003705e187
- Removed updates to if_ibytes, if_obytes, if_imcasts, and if_omcasts. These should not be handled by the driver. - Add code to handle excessively fragmented mbufs when mapping TX frames. Reviewed by: ps Approved by: ps (mentor) MFC after: 1 week
6818 lines
213 KiB
C
6818 lines
213 KiB
C
/*-
|
|
* Copyright (c) 2006 Broadcom Corporation
|
|
* David Christensen <davidch@broadcom.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Broadcom Corporation nor the name of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written consent.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* The following controllers are supported by this driver:
|
|
* BCM5706C A2, A3
|
|
* BCM5708C B1
|
|
*
|
|
* The following controllers are not supported by this driver:
|
|
* (These are not "Production" versions of the controller.)
|
|
*
|
|
* BCM5706C A0, A1
|
|
* BCM5706S A0, A1, A2, A3
|
|
* BCM5708C A0, B0
|
|
* BCM5708S A0, B0, B1
|
|
*/
|
|
|
|
#include "opt_bce.h"
|
|
|
|
#include <dev/bce/if_bcereg.h>
|
|
#include <dev/bce/if_bcefw.h>
|
|
|
|
/****************************************************************************/
|
|
/* BCE Driver Version */
|
|
/****************************************************************************/
|
|
char bce_driver_version[] = "v0.9.6";
|
|
|
|
|
|
/****************************************************************************/
|
|
/* BCE Debug Options */
|
|
/****************************************************************************/
|
|
#ifdef BCE_DEBUG
|
|
u32 bce_debug = BCE_WARN;
|
|
|
|
/* 0 = Never */
|
|
/* 1 = 1 in 2,147,483,648 */
|
|
/* 256 = 1 in 8,388,608 */
|
|
/* 2048 = 1 in 1,048,576 */
|
|
/* 65536 = 1 in 32,768 */
|
|
/* 1048576 = 1 in 2,048 */
|
|
/* 268435456 = 1 in 8 */
|
|
/* 536870912 = 1 in 4 */
|
|
/* 1073741824 = 1 in 2 */
|
|
|
|
/* Controls how often the l2_fhdr frame error check will fail. */
|
|
int bce_debug_l2fhdr_status_check = 0;
|
|
|
|
/* Controls how often the unexpected attention check will fail. */
|
|
int bce_debug_unexpected_attention = 0;
|
|
|
|
/* Controls how often to simulate an mbuf allocation failure. */
|
|
int bce_debug_mbuf_allocation_failure = 0;
|
|
|
|
/* Controls how often to simulate a DMA mapping failure. */
|
|
int bce_debug_dma_map_addr_failure = 0;
|
|
|
|
/* Controls how often to simulate a bootcode failure. */
|
|
int bce_debug_bootcode_running_failure = 0;
|
|
#endif
|
|
|
|
|
|
/****************************************************************************/
|
|
/* PCI Device ID Table */
|
|
/* */
|
|
/* Used by bce_probe() to identify the devices supported by this driver. */
|
|
/****************************************************************************/
|
|
#define BCE_DEVDESC_MAX 64
|
|
|
|
static struct bce_type bce_devs[] = {
|
|
/* BCM5706C Controllers and OEM boards. */
|
|
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101,
|
|
"HP NC370T Multifunction Gigabit Server Adapter" },
|
|
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106,
|
|
"HP NC370i Multifunction Gigabit Server Adapter" },
|
|
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID,
|
|
"Broadcom NetXtreme II BCM5706 1000Base-T" },
|
|
|
|
/* BCM5706S controllers and OEM boards. */
|
|
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
|
|
"HP NC370F Multifunction Gigabit Server Adapter" },
|
|
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID,
|
|
"Broadcom NetXtreme II BCM5706 1000Base-SX" },
|
|
|
|
/* BCM5708C controllers and OEM boards. */
|
|
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID,
|
|
"Broadcom NetXtreme II BCM5708 1000Base-T" },
|
|
|
|
/* BCM5708S controllers and OEM boards. */
|
|
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID,
|
|
"Broadcom NetXtreme II BCM5708 1000Base-T" },
|
|
{ 0, 0, 0, 0, NULL }
|
|
};
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Supported Flash NVRAM device data. */
|
|
/****************************************************************************/
|
|
static struct flash_spec flash_table[] =
|
|
{
|
|
/* Slow EEPROM */
|
|
{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
|
|
1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
|
|
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
|
|
"EEPROM - slow"},
|
|
/* Expansion entry 0001 */
|
|
{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 0001"},
|
|
/* Saifun SA25F010 (non-buffered flash) */
|
|
/* strap, cfg1, & write1 need updates */
|
|
{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
|
|
"Non-buffered flash (128kB)"},
|
|
/* Saifun SA25F020 (non-buffered flash) */
|
|
/* strap, cfg1, & write1 need updates */
|
|
{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
|
|
"Non-buffered flash (256kB)"},
|
|
/* Expansion entry 0100 */
|
|
{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 0100"},
|
|
/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
|
|
{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
|
|
0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
|
|
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
|
|
"Entry 0101: ST M45PE10 (128kB non-bufferred)"},
|
|
/* Entry 0110: ST M45PE20 (non-buffered flash)*/
|
|
{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
|
|
0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
|
|
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
|
|
"Entry 0110: ST M45PE20 (256kB non-bufferred)"},
|
|
/* Saifun SA25F005 (non-buffered flash) */
|
|
/* strap, cfg1, & write1 need updates */
|
|
{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
|
|
"Non-buffered flash (64kB)"},
|
|
/* Fast EEPROM */
|
|
{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
|
|
1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
|
|
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
|
|
"EEPROM - fast"},
|
|
/* Expansion entry 1001 */
|
