freebsd-skq/sys/net/if_vlan.c
2019-10-13 15:15:09 +00:00

2066 lines
52 KiB
C

/*-
* Copyright 1998 Massachusetts Institute of Technology
* Copyright 2012 ADARA Networks, Inc.
* Copyright 2017 Dell EMC Isilon
*
* Portions of this software were developed by Robert N. M. Watson under
* contract to ADARA Networks, Inc.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission. M.I.T. makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
* This is sort of sneaky in the implementation, since
* we need to pretend to be enough of an Ethernet implementation
* to make arp work. The way we do this is by telling everyone
* that we are an Ethernet, and then catch the packets that
* ether_output() sends to us via if_transmit(), rewrite them for
* use by the real outgoing interface, and ask it to send them.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_kern_tls.h"
#include "opt_vlan.h"
#include "opt_ratelimit.h"
#include <sys/param.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rmlock.h>
#include <sys/priv.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/sx.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_clone.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/vnet.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#define VLAN_DEF_HWIDTH 4
#define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST)
#define UP_AND_RUNNING(ifp) \
((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
CK_SLIST_HEAD(ifvlanhead, ifvlan);
struct ifvlantrunk {
struct ifnet *parent; /* parent interface of this trunk */
struct mtx lock;
#ifdef VLAN_ARRAY
#define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1)
struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */
#else
struct ifvlanhead *hash; /* dynamic hash-list table */
uint16_t hmask;
uint16_t hwidth;
#endif
int refcnt;
};
#if defined(KERN_TLS) || defined(RATELIMIT)
struct vlan_snd_tag {
struct m_snd_tag com;
struct m_snd_tag *tag;
};
static inline struct vlan_snd_tag *
mst_to_vst(struct m_snd_tag *mst)
{
return (__containerof(mst, struct vlan_snd_tag, com));
}
#endif
/*
* This macro provides a facility to iterate over every vlan on a trunk with
* the assumption that none will be added/removed during iteration.
*/
#ifdef VLAN_ARRAY
#define VLAN_FOREACH(_ifv, _trunk) \
size_t _i; \
for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
#else /* VLAN_ARRAY */
#define VLAN_FOREACH(_ifv, _trunk) \
struct ifvlan *_next; \
size_t _i; \
for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
#endif /* VLAN_ARRAY */
/*
* This macro provides a facility to iterate over every vlan on a trunk while
* also modifying the number of vlans on the trunk. The iteration continues
* until some condition is met or there are no more vlans on the trunk.
*/
#ifdef VLAN_ARRAY
/* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
#define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
size_t _i; \
for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
if (((_ifv) = (_trunk)->vlans[_i]))
#else /* VLAN_ARRAY */
/*
* The hash table case is more complicated. We allow for the hash table to be
* modified (i.e. vlans removed) while we are iterating over it. To allow for
* this we must restart the iteration every time we "touch" something during
* the iteration, since removal will resize the hash table and invalidate our
* current position. If acting on the touched element causes the trunk to be
* emptied, then iteration also stops.
*/
#define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
size_t _i; \
bool _touch = false; \
for (_i = 0; \
!(_cond) && _i < (1 << (_trunk)->hwidth); \
_i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
(_touch = true))
#endif /* VLAN_ARRAY */
struct vlan_mc_entry {
struct sockaddr_dl mc_addr;
CK_SLIST_ENTRY(vlan_mc_entry) mc_entries;
struct epoch_context mc_epoch_ctx;
};
struct ifvlan {
struct ifvlantrunk *ifv_trunk;
struct ifnet *ifv_ifp;
#define TRUNK(ifv) ((ifv)->ifv_trunk)
#define PARENT(ifv) ((ifv)->ifv_trunk->parent)
void *ifv_cookie;
int ifv_pflags; /* special flags we have set on parent */
int ifv_capenable;
int ifv_encaplen; /* encapsulation length */
int ifv_mtufudge; /* MTU fudged by this much */
int ifv_mintu; /* min transmission unit */
uint16_t ifv_proto; /* encapsulation ethertype */
uint16_t ifv_tag; /* tag to apply on packets leaving if */
uint16_t ifv_vid; /* VLAN ID */
uint8_t ifv_pcp; /* Priority Code Point (PCP). */
struct task lladdr_task;
CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
#ifndef VLAN_ARRAY
CK_SLIST_ENTRY(ifvlan) ifv_list;
#endif
};
/* Special flags we should propagate to parent. */
static struct {
int flag;
int (*func)(struct ifnet *, int);
} vlan_pflags[] = {
{IFF_PROMISC, ifpromisc},
{IFF_ALLMULTI, if_allmulti},
{0, NULL}
};
extern int vlan_mtag_pcp;
static const char vlanname[] = "vlan";
static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
static eventhandler_tag ifdetach_tag;
static eventhandler_tag iflladdr_tag;
/*
* if_vlan uses two module-level synchronizations primitives to allow concurrent
* modification of vlan interfaces and (mostly) allow for vlans to be destroyed
* while they are being used for tx/rx. To accomplish this in a way that has
* acceptable performance and cooperation with other parts of the network stack
* there is a non-sleepable epoch(9) and an sx(9).
*
* The performance-sensitive paths that warrant using the epoch(9) are
* vlan_transmit and vlan_input. Both have to check for the vlan interface's
* existence using if_vlantrunk, and being in the network tx/rx paths the use
* of an epoch(9) gives a measureable improvement in performance.
*
* The reason for having an sx(9) is mostly because there are still areas that
* must be sleepable and also have safe concurrent access to a vlan interface.
* Since the sx(9) exists, it is used by default in most paths unless sleeping
* is not permitted, or if it is not clear whether sleeping is permitted.
*
*/
#define _VLAN_SX_ID ifv_sx
static struct sx _VLAN_SX_ID;
#define VLAN_LOCKING_INIT() \
sx_init(&_VLAN_SX_ID, "vlan_sx")
#define VLAN_LOCKING_DESTROY() \
sx_destroy(&_VLAN_SX_ID)
#define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID)
#define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID)
#define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID)
#define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID)
#define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
#define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
#define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED)
/*
* We also have a per-trunk mutex that should be acquired when changing
* its state.
*/
#define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
#define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock)
#define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock)
#define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock)
#define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED);
/*
* The VLAN_ARRAY substitutes the dynamic hash with a static array
* with 4096 entries. In theory this can give a boost in processing,
* however in practice it does not. Probably this is because the array
* is too big to fit into CPU cache.
