feb2cc805f
If an interrupt fires while writing the cmp entry we may have a partial entry. Work around this by using atomic_cmpset to set the new index. If it fails we need to set the previous index value and try again as the entry may be in an inconsistent state. This fixes messages similar to the following from syzkaller: bad comp 224 type 2163727253 Reviewed by: tuexen Sponsored by: DARPA, AFRL Differential Revision: https://reviews.freebsd.org/D19287
581 lines
15 KiB
C
581 lines
15 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (C) 2018 The FreeBSD Foundation. All rights reserved.
|
|
* Copyright (C) 2018, 2019 Andrew Turner
|
|
*
|
|
* This software was developed by Mitchell Horne under sponsorship of
|
|
* the FreeBSD Foundation.
|
|
*
|
|
* This software was developed by SRI International and the University of
|
|
* Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
|
|
* ("CTSRD"), as part of the DARPA CRASH research programme.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kcov.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/vm_param.h>
|
|
|
|
MALLOC_DEFINE(M_KCOV_INFO, "kcovinfo", "KCOV info type");
|
|
|
|
#define KCOV_ELEMENT_SIZE sizeof(uint64_t)
|
|
|
|
/*
|
|
* To know what the code can safely perform at any point in time we use a
|
|
* state machine. In the normal case the state transitions are:
|
|
*
|
|
* OPEN -> READY -> RUNNING -> DYING
|
|
* | | ^ | ^ ^
|
|
* | | +--------+ | |
|
|
* | +-------------------+ |
|
|
* +-----------------------------+
|
|
*
|
|
* The states are:
|
|
* OPEN: The kcov fd has been opened, but no buffer is available to store
|
|
* coverage data.
|
|
* READY: The buffer to store coverage data has been allocated. Userspace
|
|
* can set this by using ioctl(fd, KIOSETBUFSIZE, entries);. When
|
|
* this has been set the buffer can be written to by the kernel,
|
|
* and mmaped by userspace.
|
|
* RUNNING: The coverage probes are able to store coverage data in the buffer.
|
|
* This is entered with ioctl(fd, KIOENABLE, mode);. The READY state
|
|
* can be exited by ioctl(fd, KIODISABLE); or exiting the thread to
|
|
* return to the READY state to allow tracing to be reused, or by
|
|
* closing the kcov fd to enter the DYING state.
|
|
* DYING: The fd has been closed. All states can enter into this state when
|
|
* userspace closes the kcov fd.
|
|
*
|
|
* We need to be careful when moving into and out of the RUNNING state. As
|
|
* an interrupt may happen while this is happening the ordering of memory
|
|
* operations is important so struct kcov_info is valid for the tracing
|
|
* functions.
|
|
*
|
|
* When moving into the RUNNING state prior stores to struct kcov_info need
|
|
* to be observed before the state is set. This allows for interrupts that
|
|
* may call into one of the coverage functions to fire at any point while
|
|
* being enabled and see a consistent struct kcov_info.
|
|
*
|
|
* When moving out of the RUNNING state any later stores to struct kcov_info
|
|
* need to be observed after the state is set. As with entering this is to
|
|
* present a consistent struct kcov_info to interrupts.
|
|
*/
|
|
typedef enum {
|
|
KCOV_STATE_INVALID,
|
|
KCOV_STATE_OPEN, /* The device is open, but with no buffer */
|
|
KCOV_STATE_READY, /* The buffer has been allocated */
|
|
KCOV_STATE_RUNNING, /* Recording trace data */
|
|
KCOV_STATE_DYING, /* The fd was closed */
|
|
} kcov_state_t;
|
|
|
|
/*
|
|
* (l) Set while holding the kcov_lock mutex and not in the RUNNING state.
|
|
* (o) Only set once while in the OPEN state. Cleaned up while in the DYING
|
|
* state, and with no thread associated with the struct kcov_info.
|
|
* (s) Set atomically to enter or exit the RUNNING state, non-atomically
|
|
* otherwise. See above for a description of the other constraints while
|
|
* moving into or out of the RUNNING state.
