr, 1);
name = TREE_OPERAND (template_id, 0);
/* FIXME: What about operators? */
gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
write_source_name (TREE_OPERAND (template_id, 0));
write_template_args (TREE_OPERAND (template_id, 1));
}
else
{
/* G++ 3.2 incorrectly put out both the "sr" code and
the nested name of the qualified name. */
G.need_abi_warning = 1;
write_encoding (TREE_OPERAND (expr, 1));
}
break;
default:
for (i = 0; i < TREE_CODE_LENGTH (code); ++i)
{
tree operand = TREE_OPERAND (expr, i);
/* As a GNU extension, the middle operand of a
conditional may be omitted. Since expression
manglings are supposed to represent the input token
stream, there's no good way to mangle such an
expression without extending the C++ ABI. */
if (code == COND_EXPR && i == 1 && !operand)
{
error ("omitted middle operand to %<?:%> operand "
"cannot be mangled");
continue;
}
write_expression (operand);
}
}
}
}
/* Literal subcase of non-terminal <template-arg>.
"Literal arguments, e.g. "A<42L>", are encoded with their type
and value. Negative integer values are preceded with "n"; for
example, "A<-42L>" becomes "1AILln42EE". The bool value false is
encoded as 0, true as 1." */
static void
write_template_arg_literal (const tree value)
{
write_char ('L');
write_type (TREE_TYPE (value));
switch (TREE_CODE (value))
{
case CONST_DECL:
write_integer_cst (DECL_INITIAL (value));
break;
case INTEGER_CST:
gcc_assert (!same_type_p (TREE_TYPE (value), boolean_type_node)
|| integer_zerop (value) || integer_onep (value));
write_integer_cst (value);
break;
case REAL_CST:
write_real_cst (value);
break;
default:
gcc_unreachable ();
}
write_char ('E');
}
/* Non-terminal <template-arg>.
<template-arg> ::= <type> # type
::= L <type> </value/ number> E # literal
::= LZ <name> E # external name
::= X <expression> E # expression */
static void
write_template_arg (tree node)
{
enum tree_code code = TREE_CODE (node);
MANGLE_TRACE_TREE ("template-arg", node);
/* A template template parameter's argument list contains TREE_LIST
nodes of which the value field is the actual argument. */
if (code == TREE_LIST)
{
node = TREE_VALUE (node);
/* If it's a decl, deal with its type instead. */
if (DECL_P (node))
{
node = TREE_TYPE (node);
code = TREE_CODE (node);
}
}
if (TREE_CODE (node) == NOP_EXPR
&& TREE_CODE (TREE_TYPE (node)) == REFERENCE_TYPE)
{
/* Template parameters can be of reference type. To maintain
internal consistency, such arguments use a conversion from
address of object to reference type. */
gcc_assert (TREE_CODE (TREE_OPERAND (node, 0)) == ADDR_EXPR);
if (abi_version_at_least (2))
node = TREE_OPERAND (TREE_OPERAND (node, 0), 0);
else
G.need_abi_warning = 1;
}
if (TYPE_P (node))
write_type (node);
else if (code == TEMPLATE_DECL)
/* A template appearing as a template arg is a template template arg. */
write_template_template_arg (node);
else if ((TREE_CODE_CLASS (code) == tcc_constant && code != PTRMEM_CST)
|| (abi_version_at_least (2) && code == CONST_DECL))
write_template_arg_literal (node);
else if (DECL_P (node))
{
/* Until ABI version 2, non-type template arguments of
enumeration type were mangled using their names. */
if (code == CONST_DECL && !abi_version_at_least (2))
G.need_abi_warning = 1;
write_char ('L');
/* Until ABI version 3, the underscore before the mangled name
was incorrectly omitted. */
if (!abi_version_at_least (3))
{
G.need_abi_warning = 1;
write_char ('Z');
}
else
write_string ("_Z");
write_encoding (node);
write_char ('E');
}
else
{
/* Template arguments may be expressions. */
write_char ('X');
write_expression (node);
write_char ('E');
}
}
/* <template-template-arg>
::= <name>
::= <substitution> */
static void
write_template_template_arg (const tree decl)
{
MANGLE_TRACE_TREE ("template-template-arg", decl);
if (find_substitution (decl))
return;
write_name (decl, /*ignore_local_scope=*/0);
add_substitution (decl);
}
/* Non-terminal <array-type>. TYPE is an ARRAY_TYPE.