*/
#ifndef VLAN_ARRAY
static void vlan_inithash(struct ifvlantrunk *trunk);
static void vlan_freehash(struct ifvlantrunk *trunk);
static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
uint16_t vid);
#endif
static void trunk_destroy(struct ifvlantrunk *trunk);
static void vlan_init(void *foo);
static void vlan_input(struct ifnet *ifp, struct mbuf *m);
static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
#if defined(KERN_TLS) || defined(RATELIMIT)
static int vlan_snd_tag_alloc(struct ifnet *,
union if_snd_tag_alloc_params *, struct m_snd_tag **);
static int vlan_snd_tag_modify(struct m_snd_tag *,
union if_snd_tag_modify_params *);
static int vlan_snd_tag_query(struct m_snd_tag *,
union if_snd_tag_query_params *);
static void vlan_snd_tag_free(struct m_snd_tag *);
#endif
static void vlan_qflush(struct ifnet *ifp);
static int vlan_setflag(struct ifnet *ifp, int flag, int status,
int (*func)(struct ifnet *, int));
static int vlan_setflags(struct ifnet *ifp, int status);
static int vlan_setmulti(struct ifnet *ifp);
static int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
static int vlan_output(struct ifnet *ifp, struct mbuf *m,
const struct sockaddr *dst, struct route *ro);
static void vlan_unconfig(struct ifnet *ifp);
static void vlan_unconfig_locked(struct ifnet *ifp, int departing);
static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
static void vlan_link_state(struct ifnet *ifp);
static void vlan_capabilities(struct ifvlan *ifv);
static void vlan_trunk_capabilities(struct ifnet *ifp);
static struct ifnet *vlan_clone_match_ethervid(const char *, int *);
static int vlan_clone_match(struct if_clone *, const char *);
static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
static int vlan_clone_destroy(struct if_clone *, struct ifnet *);
static void vlan_ifdetach(void *arg, struct ifnet *ifp);
static void vlan_iflladdr(void *arg, struct ifnet *ifp);
static void vlan_lladdr_fn(void *arg, int pending);
static struct if_clone *vlan_cloner;
#ifdef VIMAGE
VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
#define V_vlan_cloner VNET(vlan_cloner)
#endif
static void
vlan_mc_free(struct epoch_context *ctx)
{
struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
free(mc, M_VLAN);
}
#ifndef VLAN_ARRAY
#define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
static void
vlan_inithash(struct ifvlantrunk *trunk)
{
int i, n;
/*
* The trunk must not be locked here since we call malloc(M_WAITOK).
* It is OK in case this function is called before the trunk struct
* gets hooked up and becomes visible from other threads.
*/
KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
("%s: hash already initialized", __func__));
trunk->hwidth = VLAN_DEF_HWIDTH;
n = 1 << trunk->hwidth;
trunk->hmask = n - 1;
trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
for (i = 0; i < n; i++)
CK_SLIST_INIT(&trunk->hash[i]);
}
static void
vlan_freehash(struct ifvlantrunk *trunk)
{
#ifdef INVARIANTS
int i;
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
for (i = 0; i < (1 << trunk->hwidth); i++)
KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
("%s: hash table not empty", __func__));
#endif
free(trunk->hash, M_VLAN);
trunk->hash = NULL;
trunk->hwidth = trunk->hmask = 0;
}
static int
vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
{
int i, b;
struct ifvlan *ifv2;
VLAN_XLOCK_ASSERT();
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
b = 1 << trunk->hwidth;
i = HASH(ifv->ifv_vid, trunk->hmask);
CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
if (ifv->ifv_vid == ifv2->ifv_vid)
return (EEXIST);
/*
* Grow the hash when the number of vlans exceeds half of the number of
* hash buckets squared. This will make the average linked-list length
* buckets/2.
*/
if (trunk->refcnt > (b * b) / 2) {
vlan_growhash(trunk, 1);
i = HASH(ifv->ifv_vid, trunk->hmask);
}
CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
trunk->refcnt++;
return (0);
}
static int
vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
{
int i, b;
struct ifvlan *ifv2;
VLAN_XLOCK_ASSERT();
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
b = 1 << trunk->hwidth;
i = HASH(ifv->ifv_vid, trunk->hmask);
CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
if (ifv2 == ifv) {
trunk->refcnt--;
CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
if (trunk->refcnt < (b * b) / 2)
vlan_growhash(trunk, -1);
return (0);
}
panic("%s: vlan not found\n", __func__);
return (ENOENT); /*NOTREACHED*/
}
/*
* Grow the hash larger or smaller if memory permits.
*/
static void
vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
{
struct ifvlan *ifv;
struct ifvlanhead *hash2;
int hwidth2, i, j, n, n2;
VLAN_XLOCK_ASSERT();
KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
if (howmuch == 0) {
/* Harmless yet obvious coding error */
printf("%s: howmuch is 0\n", __func__);
return;
}
hwidth2 = trunk->hwidth + howmuch;
n = 1 << trunk->hwidth;
n2 = 1 << hwidth2;
/* Do not shrink the table below the default */
if (hwidth2 < VLAN_DEF_HWIDTH)
return;
hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
if (hash2 == NULL) {
printf("%s: out of memory -- hash size not changed\n",
__func__);
return; /* We can live with the old hash table */
}
for (j = 0; j < n2; j++)
CK_SLIST_INIT(&hash2[j]);
for (i = 0; i < n; i++)
while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
j = HASH(ifv->ifv_vid, n2 - 1);
CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
}
NET_EPOCH_WAIT();
free(trunk->hash, M_VLAN);
trunk->hash = hash2;
trunk->hwidth = hwidth2;
trunk->hmask = n2 - 1;
if (bootverbose)
if_printf(trunk->parent,
"VLAN hash table resized from %d to %d buckets\n", n, n2);
}
static __inline struct ifvlan *
vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
{
struct ifvlan *ifv;
NET_EPOCH_ASSERT();
CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
if (ifv->ifv_vid == vid)
return (ifv);
return (NULL);
}
#if 0
/* Debugging code to view the hashtables. */
static void
vlan_dumphash(struct ifvlantrunk *trunk)
{
int i;
struct ifvlan *ifv;
for (i = 0; i < (1 << trunk->hwidth); i++) {
printf("%d: ", i);
CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
printf("%s ", ifv->ifv_ifp->if_xname);
printf("\n");
}
}
#endif /* 0 */
#else
static __inline struct ifvlan *
vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
{
return trunk->vlans[vid];
}
static __inline int
vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
{
if (trunk->vlans[ifv->ifv_vid] != NULL)
return EEXIST;
trunk->vlans[ifv->ifv_vid] = ifv;
trunk->refcnt++;
return (0);
}
static __inline int
vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
{
trunk->vlans[ifv->ifv_vid] = NULL;
trunk->refcnt--;
return (0);
}
static __inline void
vlan_freehash(struct ifvlantrunk *trunk)
{
}
static __inline void
vlan_inithash(struct ifvlantrunk *trunk)
{
}
#endif /* !VLAN_ARRAY */
static void
trunk_destroy(struct ifvlantrunk *trunk)
{
VLAN_XLOCK_ASSERT();
vlan_freehash(trunk);
trunk->parent->if_vlantrunk = NULL;
TRUNK_LOCK_DESTROY(trunk);
if_rele(trunk->parent);
free(trunk, M_VLAN);
}
/*
* Program our multicast filter. What we're actually doing is
* programming the multicast filter of the parent. This has the
* side effect of causing the parent interface to receive multicast
* traffic that it doesn't really want, which ends up being discarded
* later by the upper protocol layers. Unfortunately, there's no way
* to avoid this: there really is only one physical interface.