|
|
*/
|
|
struct kcov_info {
|
|
struct thread *thread; /* (l) */
|
|
vm_object_t bufobj; /* (o) */
|
|
vm_offset_t kvaddr; /* (o) */
|
|
size_t entries; /* (o) */
|
|
size_t bufsize; /* (o) */
|
|
kcov_state_t state; /* (s) */
|
|
int mode; /* (l) */
|
|
};
|
|
|
|
/* Prototypes */
|
|
static d_open_t kcov_open;
|
|
static d_close_t kcov_close;
|
|
static d_mmap_single_t kcov_mmap_single;
|
|
static d_ioctl_t kcov_ioctl;
|
|
|
|
static int kcov_alloc(struct kcov_info *info, size_t entries);
|
|
static void kcov_free(struct kcov_info *info);
|
|
static void kcov_init(const void *unused);
|
|
|
|
static struct cdevsw kcov_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_open = kcov_open,
|
|
.d_close = kcov_close,
|
|
.d_mmap_single = kcov_mmap_single,
|
|
.d_ioctl = kcov_ioctl,
|
|
.d_name = "kcov",
|
|
};
|
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, kcov, CTLFLAG_RW, 0, "Kernel coverage");
|
|
|
|
static u_int kcov_max_entries = KCOV_MAXENTRIES;
|
|
SYSCTL_UINT(_kern_kcov, OID_AUTO, max_entries, CTLFLAG_RW,
|
|
&kcov_max_entries, 0,
|
|
"Maximum number of entries in the kcov buffer");
|
|
|
|
static struct mtx kcov_lock;
|
|
static int active_count;
|
|
|
|
static struct kcov_info *
|
|
get_kinfo(struct thread *td)
|
|
{
|
|
struct kcov_info *info;
|
|
|
|
/* We might have a NULL thread when releasing the secondary CPUs */
|
|
if (td == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* We are in an interrupt, stop tracing as it is not explicitly
|
|
* part of a syscall.
|
|
*/
|
|
if (td->td_intr_nesting_level > 0 || td->td_intr_frame != NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* If info is NULL or the state is not running we are not tracing.
|
|
*/
|
|
info = td->td_kcov_info;
|
|
if (info == NULL ||
|
|
atomic_load_acq_int(&info->state) != KCOV_STATE_RUNNING)
|
|
return (NULL);
|
|
|
|
return (info);
|
|
}
|
|
|
|
static void
|
|
trace_pc(uintptr_t ret)
|
|
{
|
|
struct thread *td;
|
|
struct kcov_info *info;
|
|
uint64_t *buf, index;
|
|
|
|
td = curthread;
|
|
info = get_kinfo(td);
|
|
if (info == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Check we are in the PC-trace mode.
|
|
*/
|
|
if (info->mode != KCOV_MODE_TRACE_PC)
|
|
return;
|
|
|
|
KASSERT(info->kvaddr != 0,
|
|
("__sanitizer_cov_trace_pc: NULL buf while running"));
|
|
|
|
buf = (uint64_t *)info->kvaddr;
|
|
|
|
/* The first entry of the buffer holds the index */
|
|
index = buf[0];
|
|
if (index + 2 > info->entries)
|
|
return;
|
|
|
|
buf[index + 1] = ret;
|
|
buf[0] = index + 1;
|
|
}
|
|
|
|
static bool
|
|
trace_cmp(uint64_t type, uint64_t arg1, uint64_t arg2, uint64_t ret)
|
|
{
|
|
struct thread *td;
|
|
struct kcov_info *info;
|
|
uint64_t *buf, index;
|
|
|
|
td = curthread;
|
|
info = get_kinfo(td);
|
|
if (info == NULL)
|
|
return (false);
|
|
|
|
/*
|
|
* Check we are in the comparison-trace mode.