<array-type> ::= A [</dimension/ number>] _ </element/ type>
::= A <expression> _ </element/ type>
"Array types encode the dimension (number of elements) and the
element type. For variable length arrays, the dimension (but not
the '_' separator) is omitted." */
static void
write_array_type (const tree type)
{
write_char ('A');
if (TYPE_DOMAIN (type))
{
tree index_type;
tree max;
index_type = TYPE_DOMAIN (type);
/* The INDEX_TYPE gives the upper and lower bounds of the
array. */
max = TYPE_MAX_VALUE (index_type);
if (TREE_CODE (max) == INTEGER_CST)
{
/* The ABI specifies that we should mangle the number of
elements in the array, not the largest allowed index. */
max = size_binop (PLUS_EXPR, max, size_one_node);
write_unsigned_number (tree_low_cst (max, 1));
}
else
{
max = TREE_OPERAND (max, 0);
if (!abi_version_at_least (2))
{
/* value_dependent_expression_p presumes nothing is
dependent when PROCESSING_TEMPLATE_DECL is zero. */
++processing_template_decl;
if (!value_dependent_expression_p (max))
G.need_abi_warning = 1;
--processing_template_decl;
}
write_expression (max);
}
}
write_char ('_');
write_type (TREE_TYPE (type));
}
/* Non-terminal <pointer-to-member-type> for pointer-to-member
variables. TYPE is a pointer-to-member POINTER_TYPE.
<pointer-to-member-type> ::= M </class/ type> </member/ type> */
static void
write_pointer_to_member_type (const tree type)
{
write_char ('M');
write_type (TYPE_PTRMEM_CLASS_TYPE (type));
write_type (TYPE_PTRMEM_POINTED_TO_TYPE (type));
}
/* Non-terminal <template-param>. PARM is a TEMPLATE_TYPE_PARM,
TEMPLATE_TEMPLATE_PARM, BOUND_TEMPLATE_TEMPLATE_PARM or a
TEMPLATE_PARM_INDEX.
<template-param> ::= T </parameter/ number> _ */
static void
write_template_param (const tree parm)
{
int parm_index;
int parm_level;
tree parm_type = NULL_TREE;
MANGLE_TRACE_TREE ("template-parm", parm);
switch (TREE_CODE (parm))
{
case TEMPLATE_TYPE_PARM:
case TEMPLATE_TEMPLATE_PARM:
case BOUND_TEMPLATE_TEMPLATE_PARM:
parm_index = TEMPLATE_TYPE_IDX (parm);
parm_level = TEMPLATE_TYPE_LEVEL (parm);
break;
case TEMPLATE_PARM_INDEX:
parm_index = TEMPLATE_PARM_IDX (parm);
parm_level = TEMPLATE_PARM_LEVEL (parm);
parm_type = TREE_TYPE (TEMPLATE_PARM_DECL (parm));
break;
default:
gcc_unreachable ();
}
write_char ('T');
/* NUMBER as it appears in the mangling is (-1)-indexed, with the
earliest template param denoted by `_'. */
if (parm_index > 0)
write_unsigned_number (parm_index - 1);
write_char ('_');
}
/* <template-template-param>
::= <template-param>
::= <substitution> */
static void
write_template_template_param (const tree parm)
{
tree template = NULL_TREE;
/* PARM, a TEMPLATE_TEMPLATE_PARM, is an instantiation of the
template template parameter. The substitution candidate here is
only the template. */
if (TREE_CODE (parm) == BOUND_TEMPLATE_TEMPLATE_PARM)
{
template
= TI_TEMPLATE (TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (parm));
if (find_substitution (template))
return;
}
/* <template-param> encodes only the template parameter position,
not its template arguments, which is fine here. */
write_template_param (parm);
if (template)
add_substitution (template);
}
/* Non-terminal <substitution>.