|
{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1001"},
|
|
/* Expansion entry 1010 */
|
|
{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1010"},
|
|
/* ATMEL AT45DB011B (buffered flash) */
|
|
{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
|
|
1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
|
|
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
|
|
"Buffered flash (128kB)"},
|
|
/* Expansion entry 1100 */
|
|
{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1100"},
|
|
/* Expansion entry 1101 */
|
|
{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1101"},
|
|
/* Ateml Expansion entry 1110 */
|
|
{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
|
|
1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
|
|
BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1110 (Atmel)"},
|
|
/* ATMEL AT45DB021B (buffered flash) */
|
|
{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
|
|
1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
|
|
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
|
|
"Buffered flash (256kB)"},
|
|
};
|
|
|
|
|
|
/****************************************************************************/
|
|
/* FreeBSD device entry points. */
|
|
/****************************************************************************/
|
|
static int bce_probe (device_t);
|
|
static int bce_attach (device_t);
|
|
static int bce_detach (device_t);
|
|
static void bce_shutdown (device_t);
|
|
|
|
|
|
/****************************************************************************/
|
|
/* BCE Debug Data Structure Dump Routines */
|
|
/****************************************************************************/
|
|
#ifdef BCE_DEBUG
|
|
static void bce_dump_mbuf (struct bce_softc *, struct mbuf *);
|
|
static void bce_dump_tx_mbuf_chain (struct bce_softc *, int, int);
|
|
static void bce_dump_rx_mbuf_chain (struct bce_softc *, int, int);
|
|
static void bce_dump_txbd (struct bce_softc *, int, struct tx_bd *);
|
|
static void bce_dump_rxbd (struct bce_softc *, int, struct rx_bd *);
|
|
static void bce_dump_l2fhdr (struct bce_softc *, int, struct l2_fhdr *);
|
|
static void bce_dump_tx_chain (struct bce_softc *, int, int);
|
|
static void bce_dump_rx_chain (struct bce_softc *, int, int);
|
|
static void bce_dump_status_block (struct bce_softc *);
|
|
static void bce_dump_stats_block (struct bce_softc *);
|
|
static void bce_dump_driver_state (struct bce_softc *);
|
|
static void bce_dump_hw_state (struct bce_softc *);
|
|
static void bce_breakpoint (struct bce_softc *);
|
|
#endif
|
|
|
|
|
|
/****************************************************************************/
|
|
/* BCE Register/Memory Access Routines */
|
|
/****************************************************************************/
|
|
static u32 bce_reg_rd_ind (struct bce_softc *, u32);
|
|
static void bce_reg_wr_ind (struct bce_softc *, u32, u32);
|
|
static void bce_ctx_wr (struct bce_softc *, u32, u32, u32);
|
|
static int bce_miibus_read_reg (device_t, int, int);
|
|
static int bce_miibus_write_reg (device_t, int, int, int);
|
|
static void bce_miibus_statchg (device_t);
|
|
|
|
|
|
/****************************************************************************/
|
|
/* BCE NVRAM Access Routines */
|
|
/****************************************************************************/
|
|
static int bce_acquire_nvram_lock (struct bce_softc *);
|
|
static int bce_release_nvram_lock (struct bce_softc *);
|
|
static void bce_enable_nvram_access (struct bce_softc *);
|
|
static void bce_disable_nvram_access(struct bce_softc *);
|
|
static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32);
|
|
static int bce_init_nvram (struct bce_softc *);
|
|
static int bce_nvram_read (struct bce_softc *, u32, u8 *, int);
|
|
static int bce_nvram_test (struct bce_softc *);
|
|
#ifdef BCE_NVRAM_WRITE_SUPPORT
|
|
static int bce_enable_nvram_write (struct bce_softc *);
|
|
static void bce_disable_nvram_write (struct bce_softc *);
|
|
static int bce_nvram_erase_page (struct bce_softc *, u32);
|
|
static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32);
|
|
static int bce_nvram_write (struct bce_softc *, u32, u8 *, int);
|
|
#endif
|
|
|
|
/****************************************************************************/
|
|
/* */
|
|
/****************************************************************************/
|
|
static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int);
|
|
static void bce_dma_map_tx_desc (void *, bus_dma_segment_t *, int, bus_size_t, int);
|
|
static int bce_dma_alloc (device_t);
|
|
static void bce_dma_free (struct bce_softc *);
|
|
static void bce_release_resources (struct bce_softc *);
|
|
|
|
/****************************************************************************/
|
|
/* BCE Firmware Synchronization and Load */
|
|
/****************************************************************************/
|
|
static int bce_fw_sync (struct bce_softc *, u32);
|
|
static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32);
|
|
static void bce_load_cpu_fw (struct bce_softc *, struct cpu_reg *, struct fw_info *);
|
|
static void bce_init_cpus (struct bce_softc *);
|
|
|
|
static void bce_stop (struct bce_softc *);
|
|
static int bce_reset (struct bce_softc *, u32);
|
|
static int bce_chipinit (struct bce_softc *);
|
|
static int bce_blockinit (struct bce_softc *);
|
|
static int bce_get_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *);
|
|
|
|
static int bce_init_tx_chain (struct bce_softc *);
|
|
static int bce_init_rx_chain (struct bce_softc *);
|
|
static void bce_free_rx_chain (struct bce_softc *);
|
|
static void bce_free_tx_chain (struct bce_softc *);
|
|
|
|
static int bce_tx_encap (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *);
|
|
static void bce_start_locked (struct ifnet *);
|