*/
static int
vlan_setmulti(struct ifnet *ifp)
{
struct ifnet *ifp_p;
struct ifmultiaddr *ifma;
struct ifvlan *sc;
struct vlan_mc_entry *mc;
int error;
VLAN_XLOCK_ASSERT();
/* Find the parent. */
sc = ifp->if_softc;
ifp_p = PARENT(sc);
CURVNET_SET_QUIET(ifp_p->if_vnet);
/* First, remove any existing filter entries. */
while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
epoch_call(net_epoch_preempt, &mc->mc_epoch_ctx, vlan_mc_free);
}
/* Now program new ones. */
IF_ADDR_WLOCK(ifp);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
if (mc == NULL) {
IF_ADDR_WUNLOCK(ifp);
return (ENOMEM);
}
bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
mc->mc_addr.sdl_index = ifp_p->if_index;
CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
}
IF_ADDR_WUNLOCK(ifp);
CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
NULL);
if (error)
return (error);
}
CURVNET_RESTORE();
return (0);
}
/*
* A handler for parent interface link layer address changes.
* If the parent interface link layer address is changed we
* should also change it on all children vlans.
*/
static void
vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
{
struct epoch_tracker et;
struct ifvlan *ifv;
struct ifnet *ifv_ifp;
struct ifvlantrunk *trunk;
struct sockaddr_dl *sdl;
/* Need the epoch since this is run on taskqueue_swi. */
NET_EPOCH_ENTER(et);
trunk = ifp->if_vlantrunk;
if (trunk == NULL) {
NET_EPOCH_EXIT(et);
return;
}
/*
* OK, it's a trunk. Loop over and change all vlan's lladdrs on it.
* We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
* ioctl calls on the parent garbling the lladdr of the child vlan.
*/
TRUNK_WLOCK(trunk);
VLAN_FOREACH(ifv, trunk) {
/*
* Copy new new lladdr into the ifv_ifp, enqueue a task
* to actually call if_setlladdr. if_setlladdr needs to
* be deferred to a taskqueue because it will call into
* the if_vlan ioctl path and try to acquire the global
* lock.
*/
ifv_ifp = ifv->ifv_ifp;
bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
ifp->if_addrlen);
sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
sdl->sdl_alen = ifp->if_addrlen;
taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
}
TRUNK_WUNLOCK(trunk);
NET_EPOCH_EXIT(et);
}
/*
* A handler for network interface departure events.
* Track departure of trunks here so that we don't access invalid
* pointers or whatever if a trunk is ripped from under us, e.g.,
* by ejecting its hot-plug card. However, if an ifnet is simply
* being renamed, then there's no need to tear down the state.
*/
static void
vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
{
struct ifvlan *ifv;
struct ifvlantrunk *trunk;
/* If the ifnet is just being renamed, don't do anything. */
if (ifp->if_flags & IFF_RENAMING)
return;
VLAN_XLOCK();
trunk = ifp->if_vlantrunk;
if (trunk == NULL) {
VLAN_XUNLOCK();
return;
}
/*
* OK, it's a trunk. Loop over and detach all vlan's on it.
* Check trunk pointer after each vlan_unconfig() as it will
* free it and set to NULL after the last vlan was detached.
*/
VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
ifp->if_vlantrunk == NULL)
vlan_unconfig_locked(ifv->ifv_ifp, 1);
/* Trunk should have been destroyed in vlan_unconfig(). */
KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
VLAN_XUNLOCK();
}
/*
* Return the trunk device for a virtual interface.
*/
static struct ifnet *
vlan_trunkdev(struct ifnet *ifp)
{
struct ifvlan *ifv;
NET_EPOCH_ASSERT();
if (ifp->if_type != IFT_L2VLAN)
return (NULL);
ifv = ifp->if_softc;
ifp = NULL;
if (ifv->ifv_trunk)
ifp = PARENT(ifv);
return (ifp);
}
/*
* Return the 12-bit VLAN VID for this interface, for use by external
* components such as Infiniband.
*
* XXXRW: Note that the function name here is historical; it should be named
* vlan_vid().
*/
static int
vlan_tag(struct ifnet *ifp, uint16_t *vidp)
{
struct ifvlan *ifv;
if (ifp->if_type != IFT_L2VLAN)
return (EINVAL);
ifv = ifp->if_softc;
*vidp = ifv->ifv_vid;
return (0);
}
static int
vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
{
struct ifvlan *ifv;
if (ifp->if_type != IFT_L2VLAN)
return (EINVAL);
ifv = ifp->if_softc;
*pcpp = ifv->ifv_pcp;
return (0);
}
/*
* Return a driver specific cookie for this interface. Synchronization
* with setcookie must be provided by the driver.
*/
static void *
vlan_cookie(struct ifnet *ifp)
{
struct ifvlan *ifv;
if (ifp->if_type != IFT_L2VLAN)
return (NULL);
ifv = ifp->if_softc;
return (ifv->ifv_cookie);
}
/*
* Store a cookie in our softc that drivers can use to store driver
* private per-instance data in.