<substitution> ::= S <seq-id> _
::= S_ */
static void
write_substitution (const int seq_id)
{
MANGLE_TRACE ("substitution", "");
write_char ('S');
if (seq_id > 0)
write_number (seq_id - 1, /*unsigned=*/1, 36);
write_char ('_');
}
/* Start mangling ENTITY. */
static inline void
start_mangling (const tree entity, const bool ident_p)
{
G.entity = entity;
G.need_abi_warning = false;
if (!ident_p)
{
obstack_free (&name_obstack, name_base);
mangle_obstack = &name_obstack;
name_base = obstack_alloc (&name_obstack, 0);
}
else
mangle_obstack = &ident_hash->stack;
}
/* Done with mangling. Return the generated mangled name. If WARN is
true, and the name of G.entity will be mangled differently in a
future version of the ABI, issue a warning. */
static inline const char *
finish_mangling (const bool warn)
{
if (warn_abi && warn && G.need_abi_warning)
warning (OPT_Wabi, "the mangled name of %qD will change in a future "
"version of GCC",
G.entity);
/* Clear all the substitutions. */
VEC_truncate (tree, G.substitutions, 0);
/* Null-terminate the string. */
write_char ('\0');
return (const char *) obstack_finish (mangle_obstack);
}
/* Initialize data structures for mangling. */
void
init_mangle (void)
{
gcc_obstack_init (&name_obstack);
name_base = obstack_alloc (&name_obstack, 0);
G.substitutions = NULL;
/* Cache these identifiers for quick comparison when checking for
standard substitutions. */
subst_identifiers[SUBID_ALLOCATOR] = get_identifier ("allocator");
subst_identifiers[SUBID_BASIC_STRING] = get_identifier ("basic_string");
subst_identifiers[SUBID_CHAR_TRAITS] = get_identifier ("char_traits");
subst_identifiers[SUBID_BASIC_ISTREAM] = get_identifier ("basic_istream");
subst_identifiers[SUBID_BASIC_OSTREAM] = get_identifier ("basic_ostream");
subst_identifiers[SUBID_BASIC_IOSTREAM] = get_identifier ("basic_iostream");
}
/* Generate the mangled name of DECL. */
static const char *
mangle_decl_string (const tree decl)
{
const char *result;
start_mangling (decl, /*ident_p=*/true);
if (TREE_CODE (decl) == TYPE_DECL)
write_type (TREE_TYPE (decl));
else
write_mangled_name (decl, true);
result = finish_mangling (/*warn=*/true);
if (DEBUG_MANGLE)
fprintf (stderr, "mangle_decl_string = '%s'\n\n", result);
return result;
}
/* Like get_identifier, except that NAME is assumed to have been
allocated on the obstack used by the identifier hash table. */
static inline tree
get_identifier_nocopy (const char *name)
{
hashnode ht_node = ht_lookup (ident_hash, (const unsigned char *) name,
strlen (name), HT_ALLOCED);
return HT_IDENT_TO_GCC_IDENT (ht_node);
}
/* Create an identifier for the external mangled name of DECL. */
void
mangle_decl (const tree decl)
{
SET_DECL_ASSEMBLER_NAME (decl,
get_identifier_nocopy (mangle_decl_string (decl)));
}
/* Generate the mangled representation of TYPE. */
const char *
mangle_type_string (const tree type)
{
const char *result;
start_mangling (type, /*ident_p=*/false);
write_type (type);
result = finish_mangling (/*warn=*/false);
if (DEBUG_MANGLE)
fprintf (stderr, "mangle_type_string = '%s'\n\n", result);
return result;
}
/* Create an identifier for the mangled name of a special component
for belonging to TYPE. CODE is the ABI-specified code for this
component. */
static tree
mangle_special_for_type (const tree type, const char *code)
{
const char *result;
/* We don't have an actual decl here for the special component, so
we can't just process the <encoded-name>. Instead, fake it. */
start_mangling (type, /*ident_p=*/true);
/* Start the mangling. */
write_string ("_Z");
write_string (code);
/* Add the type. */
write_type (type);
result = finish_mangling (/*warn=*/false);
if (DEBUG_MANGLE)
fprintf (stderr, "mangle_special_for_type = %s\n\n", result);
return get_identifier_nocopy (result);
}
/* Create an identifier for the mangled representation of the typeinfo
structure for TYPE. */
tree
mangle_typeinfo_for_type (const tree type)
{
return mangle_special_for_type (type, "TI");
}
/* Create an identifier for the mangled name of the NTBS containing
the mangled name of TYPE. */
tree
mangle_typeinfo_string_for_type (const tree type)
{
return mangle_special_for_type (type, "TS");
}
/* Create an identifier for the mangled name of the vtable for TYPE. */
tree
mangle_vtbl_for_type (const tree type)
{
return mangle_special_for_type (type, "TV");
}
/* Returns an identifier for the mangled name of the VTT for TYPE. */
tree
mangle_vtt_for_type (const tree type)
{
return mangle_special_for_type (type, "TT");
}
/* Return an identifier for a construction vtable group. TYPE is
the most derived class in the hierarchy; BINFO is the base
subobject for which this construction vtable group will be used.