|
static void bce_start (struct ifnet *);
|
|
static int bce_ioctl (struct ifnet *, u_long, caddr_t);
|
|
static void bce_watchdog (struct ifnet *);
|
|
static int bce_ifmedia_upd (struct ifnet *);
|
|
static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *);
|
|
static void bce_init_locked (struct bce_softc *);
|
|
static void bce_init (void *);
|
|
|
|
static void bce_init_context (struct bce_softc *);
|
|
static void bce_get_mac_addr (struct bce_softc *);
|
|
static void bce_set_mac_addr (struct bce_softc *);
|
|
static void bce_phy_intr (struct bce_softc *);
|
|
static void bce_rx_intr (struct bce_softc *);
|
|
static void bce_tx_intr (struct bce_softc *);
|
|
static void bce_disable_intr (struct bce_softc *);
|
|
static void bce_enable_intr (struct bce_softc *);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static void bce_poll_locked (struct ifnet *, enum poll_cmd, int);
|
|
static void bce_poll (struct ifnet *, enum poll_cmd, int);
|
|
#endif
|
|
static void bce_intr (void *);
|
|
static void bce_set_rx_mode (struct bce_softc *);
|
|
static void bce_stats_update (struct bce_softc *);
|
|
static void bce_tick_locked (struct bce_softc *);
|
|
static void bce_tick (void *);
|
|
static void bce_add_sysctls (struct bce_softc *);
|
|
|
|
|
|
/****************************************************************************/
|
|
/* FreeBSD device dispatch table. */
|
|
/****************************************************************************/
|
|
static device_method_t bce_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, bce_probe),
|
|
DEVMETHOD(device_attach, bce_attach),
|
|
DEVMETHOD(device_detach, bce_detach),
|
|
DEVMETHOD(device_shutdown, bce_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, bce_miibus_read_reg),
|
|
DEVMETHOD(miibus_writereg, bce_miibus_write_reg),
|
|
DEVMETHOD(miibus_statchg, bce_miibus_statchg),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t bce_driver = {
|
|
"bce",
|
|
bce_methods,
|
|
sizeof(struct bce_softc)
|
|
};
|
|
|
|
static devclass_t bce_devclass;
|
|
|
|
MODULE_DEPEND(bce, pci, 1, 1, 1);
|
|
MODULE_DEPEND(bce, ether, 1, 1, 1);
|
|
MODULE_DEPEND(bce, miibus, 1, 1, 1);
|
|
|
|
DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Device probe function. */
|
|
/* */
|
|
/* Compares the device to the driver's list of supported devices and */
|
|
/* reports back to the OS whether this is the right driver for the device. */
|
|
/* */
|
|
/* Returns: */
|
|
/* BUS_PROBE_DEFAULT on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_probe(device_t dev)
|
|
{
|
|
struct bce_type *t;
|
|
struct bce_softc *sc;
|
|
char *descbuf;
|
|
u16 vid = 0, did = 0, svid = 0, sdid = 0;
|
|
|
|
t = bce_devs;
|
|
|
|
sc = device_get_softc(dev);
|
|
bzero(sc, sizeof(struct bce_softc));
|
|
sc->bce_unit = device_get_unit(dev);
|
|
sc->bce_dev = dev;
|
|
|
|
/* Get the data for the device to be probed. */
|
|
vid = pci_get_vendor(dev);
|
|
did = pci_get_device(dev);
|
|
svid = pci_get_subvendor(dev);
|
|
sdid = pci_get_subdevice(dev);
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_LOAD,
|
|
"%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
|
|
"SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
|
|
|
|
/* Look through the list of known devices for a match. */
|
|
while(t->bce_name != NULL) {
|
|
|
|
if ((vid == t->bce_vid) && (did == t->bce_did) &&
|
|
((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
|
|
((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
|
|
|
|
descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
|
|
|
|
if (descbuf == NULL)
|
|
return(ENOMEM);
|
|
|
|
/* Print out the device identity. */
|
|
snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d), %s",
|
|
t->bce_name,
|
|
(((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
|
|
(pci_read_config(dev, PCIR_REVID, 4) & 0xf),
|
|
bce_driver_version);
|
|
|
|
device_set_desc_copy(dev, descbuf);
|
|
free(descbuf, M_TEMP);
|
|
return(BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_LOAD, "%s(%d): No IOCTL match found!\n",
|
|
__FILE__, __LINE__);
|
|
|
|
return(ENXIO);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Device attach function. */
|
|
/* */
|
|
/* Allocates device resources, performs secondary chip identification, */
|
|
/* resets and initializes the hardware, and initializes driver instance */
|
|
/* variables. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_attach(device_t dev)
|
|
{
|
|
struct bce_softc *sc;
|
|
struct ifnet *ifp;
|
|
u32 val;
|
|
int mbuf, rid, rc = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->bce_dev = dev;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
mbuf = device_get_unit(dev);
|
|
sc->bce_unit = mbuf;
|
|
|
|
pci_enable_busmaster(dev);
|
|
|
|
/* Allocate PCI memory resources. */
|
|
rid = PCIR_BAR(0);
|
|
sc->bce_res = bus_alloc_resource_any(
|
|
dev, /* dev */
|
|
SYS_RES_MEMORY, /* type */
|
|
&rid, /* rid */
|
|
RF_ACTIVE | PCI_RF_DENSE); /* flags */
|
|
|
|
if (sc->bce_res == NULL) {
|
|
BCE_PRINTF(sc, "%s(%d): PCI memory allocation failed\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENXIO;
|
|
goto bce_attach_fail;
|
|
}
|
|
|
|
/* Get various resource handles. */
|
|
sc->bce_btag = rman_get_bustag(sc->bce_res);
|
|
sc->bce_bhandle = rman_get_bushandle(sc->bce_res);
|
|
sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res);
|
|
|
|
/* Allocate PCI IRQ resources. */
|
|
rid = 0;
|
|
sc->bce_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->bce_irq == NULL) {
|
|
BCE_PRINTF(sc, "%s(%d): PCI map interrupt failed\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENXIO;
|
|
goto bce_attach_fail;
|
|
}
|
|
|
|
/* Initialize mutex for the current device instance. */
|
|
BCE_LOCK_INIT(sc, device_get_nameunit(dev));
|
|
|
|
/*
|
|
* Configure byte swap and enable indirect register access.