|
|
*/
|
|
if (info->mode != KCOV_MODE_TRACE_CMP)
|
|
return (false);
|
|
|
|
KASSERT(info->kvaddr != 0,
|
|
("__sanitizer_cov_trace_pc: NULL buf while running"));
|
|
|
|
buf = (uint64_t *)info->kvaddr;
|
|
|
|
/* The first entry of the buffer holds the index */
|
|
index = buf[0];
|
|
|
|
/* Check we have space to store all elements */
|
|
if (index * 4 + 4 + 1 > info->entries)
|
|
return (false);
|
|
|
|
while (1) {
|
|
buf[index * 4 + 1] = type;
|
|
buf[index * 4 + 2] = arg1;
|
|
buf[index * 4 + 3] = arg2;
|
|
buf[index * 4 + 4] = ret;
|
|
|
|
if (atomic_cmpset_64(&buf[0], index, index + 1))
|
|
break;
|
|
buf[0] = index;
|
|
}
|
|
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* The fd is being closed, cleanup everything we can.
|
|
*/
|
|
static void
|
|
kcov_mmap_cleanup(void *arg)
|
|
{
|
|
struct kcov_info *info = arg;
|
|
struct thread *thread;
|
|
|
|
mtx_lock_spin(&kcov_lock);
|
|
/*
|
|
* Move to KCOV_STATE_DYING to stop adding new entries.
|
|
*
|
|
* If the thread is running we need to wait until thread exit to
|
|
* clean up as it may currently be adding a new entry. If this is
|
|
* the case being in KCOV_STATE_DYING will signal that the buffer
|
|
* needs to be cleaned up.
|
|
*/
|
|
atomic_store_int(&info->state, KCOV_STATE_DYING);
|
|
atomic_thread_fence_seq_cst();
|
|
thread = info->thread;
|
|
mtx_unlock_spin(&kcov_lock);
|
|
|
|
if (thread != NULL)
|
|
return;
|
|
|
|
/*
|
|
* We can safely clean up the info struct as it is in the
|
|
* KCOV_STATE_DYING state with no thread associated.
|
|
*
|
|
* The KCOV_STATE_DYING stops new threads from using it.
|
|
* The lack of a thread means nothing is currently using the buffers.
|
|
*/
|
|
kcov_free(info);
|
|
}
|
|
|
|
static int
|
|
kcov_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
|
|
{
|
|
struct kcov_info *info;
|
|
int error;
|
|
|
|
info = malloc(sizeof(struct kcov_info), M_KCOV_INFO, M_ZERO | M_WAITOK);
|
|
info->state = KCOV_STATE_OPEN;
|
|
info->thread = NULL;
|
|
info->mode = -1;
|
|
|
|
if ((error = devfs_set_cdevpriv(info, kcov_mmap_cleanup)) != 0)
|
|
kcov_mmap_cleanup(info);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
kcov_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
|
|
{
|
|
struct kcov_info *info;
|
|
int error;
|
|
|
|
|
|
if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
|
|
return (error);
|
|
|
|
KASSERT(info != NULL, ("kcov_close with no kcov_info structure"));
|
|
|
|
/* Trying to close, but haven't disabled */
|
|
if (info->state == KCOV_STATE_RUNNING)
|
|
return (EBUSY);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
kcov_mmap_single(struct cdev *dev, vm_ooffset_t *offset, vm_size_t size,
|
|
struct vm_object **object, int nprot)
|
|
{
|
|
struct kcov_info *info;
|
|
int error;
|
|
|
|
if ((nprot & (PROT_EXEC | PROT_READ | PROT_WRITE)) !=
|
|
(PROT_READ | PROT_WRITE))
|
|
return (EINVAL);
|
|
|
|
if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
|
|
return (error);
|
|
|
|
if (info->kvaddr == 0 || size / KCOV_ELEMENT_SIZE != info->entries)
|
|
return (EINVAL);
|
|
|
|
vm_object_reference(info->bufobj);
|
|
*offset = 0;
|
|
*object = info->bufobj;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