This mangling isn't part of the ABI specification; in the ABI
specification, the vtable group is dumped in the same COMDAT as the
main vtable, and is referenced only from that vtable, so it doesn't
need an external name. For binary formats without COMDAT sections,
though, we need external names for the vtable groups.
We use the production
<special-name> ::= CT <type> <offset number> _ <base type> */
tree
mangle_ctor_vtbl_for_type (const tree type, const tree binfo)
{
const char *result;
start_mangling (type, /*ident_p=*/true);
write_string ("_Z");
write_string ("TC");
write_type (type);
write_integer_cst (BINFO_OFFSET (binfo));
write_char ('_');
write_type (BINFO_TYPE (binfo));
result = finish_mangling (/*warn=*/false);
if (DEBUG_MANGLE)
fprintf (stderr, "mangle_ctor_vtbl_for_type = %s\n\n", result);
return get_identifier_nocopy (result);
}
/* Mangle a this pointer or result pointer adjustment.
<call-offset> ::= h <fixed offset number> _
::= v <fixed offset number> _ <virtual offset number> _ */
static void
mangle_call_offset (const tree fixed_offset, const tree virtual_offset)
{
write_char (virtual_offset ? 'v' : 'h');
/* For either flavor, write the fixed offset. */
write_integer_cst (fixed_offset);
write_char ('_');
/* For a virtual thunk, add the virtual offset. */
if (virtual_offset)
{
write_integer_cst (virtual_offset);
write_char ('_');
}
}
/* Return an identifier for the mangled name of a this-adjusting or
covariant thunk to FN_DECL. FIXED_OFFSET is the initial adjustment
to this used to find the vptr. If VIRTUAL_OFFSET is non-NULL, this
is a virtual thunk, and it is the vtbl offset in
bytes. THIS_ADJUSTING is nonzero for a this adjusting thunk and
zero for a covariant thunk. Note, that FN_DECL might be a covariant
thunk itself. A covariant thunk name always includes the adjustment
for the this pointer, even if there is none.