|
|
* Rely on CPU to do target byte swapping on big endian systems.
|
|
* Access to registers outside of PCI configurtion space are not
|
|
* valid until this is done.
|
|
*/
|
|
pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
|
|
BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
|
|
BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
|
|
|
|
/* Save ASIC revsion info. */
|
|
sc->bce_chipid = REG_RD(sc, BCE_MISC_ID);
|
|
|
|
/* Weed out any non-production controller revisions. */
|
|
switch(BCE_CHIP_ID(sc)) {
|
|
case BCE_CHIP_ID_5706_A0:
|
|
case BCE_CHIP_ID_5706_A1:
|
|
case BCE_CHIP_ID_5708_A0:
|
|
case BCE_CHIP_ID_5708_B0:
|
|
BCE_PRINTF(sc, "%s(%d): Unsupported controller revision (%c%d)!\n",
|
|
__FILE__, __LINE__,
|
|
(((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
|
|
(pci_read_config(dev, PCIR_REVID, 4) & 0xf));
|
|
rc = ENODEV;
|
|
goto bce_attach_fail;
|
|
}
|
|
|
|
if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
|
|
BCE_PRINTF(sc, "%s(%d): SerDes controllers are not supported!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENODEV;
|
|
goto bce_attach_fail;
|
|
}
|
|
|
|
/*
|
|
* The embedded PCIe to PCI-X bridge (EPB)
|
|
* in the 5708 cannot address memory above
|
|
* 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
|
|
*/
|
|
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
|
|
sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
|
|
else
|
|
sc->max_bus_addr = BUS_SPACE_MAXADDR;
|
|
|
|
/*
|
|
* Find the base address for shared memory access.
|
|
* Newer versions of bootcode use a signature and offset
|
|
* while older versions use a fixed address.
|
|
*/
|
|
val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
|
|
if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
|
|
sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0);
|
|
else
|
|
sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
|
|
|
|
DBPRINT(sc, BCE_INFO, "bce_shmem_base = 0x%08X\n", sc->bce_shmem_base);
|
|
|
|
/* Set initial device and PHY flags */
|
|
sc->bce_flags = 0;
|
|
sc->bce_phy_flags = 0;
|
|
|
|
/* Get PCI bus information (speed and type). */
|
|
val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
|
|
if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
|
|
u32 clkreg;
|
|
|
|
sc->bce_flags |= BCE_PCIX_FLAG;
|
|
|
|
clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
|
|
|
|
clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
|
|
switch (clkreg) {
|
|
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
|
|
sc->bus_speed_mhz = 133;
|
|
break;
|
|
|
|
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
|
|
sc->bus_speed_mhz = 100;
|
|
break;
|
|
|
|
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
|
|
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
|
|
sc->bus_speed_mhz = 66;
|
|
break;
|
|
|
|
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
|
|
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
|
|
sc->bus_speed_mhz = 50;
|
|
break;
|
|
|
|
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
|
|
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
|
|
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
|
|
sc->bus_speed_mhz = 33;
|
|
break;
|
|
}
|
|
} else {
|
|
if (val & BCE_PCICFG_MISC_STATUS_M66EN)
|
|
sc->bus_speed_mhz = 66;
|
|
else
|
|
sc->bus_speed_mhz = 33;
|
|
}
|
|
|
|
if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
|
|
sc->bce_flags |= BCE_PCI_32BIT_FLAG;
|
|
|
|
BCE_PRINTF(sc, "ASIC ID 0x%08X; Revision (%c%d); PCI%s %s %dMHz\n",
|
|
sc->bce_chipid,
|
|
((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
|
|
((BCE_CHIP_ID(sc) & 0x0ff0) >> 4),
|
|
((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
|
|
((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
|
|
sc->bus_speed_mhz);
|
|
|
|
/* Reset the controller. */
|
|
if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
|
|
rc = ENXIO;
|
|
goto bce_attach_fail;
|
|
}
|
|
|
|
/* Initialize the controller. */
|
|
if (bce_chipinit(sc)) {
|
|
BCE_PRINTF(sc, "%s(%d): Controller initialization failed!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENXIO;
|
|
goto bce_attach_fail;
|
|
}
|
|
|
|
/* Perform NVRAM test. */
|
|
if (bce_nvram_test(sc)) {
|
|
BCE_PRINTF(sc, "%s(%d): NVRAM test failed!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENXIO;
|
|
goto bce_attach_fail;
|
|
}
|
|
|
|
/* Fetch the permanent Ethernet MAC address. */
|
|
bce_get_mac_addr(sc);
|
|
|
|
/*
|
|
* Trip points control how many BDs
|
|
* should be ready before generating an
|
|
* interrupt while ticks control how long
|
|
* a BD can sit in the chain before
|
|
* generating an interrupt. Set the default
|
|
* values for the RX and TX rings.