kcov_alloc(struct kcov_info *info, size_t entries)
|
|
{
|
|
size_t n, pages;
|
|
vm_page_t m;
|
|
|
|
KASSERT(info->kvaddr == 0, ("kcov_alloc: Already have a buffer"));
|
|
KASSERT(info->state == KCOV_STATE_OPEN,
|
|
("kcov_alloc: Not in open state (%x)", info->state));
|
|
|
|
if (entries < 2 || entries > kcov_max_entries)
|
|
return (EINVAL);
|
|
|
|
/* Align to page size so mmap can't access other kernel memory */
|
|
info->bufsize = roundup2(entries * KCOV_ELEMENT_SIZE, PAGE_SIZE);
|
|
pages = info->bufsize / PAGE_SIZE;
|
|
|
|
if ((info->kvaddr = kva_alloc(info->bufsize)) == 0)
|
|
return (ENOMEM);
|
|
|
|
info->bufobj = vm_pager_allocate(OBJT_PHYS, 0, info->bufsize,
|
|
PROT_READ | PROT_WRITE, 0, curthread->td_ucred);
|
|
|
|
VM_OBJECT_WLOCK(info->bufobj);
|
|
for (n = 0; n < pages; n++) {
|
|
m = vm_page_grab(info->bufobj, n,
|
|
VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_WIRED);
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
pmap_qenter(info->kvaddr + n * PAGE_SIZE, &m, 1);
|
|
}
|
|
VM_OBJECT_WUNLOCK(info->bufobj);
|
|
|
|
info->entries = entries;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
kcov_free(struct kcov_info *info)
|
|
{
|
|
vm_page_t m;
|
|
size_t i;
|
|
|
|
if (info->kvaddr != 0) {
|
|
pmap_qremove(info->kvaddr, info->bufsize / PAGE_SIZE);
|
|
kva_free(info->kvaddr, info->bufsize);
|
|
}
|
|
if (info->bufobj != NULL) {
|
|
VM_OBJECT_WLOCK(info->bufobj);
|
|
m = vm_page_lookup(info->bufobj, 0);
|
|
for (i = 0; i < info->bufsize / PAGE_SIZE; i++) {
|
|
vm_page_lock(m);
|
|
vm_page_unwire_noq(m);
|
|
vm_page_unlock(m);
|
|
|
|
m = vm_page_next(m);
|
|
}
|
|
VM_OBJECT_WUNLOCK(info->bufobj);
|
|
vm_object_deallocate(info->bufobj);
|
|
}
|
|
free(info, M_KCOV_INFO);
|
|
}
|
|
|
|
static int
|
|
kcov_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag __unused,
|
|
struct thread *td)
|
|
{
|
|
struct kcov_info *info;
|
|
int mode, error;
|
|
|
|
if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
|
|
return (error);
|
|
|
|
if (cmd == KIOSETBUFSIZE) {
|
|
/*
|
|
* Set the size of the coverage buffer. Should be called
|
|
* before enabling coverage collection for that thread.
|
|
*/
|
|
if (info->state != KCOV_STATE_OPEN) {
|
|
return (EBUSY);
|
|
}
|
|
error = kcov_alloc(info, *(u_int *)data);
|
|
if (error == 0)
|
|
info->state = KCOV_STATE_READY;
|
|
return (error);
|
|
}
|
|
|
|
mtx_lock_spin(&kcov_lock);
|
|
switch (cmd) {
|
|
case KIOENABLE:
|
|
if (info->state != KCOV_STATE_READY) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
if (td->td_kcov_info != NULL) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
mode = *(int *)data;
|
|
if (mode != KCOV_MODE_TRACE_PC && mode != KCOV_MODE_TRACE_CMP) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Lets hope nobody opens this 2 billion times */
|
|
KASSERT(active_count < INT_MAX,
|
|
("%s: Open too many times", __func__));
|
|
active_count++;
|
|
if (active_count == 1) {
|
|
cov_register_pc(&trace_pc);
|
|
cov_register_cmp(&trace_cmp);
|
|
}
|
|
|
|
KASSERT(info->thread == NULL,
|
|
("Enabling kcov when already enabled"));
|
|
info->thread = td;
|
|
info->mode = mode;
|
|
/*
|
|
* Ensure the mode has been set before starting coverage
|
|
* tracing.