*/
static int
vlan_setcookie(struct ifnet *ifp, void *cookie)
{
struct ifvlan *ifv;
if (ifp->if_type != IFT_L2VLAN)
return (EINVAL);
ifv = ifp->if_softc;
ifv->ifv_cookie = cookie;
return (0);
}
/*
* Return the vlan device present at the specific VID.
*/
static struct ifnet *
vlan_devat(struct ifnet *ifp, uint16_t vid)
{
struct ifvlantrunk *trunk;
struct ifvlan *ifv;
NET_EPOCH_ASSERT();
trunk = ifp->if_vlantrunk;
if (trunk == NULL)
return (NULL);
ifp = NULL;
ifv = vlan_gethash(trunk, vid);
if (ifv)
ifp = ifv->ifv_ifp;
return (ifp);
}
/*
* Recalculate the cached VLAN tag exposed via the MIB.
*/
static void
vlan_tag_recalculate(struct ifvlan *ifv)
{
ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0);
}
/*
* VLAN support can be loaded as a module. The only place in the
* system that's intimately aware of this is ether_input. We hook
* into this code through vlan_input_p which is defined there and
* set here. No one else in the system should be aware of this so
* we use an explicit reference here.
*/
extern void (*vlan_input_p)(struct ifnet *, struct mbuf *);
/* For if_link_state_change() eyes only... */
extern void (*vlan_link_state_p)(struct ifnet *);
static int
vlan_modevent(module_t mod, int type, void *data)
{
switch (type) {
case MOD_LOAD:
ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
if (ifdetach_tag == NULL)
return (ENOMEM);
iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
if (iflladdr_tag == NULL)
return (ENOMEM);
VLAN_LOCKING_INIT();
vlan_input_p = vlan_input;
vlan_link_state_p = vlan_link_state;
vlan_trunk_cap_p = vlan_trunk_capabilities;
vlan_trunkdev_p = vlan_trunkdev;
vlan_cookie_p = vlan_cookie;
vlan_setcookie_p = vlan_setcookie;
vlan_tag_p = vlan_tag;
vlan_pcp_p = vlan_pcp;
vlan_devat_p = vlan_devat;
#ifndef VIMAGE
vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
vlan_clone_create, vlan_clone_destroy);
#endif
if (bootverbose)
printf("vlan: initialized, using "
#ifdef VLAN_ARRAY
"full-size arrays"
#else
"hash tables with chaining"
#endif
"\n");
break;
case MOD_UNLOAD:
#ifndef VIMAGE
if_clone_detach(vlan_cloner);
#endif
EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
vlan_input_p = NULL;
vlan_link_state_p = NULL;
vlan_trunk_cap_p = NULL;
vlan_trunkdev_p = NULL;
vlan_tag_p = NULL;
vlan_cookie_p = NULL;
vlan_setcookie_p = NULL;
vlan_devat_p = NULL;
VLAN_LOCKING_DESTROY();
if (bootverbose)
printf("vlan: unloaded\n");
break;
default:
return (EOPNOTSUPP);
}
return (0);
}
static moduledata_t vlan_mod = {
"if_vlan",
vlan_modevent,
0
};
DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
MODULE_VERSION(if_vlan, 3);
#ifdef VIMAGE
static void
vnet_vlan_init(const void *unused __unused)
{
vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
vlan_clone_create, vlan_clone_destroy);
V_vlan_cloner = vlan_cloner;
}
VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
vnet_vlan_init, NULL);
static void
vnet_vlan_uninit(const void *unused __unused)
{
if_clone_detach(V_vlan_cloner);
}
VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
vnet_vlan_uninit, NULL);
#endif
/*
* Check for <etherif>.<vlan> style interface names.
*/
static struct ifnet *
vlan_clone_match_ethervid(const char *name, int *vidp)
{
char ifname[IFNAMSIZ];
char *cp;
struct ifnet *ifp;
int vid;
strlcpy(ifname, name, IFNAMSIZ);
if ((cp = strchr(ifname, '.')) == NULL)
return (NULL);
*cp = '\0';
if ((ifp = ifunit_ref(ifname)) == NULL)
return (NULL);
/* Parse VID. */
if (*++cp == '\0') {
if_rele(ifp);
return (NULL);
}
vid = 0;
for(; *cp >= '0' && *cp <= '9'; cp++)
vid = (vid * 10) + (*cp - '0');
if (*cp != '\0') {
if_rele(ifp);
return (NULL);
}
if (vidp != NULL)
*vidp = vid;
return (ifp);
}
static int
vlan_clone_match(struct if_clone *ifc, const char *name)
{
const char *cp;
if (vlan_clone_match_ethervid(name, NULL) != NULL)
return (1);
if (strncmp(vlanname, name, strlen(vlanname)) != 0)
return (0);
for (cp = name + 4; *cp != '\0'; cp++) {
if (*cp < '0' || *cp > '9')
return (0);
}
return (1);
}
static int
vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
{
char *dp;
int wildcard;
int unit;
int error;
int vid;
struct ifvlan *ifv;
struct ifnet *ifp;
struct ifnet *p;
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
struct vlanreq vlr;
static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */
/*
* There are 3 (ugh) ways to specify the cloned device:
* o pass a parameter block with the clone request.
* o specify parameters in the text of the clone device name
* o specify no parameters and get an unattached device that
* must be configured separately.
* The first technique is preferred; the latter two are
* supported for backwards compatibility.
*
* XXXRW: Note historic use of the word "tag" here. New ioctls may be
* called for.
*/
if (params) {
error = copyin(params, &vlr, sizeof(vlr));
if (error)
return error;
p = ifunit_ref(vlr.vlr_parent);
if (p == NULL)
return (ENXIO);
error = ifc_name2unit(name, &unit);
if (error != 0) {
if_rele(p);
return (error);
}
vid = vlr.vlr_tag;
wildcard = (unit < 0);
} else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) {
unit = -1;
wildcard = 0;
} else {
p = NULL;
error = ifc_name2unit(name, &unit);
if (error != 0)
return (error);
wildcard = (unit < 0);
}
error = ifc_alloc_unit(ifc, &unit);
if (error != 0) {
if (p != NULL)
if_rele(p);
return (error);
}
/* In the wildcard case, we need to update the name. */
if (wildcard) {
for (dp = name; *dp != '\0'; dp++);
if (snprintf(dp, len - (dp-name), "%d", unit) >
len - (dp-name) - 1) {
panic("%s: interface name too long", __func__);
}
}
ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
ifc_free_unit(ifc, unit);
free(ifv, M_VLAN);
if (p != NULL)
if_rele(p);
return (ENOSPC);
}
CK_SLIST_INIT(&ifv->vlan_mc_listhead);
ifp->if_softc = ifv;
/*
* Set the name manually rather than using if_initname because
* we don't conform to the default naming convention for interfaces.