|
|
*/
|
|
|
|
#ifdef BCE_DRBUG
|
|
/* Force more frequent interrupts. */
|
|
sc->bce_tx_quick_cons_trip_int = 1;
|
|
sc->bce_tx_quick_cons_trip = 1;
|
|
sc->bce_tx_ticks_int = 0;
|
|
sc->bce_tx_ticks = 0;
|
|
|
|
sc->bce_rx_quick_cons_trip_int = 1;
|
|
sc->bce_rx_quick_cons_trip = 1;
|
|
sc->bce_rx_ticks_int = 0;
|
|
sc->bce_rx_ticks = 0;
|
|
#else
|
|
sc->bce_tx_quick_cons_trip_int = 20;
|
|
sc->bce_tx_quick_cons_trip = 20;
|
|
sc->bce_tx_ticks_int = 80;
|
|
sc->bce_tx_ticks = 80;
|
|
|
|
sc->bce_rx_quick_cons_trip_int = 6;
|
|
sc->bce_rx_quick_cons_trip = 6;
|
|
sc->bce_rx_ticks_int = 18;
|
|
sc->bce_rx_ticks = 18;
|
|
#endif
|
|
|
|
/* Update statistics once every second. */
|
|
sc->bce_stats_ticks = 1000000 & 0xffff00;
|
|
|
|
/*
|
|
* The copper based NetXtreme II controllers
|
|
* use an integrated PHY at address 1 while
|
|
* the SerDes controllers use a PHY at
|
|
* address 2.
|
|
*/
|
|
sc->bce_phy_addr = 1;
|
|
|
|
if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
|
|
sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
|
|
sc->bce_flags |= BCE_NO_WOL_FLAG;
|
|
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) {
|
|
sc->bce_phy_addr = 2;
|
|
val = REG_RD_IND(sc, sc->bce_shmem_base +
|
|
BCE_SHARED_HW_CFG_CONFIG);
|
|
if (val & BCE_SHARED_HW_CFG_PHY_2_5G)
|
|
sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
|
|
}
|
|
}
|
|
|
|
/* Allocate DMA memory resources. */
|
|
if (bce_dma_alloc(dev)) {
|
|
BCE_PRINTF(sc, "%s(%d): DMA resource allocation failed!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENXIO;
|
|
goto bce_attach_fail;
|
|
}
|
|
|
|
/* Allocate an ifnet structure. */
|
|
ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
BCE_PRINTF(sc, "%s(%d): Interface allocation failed!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENXIO;
|
|
goto bce_attach_fail;
|
|
}
|
|
|
|
/* Initialize the ifnet interface. */
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = bce_ioctl;
|
|
ifp->if_start = bce_start;
|
|
ifp->if_timer = 0;
|
|
ifp->if_watchdog = bce_watchdog;
|
|
ifp->if_init = bce_init;
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_hwassist = BCE_IF_HWASSIST;
|
|
ifp->if_capabilities = BCE_IF_CAPABILITIES;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/* Assume a standard 1500 byte MTU size for mbuf allocations. */
|
|
sc->mbuf_alloc_size = MCLBYTES;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
|
|
ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
|
|
if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
|
|
ifp->if_baudrate = IF_Gbps(2.5);
|
|
else
|
|
ifp->if_baudrate = IF_Gbps(1);
|
|
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
|
|
BCE_PRINTF(sc, "%s(%d): SerDes is not supported by this driver!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENODEV;
|
|
goto bce_attach_fail;
|
|
} else {
|
|
/* Look for our PHY. */
|
|
if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd,
|
|
bce_ifmedia_sts)) {
|
|
BCE_PRINTF(sc, "%s(%d): PHY probe failed!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENXIO;
|
|
goto bce_attach_fail;
|
|
}
|
|
}
|
|
|
|
/* Attach to the Ethernet interface list. */
|
|
ether_ifattach(ifp, sc->eaddr);
|
|
|
|
#if __FreeBSD_version < 500000
|
|
callout_init(&sc->bce_stat_ch);
|
|
#else
|
|
callout_init(&sc->bce_stat_ch, CALLOUT_MPSAFE);
|
|
#endif
|
|
|
|
/* Hookup IRQ last. */
|
|
rc = bus_setup_intr(dev, sc->bce_irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
bce_intr, sc, &sc->bce_intrhand);
|
|
|
|
if (rc) {
|
|
BCE_PRINTF(sc, "%s(%d): Failed to setup IRQ!\n",
|
|
__FILE__, __LINE__);
|
|
bce_detach(dev);
|
|
goto bce_attach_exit;
|
|
}
|
|
|
|
/* Print some important debugging info. */
|
|
DBRUN(BCE_INFO, bce_dump_driver_state(sc));
|
|
|
|
/* Add the supported sysctls to the kernel. */
|
|
bce_add_sysctls(sc);
|
|
|
|
goto bce_attach_exit;
|
|
|
|
bce_attach_fail:
|
|
bce_release_resources(sc);
|
|
|
|
bce_attach_exit:
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return(rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Device detach function. */
|
|
/* */
|
|
/* Stops the controller, resets the controller, and releases resources. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_detach(device_t dev)
|
|
{
|
|
struct bce_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
ifp = sc->bce_ifp;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
/* Stop and reset the controller. */
|
|
BCE_LOCK(sc);
|
|
bce_stop(sc);
|
|
bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
|
|
BCE_UNLOCK(sc);
|
|
|
|
ether_ifdetach(ifp);
|
|
|
|
/* If we have a child device on the MII bus remove it too. */
|
|
if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
|
|
ifmedia_removeall(&sc->bce_ifmedia);
|
|
} else {
|
|
bus_generic_detach(dev);
|
|
device_delete_child(dev, sc->bce_miibus);
|
|
}
|
|
|
|
/* Release all remaining resources. */
|
|
bce_release_resources(sc);
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Device shutdown function. */
|
|
/* */
|
|
/* Stops and resets the controller. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_shutdown(device_t dev)
|
|
{
|
|
struct bce_softc *sc = device_get_softc(dev);
|
|
|
|
BCE_LOCK(sc);
|
|
bce_stop(sc);
|
|
bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
|
|
BCE_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Indirect register read. */
|
|
/* */
|
|
/* Reads NetXtreme II registers using an index/data register pair in PCI */
|
|
/* configuration space. Using this mechanism avoids issues with posted */
|
|
/* reads but is much slower than memory-mapped I/O. */
|
|
/* */
|
|
/* Returns: */
|
|
/* The value of the register. */
|
|
/****************************************************************************/
|
|
static u32
|
|
bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
|
|
{
|
|
device_t dev;
|
|
dev = sc->bce_dev;
|
|
|
|
pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
|
|
#ifdef BCE_DEBUG
|
|
{
|
|
u32 val;
|
|
val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
|
|
DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
|
|
__FUNCTION__, offset, val);
|
|
return val;
|
|
}
|
|
#else
|
|
return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
|
|
#endif
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Indirect register write. */
|
|
/* */
|
|
/* Writes NetXtreme II registers using an index/data register pair in PCI */
|
|
/* configuration space. Using this mechanism avoids issues with posted */
|
|
/* writes but is muchh slower than memory-mapped I/O. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
|
|
{
|
|
device_t dev;
|
|
dev = sc->bce_dev;
|
|
|
|
DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
|
|
__FUNCTION__, offset, val);
|
|
|
|
pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
|
|
pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Context memory write. */
|
|
/* */
|
|
/* The NetXtreme II controller uses context memory to track connection */
|
|
/* information for L2 and higher network protocols. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 offset, u32 val)
|
|
{
|
|
|
|
DBPRINT(sc, BCE_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
|
|
"val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val);
|
|
|
|
offset += cid_addr;
|
|
REG_WR(sc, BCE_CTX_DATA_ADR, offset);
|
|
REG_WR(sc, BCE_CTX_DATA, val);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* PHY register read. */
|
|
/* */
|
|
/* Implements register reads on the MII bus. */
|
|
/* */
|
|
/* Returns: */
|
|
/* The value of the register. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_miibus_read_reg(device_t dev, int phy, int reg)
|
|
{
|
|
struct bce_softc *sc;
|
|
u32 val;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* Make sure we are accessing the correct PHY address. */
|
|
if (phy != sc->bce_phy_addr) {
|
|
DBPRINT(sc, BCE_VERBOSE, "Invalid PHY address %d for PHY read!\n", phy);
|
|
return(0);
|
|
}
|
|
|
|
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
|
|
val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
|
|
val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
|
|
REG_RD(sc, BCE_EMAC_MDIO_MODE);
|
|
|
|
DELAY(40);
|
|
}
|
|
|
|
val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
|
|
BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
|
|
BCE_EMAC_MDIO_COMM_START_BUSY;
|
|
REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
|
|
|
|
for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
|
|
val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
|
|
if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
|
|
DELAY(5);
|
|
|
|
val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
|
|
val &= BCE_EMAC_MDIO_COMM_DATA;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
|
|
BCE_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
|
|
__FILE__, __LINE__, phy, reg);
|
|
val = 0x0;
|
|
} else {
|
|
val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
|
|
}
|
|
|
|
DBPRINT(sc, BCE_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
|
|
__FUNCTION__, phy, (u16) reg & 0xffff, (u16) val & 0xffff);
|
|
|
|
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
|
|
val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
|
|
val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
|
|
REG_RD(sc, BCE_EMAC_MDIO_MODE);
|
|
|
|
DELAY(40);
|
|
}
|
|
|
|
return (val & 0xffff);
|
|
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* PHY register write. */
|
|
/* */
|
|
/* Implements register writes on the MII bus. */
|
|
/* */
|
|
/* Returns: */
|
|
/* The value of the register. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct bce_softc *sc;
|
|
u32 val1;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* Make sure we are accessing the correct PHY address. */
|
|
if (phy != sc->bce_phy_addr) {
|
|
DBPRINT(sc, BCE_WARN, "Invalid PHY address %d for PHY write!\n", phy);
|
|
return(0);
|
|
}
|
|
|
|
DBPRINT(sc, BCE_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
|
|
__FUNCTION__, phy, (u16) reg & 0xffff, (u16) val & 0xffff);
|
|
|
|
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
|
|
val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
|
|
val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
|
|
REG_RD(sc, BCE_EMAC_MDIO_MODE);
|
|
|
|
DELAY(40);
|
|
}
|
|
|
|
val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
|
|
BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
|
|
BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
|
|
REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
|
|
|
|
for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
|
|
val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
|
|
if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
|
|
DELAY(5);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
|
|
BCE_PRINTF(sc, "%s(%d): PHY write timeout!\n",
|
|
__FILE__, __LINE__);
|
|
|
|
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
|
|
val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
|
|
val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
|
|
REG_RD(sc, BCE_EMAC_MDIO_MODE);
|
|
|
|
DELAY(40);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* MII bus status change. */
|
|
/* */
|
|
/* Called by the MII bus driver when the PHY establishes link to set the */
|
|
/* MAC interface registers. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_miibus_statchg(device_t dev)
|
|
{
|
|
struct bce_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
mii = device_get_softc(sc->bce_miibus);
|
|
|
|
BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT);
|
|
|
|
/* Set MII or GMII inerface based on the speed negotiated by the PHY. */
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
|
|
DBPRINT(sc, BCE_INFO, "Setting GMII interface.\n");
|
|
BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_GMII);
|
|
} else {
|
|
DBPRINT(sc, BCE_INFO, "Setting MII interface.\n");
|
|
BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_MII);
|
|
}
|
|
|
|
/* Set half or full duplex based on the duplicity negotiated by the PHY. */
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
|
|
DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n");
|
|
BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
|
|
} else {
|
|
DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n");
|
|
BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Acquire NVRAM lock. */
|
|
/* */
|
|
/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
|
|
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
|
|
/* for use by the driver. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_acquire_nvram_lock(struct bce_softc *sc)
|
|
{
|
|
u32 val;
|
|
int j;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE, "Acquiring NVRAM lock.\n");
|
|
|
|
/* Request access to the flash interface. */
|
|
REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
val = REG_RD(sc, BCE_NVM_SW_ARB);
|
|
if (val & BCE_NVM_SW_ARB_ARB_ARB2)
|
|
break;
|
|
|
|
DELAY(5);
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT) {
|
|
DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
|
|
return EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Release NVRAM lock. */
|
|
/* */
|
|
/* When the caller is finished accessing NVRAM the lock must be released. */
|
|
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
|
|
/* for use by the driver. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_release_nvram_lock(struct bce_softc *sc)
|
|
{
|
|
int j;
|
|
u32 val;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE, "Releasing NVRAM lock.\n");
|
|
|
|
/*
|
|
* Relinquish nvram interface.