<special-name> ::= T <call-offset> <base encoding>
::= Tc <this_adjust call-offset> <result_adjust call-offset>
<base encoding> */
tree
mangle_thunk (tree fn_decl, const int this_adjusting, tree fixed_offset,
tree virtual_offset)
{
const char *result;
start_mangling (fn_decl, /*ident_p=*/true);
write_string ("_Z");
write_char ('T');
if (!this_adjusting)
{
/* Covariant thunk with no this adjustment */
write_char ('c');
mangle_call_offset (integer_zero_node, NULL_TREE);
mangle_call_offset (fixed_offset, virtual_offset);
}
else if (!DECL_THUNK_P (fn_decl))
/* Plain this adjusting thunk. */
mangle_call_offset (fixed_offset, virtual_offset);
else
{
/* This adjusting thunk to covariant thunk. */
write_char ('c');
mangle_call_offset (fixed_offset, virtual_offset);
fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn_decl));
virtual_offset = THUNK_VIRTUAL_OFFSET (fn_decl);
if (virtual_offset)
virtual_offset = BINFO_VPTR_FIELD (virtual_offset);
mangle_call_offset (fixed_offset, virtual_offset);
fn_decl = THUNK_TARGET (fn_decl);
}
/* Scoped name. */
write_encoding (fn_decl);
result = finish_mangling (/*warn=*/false);
if (DEBUG_MANGLE)
fprintf (stderr, "mangle_thunk = %s\n\n", result);
return get_identifier_nocopy (result);
}
/* This hash table maps TYPEs to the IDENTIFIER for a conversion
operator to TYPE. The nodes are IDENTIFIERs whose TREE_TYPE is the
TYPE. */
static GTY ((param_is (union tree_node))) htab_t conv_type_names;
/* Hash a node (VAL1) in the table. */
static hashval_t
hash_type (const void *val)
{
return (hashval_t) TYPE_UID (TREE_TYPE ((tree) val));
}
/* Compare VAL1 (a node in the table) with VAL2 (a TYPE). */
static int
compare_type (const void *val1, const void *val2)
{
return TREE_TYPE ((tree) val1) == (tree) val2;
}
/* Return an identifier for the mangled unqualified name for a
conversion operator to TYPE. This mangling is not specified by the
ABI spec; it is only used internally. */
tree
mangle_conv_op_name_for_type (const tree type)
{
void **slot;
tree identifier;
if (type == error_mark_node)
return error_mark_node;
if (conv_type_names == NULL)
conv_type_names = htab_create_ggc (31, &hash_type, &compare_type, NULL);
slot = htab_find_slot_with_hash (conv_type_names, type,
(hashval_t) TYPE_UID (type), INSERT);
identifier = (tree)*slot;
if (!identifier)
{
char buffer[64];
/* Create a unique name corresponding to TYPE. */
sprintf (buffer, "operator %lu",
(unsigned long) htab_elements (conv_type_names));
identifier = get_identifier (buffer);
*slot = identifier;
/* Hang TYPE off the identifier so it can be found easily later
when performing conversions. */
TREE_TYPE (identifier) = type;
/* Set bits on the identifier so we know later it's a conversion. */
IDENTIFIER_OPNAME_P (identifier) = 1;
IDENTIFIER_TYPENAME_P (identifier) = 1;
}
return identifier;
}
/* Return an identifier for the name of an initialization guard
variable for indicated VARIABLE. */
tree
mangle_guard_variable (const tree variable)
{
start_mangling (variable, /*ident_p=*/true);
write_string ("_ZGV");
if (strncmp (IDENTIFIER_POINTER (DECL_NAME (variable)), "_ZGR", 4) == 0)
/* The name of a guard variable for a reference temporary should refer
to the reference, not the temporary. */
write_string (IDENTIFIER_POINTER (DECL_NAME (variable)) + 4);
else
write_name (variable, /*ignore_local_scope=*/0);
return get_identifier_nocopy (finish_mangling (/*warn=*/false));
}
/* Return an identifier for the name of a temporary variable used to
initialize a static reference. This isn't part of the ABI, but we might
as well call them something readable. */
tree
mangle_ref_init_variable (const tree variable)
{
start_mangling (variable, /*ident_p=*/true);
write_string ("_ZGR");
write_name (variable, /*ignore_local_scope=*/0);
return get_identifier_nocopy (finish_mangling (/*warn=*/false));
}
/* Foreign language type mangling section. */
/* How to write the type codes for the integer Java type. */
static void
write_java_integer_type_codes (const tree type)
{
if (type == java_int_type_node)
write_char ('i');
else if (type == java_short_type_node)
write_char ('s');
else if (type == java_byte_type_node)
write_char ('c');
else if (type == java_char_type_node)
write_char ('w');
else if (type == java_long_type_node)
write_char ('x');
else if (type == java_boolean_type_node)
write_char ('b');
else
gcc_unreachable ();
}
#include "gt-cp-mangle.h"