*/
strlcpy(ifp->if_xname, name, IFNAMSIZ);
ifp->if_dname = vlanname;
ifp->if_dunit = unit;
ifp->if_init = vlan_init;
ifp->if_transmit = vlan_transmit;
ifp->if_qflush = vlan_qflush;
ifp->if_ioctl = vlan_ioctl;
#if defined(KERN_TLS) || defined(RATELIMIT)
ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
ifp->if_snd_tag_modify = vlan_snd_tag_modify;
ifp->if_snd_tag_query = vlan_snd_tag_query;
ifp->if_snd_tag_free = vlan_snd_tag_free;
#endif
ifp->if_flags = VLAN_IFFLAGS;
ether_ifattach(ifp, eaddr);
/* Now undo some of the damage... */
ifp->if_baudrate = 0;
ifp->if_type = IFT_L2VLAN;
ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
ifa = ifp->if_addr;
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
sdl->sdl_type = IFT_L2VLAN;
if (p != NULL) {
error = vlan_config(ifv, p, vid);
if_rele(p);
if (error != 0) {
/*
* Since we've partially failed, we need to back
* out all the way, otherwise userland could get
* confused. Thus, we destroy the interface.
*/
ether_ifdetach(ifp);
vlan_unconfig(ifp);
if_free(ifp);
ifc_free_unit(ifc, unit);
free(ifv, M_VLAN);
return (error);
}
}
return (0);
}
static int
vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
{
struct ifvlan *ifv = ifp->if_softc;
int unit = ifp->if_dunit;
ether_ifdetach(ifp); /* first, remove it from system-wide lists */
vlan_unconfig(ifp); /* now it can be unconfigured and freed */
/*
* We should have the only reference to the ifv now, so we can now
* drain any remaining lladdr task before freeing the ifnet and the
* ifvlan.
*/
taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
NET_EPOCH_WAIT();
if_free(ifp);
free(ifv, M_VLAN);
ifc_free_unit(ifc, unit);
return (0);
}
/*
* The ifp->if_init entry point for vlan(4) is a no-op.
*/
static void
vlan_init(void *foo __unused)
{
}
/*
* The if_transmit method for vlan(4) interface.
*/
static int
vlan_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct ifvlan *ifv;
struct ifnet *p;
int error, len, mcast;
NET_EPOCH_ASSERT();
ifv = ifp->if_softc;
if (TRUNK(ifv) == NULL) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
return (ENETDOWN);
}
p = PARENT(ifv);
len = m->m_pkthdr.len;
mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
BPF_MTAP(ifp, m);
#if defined(KERN_TLS) || defined(RATELIMIT)
if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
struct vlan_snd_tag *vst;
struct m_snd_tag *mst;
MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
mst = m->m_pkthdr.snd_tag;
vst = mst_to_vst(mst);
if (vst->tag->ifp != p) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
return (EAGAIN);
}
m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
m_snd_tag_rele(mst);
}
#endif
/*
* Do not run parent's if_transmit() if the parent is not up,
* or parent's driver will cause a system crash.
*/
if (!UP_AND_RUNNING(p)) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
m_freem(m);
return (ENETDOWN);
}
if (!ether_8021q_frame(&m, ifp, p, ifv->ifv_vid, ifv->ifv_pcp)) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return (0);
}
/*
* Send it, precisely as ether_output() would have.
*/
error = (p->if_transmit)(p, m);
if (error == 0) {
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
} else
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return (error);
}
static int
vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
struct route *ro)
{
struct ifvlan *ifv;
struct ifnet *p;
NET_EPOCH_ASSERT();
ifv = ifp->if_softc;
if (TRUNK(ifv) == NULL) {
m_freem(m);
return (ENETDOWN);
}
p = PARENT(ifv);
return p->if_output(ifp, m, dst, ro);
}
/*
* The ifp->if_qflush entry point for vlan(4) is a no-op.
*/
static void
vlan_qflush(struct ifnet *ifp __unused)
{
}
static void
vlan_input(struct ifnet *ifp, struct mbuf *m)
{
struct ifvlantrunk *trunk;
struct ifvlan *ifv;
struct m_tag *mtag;
uint16_t vid, tag;
NET_EPOCH_ASSERT();
trunk = ifp->if_vlantrunk;
if (trunk == NULL) {
m_freem(m);
return;
}
if (m->m_flags & M_VLANTAG) {
/*
* Packet is tagged, but m contains a normal
* Ethernet frame; the tag is stored out-of-band.
*/
tag = m->m_pkthdr.ether_vtag;
m->m_flags &= ~M_VLANTAG;
} else {
struct ether_vlan_header *evl;
/*
* Packet is tagged in-band as specified by 802.1q.
*/
switch (ifp->if_type) {
case IFT_ETHER:
if (m->m_len < sizeof(*evl) &&
(m = m_pullup(m, sizeof(*evl))) == NULL) {
if_printf(ifp, "cannot pullup VLAN header\n");
return;
}
evl = mtod(m, struct ether_vlan_header *);
tag = ntohs(evl->evl_tag);
/*
* Remove the 802.1q header by copying the Ethernet
* addresses over it and adjusting the beginning of
* the data in the mbuf. The encapsulated Ethernet
* type field is already in place.
*/
bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
ETHER_HDR_LEN - ETHER_TYPE_LEN);
m_adj(m, ETHER_VLAN_ENCAP_LEN);
break;
default:
#ifdef INVARIANTS
panic("%s: %s has unsupported if_type %u",
__func__, ifp->if_xname, ifp->if_type);
#endif
if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
m_freem(m);
return;
}
}
vid = EVL_VLANOFTAG(tag);
ifv = vlan_gethash(trunk, vid);
if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
m_freem(m);
return;
}
if (vlan_mtag_pcp) {
/*
* While uncommon, it is possible that we will find a 802.1q
* packet encapsulated inside another packet that also had an
* 802.1q header. For example, ethernet tunneled over IPSEC
* arriving over ethernet. In that case, we replace the
* existing 802.1q PCP m_tag value.