|
|
*/
|
|
REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
|
|
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
val = REG_RD(sc, BCE_NVM_SW_ARB);
|
|
if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
|
|
break;
|
|
|
|
DELAY(5);
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT) {
|
|
DBPRINT(sc, BCE_WARN, "Timeout reeasing NVRAM lock!\n");
|
|
return EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef BCE_NVRAM_WRITE_SUPPORT
|
|
/****************************************************************************/
|
|
/* Enable NVRAM write access. */
|
|
/* */
|
|
/* Before writing to NVRAM the caller must enable NVRAM writes. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_enable_nvram_write(struct bce_softc *sc)
|
|
{
|
|
u32 val;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE, "Enabling NVRAM write.\n");
|
|
|
|
val = REG_RD(sc, BCE_MISC_CFG);
|
|
REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
|
|
|
|
if (!sc->bce_flash_info->buffered) {
|
|
int j;
|
|
|
|
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
|
|
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
|
|
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
DELAY(5);
|
|
|
|
val = REG_RD(sc, BCE_NVM_COMMAND);
|
|
if (val & BCE_NVM_COMMAND_DONE)
|
|
break;
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT) {
|
|
DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
|
|
return EBUSY;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Disable NVRAM write access. */
|
|
/* */
|
|
/* When the caller is finished writing to NVRAM write access must be */
|
|
/* disabled. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_disable_nvram_write(struct bce_softc *sc)
|
|
{
|
|
u32 val;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE, "Disabling NVRAM write.\n");
|
|
|
|
val = REG_RD(sc, BCE_MISC_CFG);
|
|
REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
|
|
}
|
|
#endif
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Enable NVRAM access. */
|
|
/* */
|
|
/* Before accessing NVRAM for read or write operations the caller must */
|
|
/* enabled NVRAM access. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_enable_nvram_access(struct bce_softc *sc)
|
|
{
|
|
u32 val;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE, "Enabling NVRAM access.\n");
|
|
|
|
val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
|
|
/* Enable both bits, even on read. */
|
|
REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
|
|
val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Disable NVRAM access. */
|
|
/* */
|
|
/* When the caller is finished accessing NVRAM access must be disabled. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_disable_nvram_access(struct bce_softc *sc)
|
|
{
|
|
u32 val;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE, "Disabling NVRAM access.\n");
|
|
|
|
val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
|
|
|
|
/* Disable both bits, even after read. */
|
|
REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
|
|
val & ~(BCE_NVM_ACCESS_ENABLE_EN |
|
|
BCE_NVM_ACCESS_ENABLE_WR_EN));
|
|
}
|
|
|
|
|
|
#ifdef BCE_NVRAM_WRITE_SUPPORT
|
|
/****************************************************************************/
|
|
/* Erase NVRAM page before writing. */
|
|
/* */
|
|
/* Non-buffered flash parts require that a page be erased before it is */
|
|
/* written. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
|
|
{
|
|
u32 cmd;
|
|
int j;
|
|
|
|
/* Buffered flash doesn't require an erase. */
|
|
if (sc->bce_flash_info->buffered)
|
|
return 0;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE, "Erasing NVRAM page.\n");
|
|
|
|
/* Build an erase command. */
|
|
cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
|
|
BCE_NVM_COMMAND_DOIT;
|
|
|
|
/*
|
|
* Clear the DONE bit separately, set the NVRAM adress to erase,
|
|
* and issue the erase command.
|
|
*/
|
|
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
|
|
REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
|
|
REG_WR(sc, BCE_NVM_COMMAND, cmd);
|
|
|
|
/* Wait for completion. */
|
|
*/
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
u32 val;
|
|
|
|
DELAY(5);
|
|
|
|
val = REG_RD(sc, BCE_NVM_COMMAND);
|
|
if (val & BCE_NVM_COMMAND_DONE)
|
|
break;
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT) {
|
|
DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
|
|
return EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* BCE_NVRAM_WRITE_SUPPORT */
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Read a dword (32 bits) from NVRAM. */
|
|
/* */
|
|
/* Read a 32 bit word from NVRAM. The caller is assumed to have already */
|
|
/* obtained the NVRAM lock and enabled the controller for NVRAM access. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success and the 32 bit value read, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val,
|
|
u32 cmd_flags)
|
|
{
|
|
u32 cmd;
|
|
int i, rc = 0;
|
|
|
|
/* Build the command word. */
|
|
cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
|
|
|
|
/* Calculate the offset for buffered flash. */
|
|
if (sc->bce_flash_info->buffered) {
|
|
offset = ((offset / sc->bce_flash_info->page_size) <<
|
|
sc->bce_flash_info->page_bits) +
|
|
(offset % sc->bce_flash_info->page_size);
|
|
}
|
|
|
|
/*
|
|
* Clear the DONE bit separately, set the address to read,
|
|
* and issue the read.