|
|
*/
|
|
atomic_store_rel_int(&info->state, KCOV_STATE_RUNNING);
|
|
td->td_kcov_info = info;
|
|
break;
|
|
case KIODISABLE:
|
|
/* Only the currently enabled thread may disable itself */
|
|
if (info->state != KCOV_STATE_RUNNING ||
|
|
info != td->td_kcov_info) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
KASSERT(active_count > 0, ("%s: Open count is zero", __func__));
|
|
active_count--;
|
|
if (active_count == 0) {
|
|
cov_unregister_pc();
|
|
cov_unregister_cmp();
|
|
}
|
|
|
|
td->td_kcov_info = NULL;
|
|
atomic_store_int(&info->state, KCOV_STATE_READY);
|
|
/*
|
|
* Ensure we have exited the READY state before clearing the
|
|
* rest of the info struct.
|
|
*/
|
|
atomic_thread_fence_rel();
|
|
info->mode = -1;
|
|
info->thread = NULL;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
mtx_unlock_spin(&kcov_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
kcov_thread_dtor(void *arg __unused, struct thread *td)
|
|
{
|
|
struct kcov_info *info;
|
|
|
|
info = td->td_kcov_info;
|
|
if (info == NULL)
|
|
return;
|
|
|
|
mtx_lock_spin(&kcov_lock);
|
|
KASSERT(active_count > 0, ("%s: Open count is zero", __func__));
|
|
active_count--;
|
|
if (active_count == 0) {
|
|
cov_unregister_pc();
|
|
cov_unregister_cmp();
|
|
}
|
|
td->td_kcov_info = NULL;
|
|
if (info->state != KCOV_STATE_DYING) {
|
|
/*
|
|
* The kcov file is still open. Mark it as unused and
|
|
* wait for it to be closed before cleaning up.
|
|
*/
|
|
atomic_store_int(&info->state, KCOV_STATE_READY);
|
|
atomic_thread_fence_seq_cst();
|
|
/* This info struct is unused */
|
|
info->thread = NULL;
|
|
mtx_unlock_spin(&kcov_lock);
|
|
return;
|
|
}
|
|
mtx_unlock_spin(&kcov_lock);
|
|
|
|
/*
|
|
* We can safely clean up the info struct as it is in the
|
|
* KCOV_STATE_DYING state where the info struct is associated with
|
|
* the current thread that's about to exit.
|
|
*
|
|
* The KCOV_STATE_DYING stops new threads from using it.
|
|
* It also stops the current thread from trying to use the info struct.
|
|
*/
|
|
kcov_free(info);
|
|
}
|
|
|
|
static void
|
|
kcov_init(const void *unused)
|
|
{
|
|
struct make_dev_args args;
|
|
struct cdev *dev;
|
|
|
|
mtx_init(&kcov_lock, "kcov lock", NULL, MTX_SPIN);
|
|
|
|
make_dev_args_init(&args);
|
|
args.mda_devsw = &kcov_cdevsw;
|
|
args.mda_uid = UID_ROOT;
|
|
args.mda_gid = GID_WHEEL;
|
|
args.mda_mode = 0600;
|
|
if (make_dev_s(&args, &dev, "kcov") != 0) {
|
|
printf("%s", "Failed to create kcov device");
|
|
return;
|
|
}
|
|
|
|
EVENTHANDLER_REGISTER(thread_dtor, kcov_thread_dtor, NULL,
|
|
EVENTHANDLER_PRI_ANY);
|
|
}
|
|
|
|
SYSINIT(kcovdev, SI_SUB_LAST, SI_ORDER_ANY, kcov_init, NULL);
|