*/
mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
if (mtag == NULL) {
mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
sizeof(uint8_t), M_NOWAIT);
if (mtag == NULL) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
m_freem(m);
return;
}
m_tag_prepend(m, mtag);
}
*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
}
m->m_pkthdr.rcvif = ifv->ifv_ifp;
if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
/* Pass it back through the parent's input routine. */
(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
}
static void
vlan_lladdr_fn(void *arg, int pending __unused)
{
struct ifvlan *ifv;
struct ifnet *ifp;
ifv = (struct ifvlan *)arg;
ifp = ifv->ifv_ifp;
CURVNET_SET(ifp->if_vnet);
/* The ifv_ifp already has the lladdr copied in. */
if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
CURVNET_RESTORE();
}
static int
vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid)
{
struct epoch_tracker et;
struct ifvlantrunk *trunk;
struct ifnet *ifp;
int error = 0;
/*
* We can handle non-ethernet hardware types as long as
* they handle the tagging and headers themselves.
*/
if (p->if_type != IFT_ETHER &&
(p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
return (EPROTONOSUPPORT);
if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
return (EPROTONOSUPPORT);
/*
* Don't let the caller set up a VLAN VID with
* anything except VLID bits.
* VID numbers 0x0 and 0xFFF are reserved.
*/
if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
return (EINVAL);
if (ifv->ifv_trunk)
return (EBUSY);
VLAN_XLOCK();
if (p->if_vlantrunk == NULL) {
trunk = malloc(sizeof(struct ifvlantrunk),
M_VLAN, M_WAITOK | M_ZERO);
vlan_inithash(trunk);
TRUNK_LOCK_INIT(trunk);
TRUNK_WLOCK(trunk);
p->if_vlantrunk = trunk;
trunk->parent = p;
if_ref(trunk->parent);
TRUNK_WUNLOCK(trunk);
} else {
trunk = p->if_vlantrunk;
}
ifv->ifv_vid = vid; /* must set this before vlan_inshash() */
ifv->ifv_pcp = 0; /* Default: best effort delivery. */
vlan_tag_recalculate(ifv);
error = vlan_inshash(trunk, ifv);
if (error)
goto done;
ifv->ifv_proto = ETHERTYPE_VLAN;
ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
ifv->ifv_mintu = ETHERMIN;
ifv->ifv_pflags = 0;
ifv->ifv_capenable = -1;
/*
* If the parent supports the VLAN_MTU capability,
* i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
* use it.
*/
if (p->if_capenable & IFCAP_VLAN_MTU) {
/*
* No need to fudge the MTU since the parent can
* handle extended frames.
*/
ifv->ifv_mtufudge = 0;
} else {
/*
* Fudge the MTU by the encapsulation size. This
* makes us incompatible with strictly compliant
* 802.1Q implementations, but allows us to use
* the feature with other NetBSD implementations,
* which might still be useful.
*/
ifv->ifv_mtufudge = ifv->ifv_encaplen;
}
ifv->ifv_trunk = trunk;
ifp = ifv->ifv_ifp;
/*
* Initialize fields from our parent. This duplicates some
* work with ether_ifattach() but allows for non-ethernet
* interfaces to also work.
*/
ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
ifp->if_baudrate = p->if_baudrate;
ifp->if_input = p->if_input;
ifp->if_resolvemulti = p->if_resolvemulti;
ifp->if_addrlen = p->if_addrlen;
ifp->if_broadcastaddr = p->if_broadcastaddr;
ifp->if_pcp = ifv->ifv_pcp;
/*
* We wrap the parent's if_output using vlan_output to ensure that it
* can't become stale.
*/
ifp->if_output = vlan_output;
/*
* Copy only a selected subset of flags from the parent.
* Other flags are none of our business.
*/
#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
ifp->if_flags &= ~VLAN_COPY_FLAGS;
ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
#undef VLAN_COPY_FLAGS
ifp->if_link_state = p->if_link_state;
NET_EPOCH_ENTER(et);
vlan_capabilities(ifv);
NET_EPOCH_EXIT(et);
/*
* Set up our interface address to reflect the underlying
* physical interface's.
*/
bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
p->if_addrlen;
TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
/* We are ready for operation now. */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
/* Update flags on the parent, if necessary. */
vlan_setflags(ifp, 1);
/*
* Configure multicast addresses that may already be
* joined on the vlan device.
*/
(void)vlan_setmulti(ifp);
done:
if (error == 0)
EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
VLAN_XUNLOCK();
return (error);
}
static void
vlan_unconfig(struct ifnet *ifp)
{
VLAN_XLOCK();
vlan_unconfig_locked(ifp, 0);
VLAN_XUNLOCK();
}
static void
vlan_unconfig_locked(struct ifnet *ifp, int departing)
{
struct ifvlantrunk *trunk;
struct vlan_mc_entry *mc;
struct ifvlan *ifv;
struct ifnet *parent;
int error;
VLAN_XLOCK_ASSERT();
ifv = ifp->if_softc;
trunk = ifv->ifv_trunk;
parent = NULL;
if (trunk != NULL) {
parent = trunk->parent;
/*
* Since the interface is being unconfigured, we need to
* empty the list of multicast groups that we may have joined
* while we were alive from the parent's list.
*/
while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
/*
* If the parent interface is being detached,
* all its multicast addresses have already
* been removed. Warn about errors if
* if_delmulti() does fail, but don't abort as
* all callers expect vlan destruction to
* succeed.
*/
if (!departing) {
error = if_delmulti(parent,
(struct sockaddr *)&mc->mc_addr);
if (error)
if_printf(ifp,
"Failed to delete multicast address from parent: %d\n",
error);
}
CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
epoch_call(net_epoch_preempt, &mc->mc_epoch_ctx, vlan_mc_free);
}
vlan_setflags(ifp, 0); /* clear special flags on parent */
vlan_remhash(trunk, ifv);
ifv->ifv_trunk = NULL;
/*
* Check if we were the last.
*/
if (trunk->refcnt == 0) {
parent->if_vlantrunk = NULL;
NET_EPOCH_WAIT();
trunk_destroy(trunk);
}
}
/* Disconnect from parent. */
if (ifv->ifv_pflags)
if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
ifp->if_mtu = ETHERMTU;
ifp->if_link_state = LINK_STATE_UNKNOWN;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
/*
* Only dispatch an event if vlan was
* attached, otherwise there is nothing
* to cleanup anyway.
*/
if (parent != NULL)
EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
}
/* Handle a reference counted flag that should be set on the parent as well */
static int
vlan_setflag(struct ifnet *ifp, int flag, int status,
int (*func)(struct ifnet *, int))
{
struct ifvlan *ifv;
int error;
VLAN_SXLOCK_ASSERT();
ifv = ifp->if_softc;
status = status ? (ifp->if_flags & flag) : 0;
/* Now "status" contains the flag value or 0 */
/*
* See if recorded parent's status is different from what
* we want it to be. If it is, flip it. We record parent's
* status in ifv_pflags so that we won't clear parent's flag
* we haven't set. In fact, we don't clear or set parent's
* flags directly, but get or release references to them.
* That's why we can be sure that recorded flags still are
* in accord with actual parent's flags.
*/
if (status != (ifv->ifv_pflags & flag)) {
error = (*func)(PARENT(ifv), status);
if (error)
return (error);
ifv->ifv_pflags &= ~flag;
ifv->ifv_pflags |= status;
}
return (0);
}
/*
* Handle IFF_* flags that require certain changes on the parent:
* if "status" is true, update parent's flags respective to our if_flags;
* if "status" is false, forcedly clear the flags set on parent.
*/
static int
vlan_setflags(struct ifnet *ifp, int status)
{
int error, i;
for (i = 0; vlan_pflags[i].flag; i++) {
error = vlan_setflag(ifp, vlan_pflags[i].flag,
status, vlan_pflags[i].func);
if (error)
return (error);
}
return (0);
}
/* Inform all vlans that their parent has changed link state */
static void
vlan_link_state(struct ifnet *ifp)
{
struct ifvlantrunk *trunk;
struct ifvlan *ifv;
NET_EPOCH_ASSERT();
trunk = ifp->if_vlantrunk;
if (trunk == NULL)
return;
TRUNK_WLOCK(trunk);
VLAN_FOREACH(ifv, trunk) {
ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
if_link_state_change(ifv->ifv_ifp,
trunk->parent->if_link_state);
}
TRUNK_WUNLOCK(trunk);
}
static void
vlan_capabilities(struct ifvlan *ifv)
{
struct ifnet *p;
struct ifnet *ifp;
struct ifnet_hw_tsomax hw_tsomax;
int cap = 0, ena = 0, mena;
u_long hwa = 0;
NET_EPOCH_ASSERT();
VLAN_SXLOCK_ASSERT();
p = PARENT(ifv);
ifp = ifv->ifv_ifp;
/* Mask parent interface enabled capabilities disabled by user. */
mena = p->if_capenable & ifv->ifv_capenable;
/*
* If the parent interface can do checksum offloading
* on VLANs, then propagate its hardware-assisted
* checksumming flags. Also assert that checksum
* offloading requires hardware VLAN tagging.
*/
if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
p->if_capenable & IFCAP_VLAN_HWTAGGING) {
ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
if (ena & IFCAP_TXCSUM)
hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
CSUM_UDP | CSUM_SCTP);
if (ena & IFCAP_TXCSUM_IPV6)
hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
}
/*
* If the parent interface can do TSO on VLANs then
* propagate the hardware-assisted flag. TSO on VLANs
* does not necessarily require hardware VLAN tagging.
*/
memset(&hw_tsomax, 0, sizeof(hw_tsomax));
if_hw_tsomax_common(p, &hw_tsomax);
if_hw_tsomax_update(ifp, &hw_tsomax);
if (p->if_capabilities & IFCAP_VLAN_HWTSO)
cap |= p->if_capabilities & IFCAP_TSO;
if (p->if_capenable & IFCAP_VLAN_HWTSO) {
ena |= mena & IFCAP_TSO;
if (ena & IFCAP_TSO)
hwa |= p->if_hwassist & CSUM_TSO;
}
/*
* If the parent interface can do LRO and checksum offloading on
* VLANs, then guess it may do LRO on VLANs. False positive here
* cost nothing, while false negative may lead to some confusions.
*/
if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
cap |= p->if_capabilities & IFCAP_LRO;
if (p->if_capenable & IFCAP_VLAN_HWCSUM)
ena |= p->if_capenable & IFCAP_LRO;
/*
* If the parent interface can offload TCP connections over VLANs then
* propagate its TOE capability to the VLAN interface.
*
* All TOE drivers in the tree today can deal with VLANs. If this
* changes then IFCAP_VLAN_TOE should be promoted to a full capability
* with its own bit.
*/
#define IFCAP_VLAN_TOE IFCAP_TOE
if (p->if_capabilities & IFCAP_VLAN_TOE)
cap |= p->if_capabilities & IFCAP_TOE;
if (p->if_capenable & IFCAP_VLAN_TOE) {
TOEDEV(ifp) = TOEDEV(p);
ena |= mena & IFCAP_TOE;
}
/*
* If the parent interface supports dynamic link state, so does the
* VLAN interface.
*/
cap |= (p->if_capabilities & IFCAP_LINKSTATE);
ena |= (mena & IFCAP_LINKSTATE);
#ifdef RATELIMIT
/*
* If the parent interface supports ratelimiting, so does the
* VLAN interface.
*/
cap |= (p->if_capabilities & IFCAP_TXRTLMT);
ena |= (mena & IFCAP_TXRTLMT);
#endif
/*
* If the parent interface supports unmapped mbufs, so does
* the VLAN interface. Note that this should be fine even for
* interfaces that don't support hardware tagging as headers
* are prepended in normal mbufs to unmapped mbufs holding
* payload data.
*/
cap |= (p->if_capabilities & IFCAP_NOMAP);
ena |= (mena & IFCAP_NOMAP);
/*
* If the parent interface can offload encryption and segmentation
* of TLS records over TCP, propagate it's capability to the VLAN
* interface.
*
* All TLS drivers in the tree today can deal with VLANs. If
* this ever changes, then a new IFCAP_VLAN_TXTLS can be
* defined.
*/
if (p->if_capabilities & IFCAP_TXTLS)
cap |= p->if_capabilities & IFCAP_TXTLS;
if (p->if_capenable & IFCAP_TXTLS)
ena |= mena & IFCAP_TXTLS;
ifp->if_capabilities = cap;
ifp->if_capenable = ena;
ifp->if_hwassist = hwa;
}
static void
vlan_trunk_capabilities(struct ifnet *ifp)
{
struct ifvlantrunk *trunk;
struct ifvlan *ifv;
VLAN_SLOCK();
trunk = ifp->if_vlantrunk;
if (trunk == NULL) {
VLAN_SUNLOCK();
return;
}
VLAN_FOREACH(ifv, trunk)
vlan_capabilities(ifv);
VLAN_SUNLOCK();
}
static int
vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ifnet *p;
struct ifreq *ifr;
struct ifaddr *ifa;
struct ifvlan *ifv;
struct ifvlantrunk *trunk;
struct vlanreq vlr;
int error = 0;
ifr = (struct ifreq *)data;
ifa = (struct ifaddr *) data;
ifv = ifp->if_softc;
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
arp_ifinit(ifp, ifa);
#endif
break;
case SIOCGIFADDR:
bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
ifp->if_addrlen);
break;
case SIOCGIFMEDIA:
VLAN_SLOCK();
if (TRUNK(ifv) != NULL) {
p = PARENT(ifv);
if_ref(p);
error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
if_rele(p);
/* Limit the result to the parent's current config. */
if (error == 0) {
struct ifmediareq *ifmr;
ifmr = (struct ifmediareq *)data;
if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
ifmr->ifm_count = 1;
error = copyout(&ifmr->ifm_current,
ifmr->ifm_ulist,
sizeof(int));
}
}
} else {
error = EINVAL;
}
VLAN_SUNLOCK();
break;
case SIOCSIFMEDIA:
error = EINVAL;
break;
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
VLAN_SLOCK();
trunk = TRUNK(ifv);
if (trunk != NULL) {
TRUNK_WLOCK(trunk);
if (ifr->ifr_mtu >
(PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
ifr->ifr_mtu <
(ifv->ifv_mintu - ifv->ifv_mtufudge))
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
TRUNK_WUNLOCK(trunk);
} else
error = EINVAL;
VLAN_SUNLOCK();
break;
case SIOCSETVLAN:
#ifdef VIMAGE
/*
* XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
* interface to be delegated to a jail without allowing the
* jail to change what underlying interface/VID it is
* associated with. We are not entirely convinced that this
* is the right way to accomplish that policy goal.
*/
if (ifp->if_vnet != ifp->if_home_vnet) {
error = EPERM;
break;
}
#endif
error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
if (error)
break;
if (vlr.vlr_parent[0] == '\0') {
vlan_unconfig(ifp);
break;
}
p = ifunit_ref(vlr.vlr_parent);
if (p == NULL) {
error = ENOENT;
break;
}
error = vlan_config(ifv, p, vlr.vlr_tag);
if_rele(p);
break;
case SIOCGETVLAN:
#ifdef VIMAGE
if (ifp->if_vnet != ifp->if_home_vnet) {
error = EPERM;
break;
}
#endif
bzero(&vlr, sizeof(vlr));
VLAN_SLOCK();
if (TRUNK(ifv) != NULL) {
strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
sizeof(vlr.vlr_parent));
vlr.vlr_tag = ifv->ifv_vid;
}
VLAN_SUNLOCK();
error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
break;
case SIOCSIFFLAGS:
/*
* We should propagate selected flags to the parent,
* e.g., promiscuous mode.
*/
VLAN_XLOCK();
if (TRUNK(ifv) != NULL)
error = vlan_setflags(ifp, 1);
VLAN_XUNLOCK();
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* If we don't have a parent, just remember the membership for
* when we do.
*
* XXX We need the rmlock here to avoid sleeping while
* holding in6_multi_mtx.
*/
VLAN_XLOCK();
trunk = TRUNK(ifv);
if (trunk != NULL)
error = vlan_setmulti(ifp);
VLAN_XUNLOCK();
break;
case SIOCGVLANPCP:
#ifdef VIMAGE
if (ifp->if_vnet != ifp->if_home_vnet) {
error = EPERM;
break;
}
#endif
ifr->ifr_vlan_pcp = ifv->ifv_pcp;
break;
case SIOCSVLANPCP:
#ifdef VIMAGE
if (ifp->if_vnet != ifp->if_home_vnet) {
error = EPERM;
break;
}
#endif
error = priv_check(curthread, PRIV_NET_SETVLANPCP);
if (error)
break;
if (ifr->ifr_vlan_pcp > 7) {
error = EINVAL;
break;
}
ifv->ifv_pcp = ifr->ifr_vlan_pcp;
ifp->if_pcp = ifv->ifv_pcp;
vlan_tag_recalculate(ifv);
/* broadcast event about PCP change */
EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
break;
case SIOCSIFCAP:
VLAN_SLOCK();
ifv->ifv_capenable = ifr->ifr_reqcap;
trunk = TRUNK(ifv);
if (trunk != NULL) {
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
vlan_capabilities(ifv);
NET_EPOCH_EXIT(et);
}
VLAN_SUNLOCK();
break;
default:
error = EINVAL;
break;
}
return (error);
}
#if defined(KERN_TLS) || defined(RATELIMIT)
static int
vlan_snd_tag_alloc(struct ifnet *ifp,
union if_snd_tag_alloc_params *params,
struct m_snd_tag **ppmt)
{
struct epoch_tracker et;
struct vlan_snd_tag *vst;
struct ifvlan *ifv;
struct ifnet *parent;
int error;
NET_EPOCH_ENTER(et);
ifv = ifp->if_softc;
if (ifv->ifv_trunk != NULL)
parent = PARENT(ifv);
else
parent = NULL;
if (parent == NULL || parent->if_snd_tag_alloc == NULL) {
NET_EPOCH_EXIT(et);
return (EOPNOTSUPP);
}
if_ref(parent);
NET_EPOCH_EXIT(et);
vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
if (vst == NULL) {
if_rele(parent);
return (ENOMEM);
}
error = parent->if_snd_tag_alloc(parent, params, &vst->tag);
if_rele(parent);
if (error) {
free(vst, M_VLAN);
return (error);
}
m_snd_tag_init(&vst->com, ifp);
*ppmt = &vst->com;
return (0);
}
static int
vlan_snd_tag_modify(struct m_snd_tag *mst,
union if_snd_tag_modify_params *params)
{
struct vlan_snd_tag *vst;
vst = mst_to_vst(mst);
return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params));
}
static int
vlan_snd_tag_query(struct m_snd_tag *mst,
union if_snd_tag_query_params *params)
{
struct vlan_snd_tag *vst;
vst = mst_to_vst(mst);
return (vst->tag->ifp->if_snd_tag_query(vst->tag, params));
}
static void
vlan_snd_tag_free(struct m_snd_tag *mst)
{
struct vlan_snd_tag *vst;
vst = mst_to_vst(mst);
m_snd_tag_rele(vst->tag);
free(vst, M_VLAN);
}
#endif