|
|
*/
|
|
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
|
|
REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
|
|
REG_WR(sc, BCE_NVM_COMMAND, cmd);
|
|
|
|
/* Wait for completion. */
|
|
for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
|
|
u32 val;
|
|
|
|
DELAY(5);
|
|
|
|
val = REG_RD(sc, BCE_NVM_COMMAND);
|
|
if (val & BCE_NVM_COMMAND_DONE) {
|
|
val = REG_RD(sc, BCE_NVM_READ);
|
|
|
|
val = bce_be32toh(val);
|
|
memcpy(ret_val, &val, 4);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check for errors. */
|
|
if (i >= NVRAM_TIMEOUT_COUNT) {
|
|
BCE_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n",
|
|
__FILE__, __LINE__, offset);
|
|
rc = EBUSY;
|
|
}
|
|
|
|
return(rc);
|
|
}
|
|
|
|
|
|
#ifdef BCE_NVRAM_WRITE_SUPPORT
|
|
/****************************************************************************/
|
|
/* Write a dword (32 bits) to NVRAM. */
|
|
/* */
|
|
/* Write a 32 bit word to NVRAM. The caller is assumed to have already */
|
|
/* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
|
|
/* enabled NVRAM write access. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
|
|
u32 cmd_flags)
|
|
{
|
|
u32 cmd, val32;
|
|
int j;
|
|
|
|
/* Build the command word. */
|
|
cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
|
|
|
|
/* Calculate the offset for buffered flash. */
|
|
if (sc->bce_flash_info->buffered) {
|
|
offset = ((offset / sc->bce_flash_info->page_size) <<
|
|
sc->bce_flash_info->page_bits) +
|
|
(offset % sc->bce_flash_info->page_size);
|
|
}
|
|
|
|
/*
|
|
* Clear the DONE bit separately, convert NVRAM data to big-endian,
|
|
* set the NVRAM address to write, and issue the write command
|
|
*/
|
|
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
|
|
memcpy(&val32, val, 4);
|
|
val32 = htobe32(val32);
|
|
REG_WR(sc, BCE_NVM_WRITE, val32);
|
|
REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
|
|
REG_WR(sc, BCE_NVM_COMMAND, cmd);
|
|
|
|
/* Wait for completion. */
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
DELAY(5);
|
|
|
|
if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
|
|
break;
|
|
}
|
|
if (j >= NVRAM_TIMEOUT_COUNT) {
|
|
BCE_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at offset 0x%08X\n",
|
|
__FILE__, __LINE__, offset);
|
|
return EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* BCE_NVRAM_WRITE_SUPPORT */
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Initialize NVRAM access. */
|
|
/* */
|
|
/* Identify the NVRAM device in use and prepare the NVRAM interface to */
|
|
/* access that device. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_init_nvram(struct bce_softc *sc)
|
|
{
|
|
u32 val;
|
|
int j, entry_count, rc;
|
|
struct flash_spec *flash;
|
|
|
|
DBPRINT(sc,BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/* Determine the selected interface. */
|
|
val = REG_RD(sc, BCE_NVM_CFG1);
|
|
|
|
entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
|
|
|
|
rc = 0;
|
|
|
|
/*
|
|
* Flash reconfiguration is required to support additional
|
|
* NVRAM devices not directly supported in hardware.
|
|
* Check if the flash interface was reconfigured
|
|
* by the bootcode.
|
|
*/
|
|
|
|
if (val & 0x40000000) {
|
|
/* Flash interface reconfigured by bootcode. */
|
|
|
|
DBPRINT(sc,BCE_INFO_LOAD,
|
|
"bce_init_nvram(): Flash WAS reconfigured.\n");
|
|
|
|
for (j = 0, flash = &flash_table[0]; j < entry_count;
|
|
j++, flash++) {
|
|
if ((val & FLASH_BACKUP_STRAP_MASK) ==
|
|
(flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
|
|
sc->bce_flash_info = flash;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
/* Flash interface not yet reconfigured. */
|
|
u32 mask;
|
|
|
|
DBPRINT(sc,BCE_INFO_LOAD,
|
|
"bce_init_nvram(): Flash was NOT reconfigured.\n");
|
|
|
|
if (val & (1 << 23))
|
|
mask = FLASH_BACKUP_STRAP_MASK;
|
|
else
|
|
mask = FLASH_STRAP_MASK;
|
|
|
|
/* Look for the matching NVRAM device configuration data. */
|
|
for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
|
|
|
|
/* Check if the device matches any of the known devices. */
|
|
if ((val & mask) == (flash->strapping & mask)) {
|
|
/* Found a device match. */
|
|
sc->bce_flash_info = flash;
|
|
|
|
/* Request access to the flash interface. */
|
|
if ((rc = bce_acquire_nvram_lock(sc)) != 0)
|
|
return rc;
|
|
|
|
/* Reconfigure the flash interface. */
|
|
bce_enable_nvram_access(sc);
|
|
REG_WR(sc, BCE_NVM_CFG1, flash->config1);
|
|
REG_WR(sc, BCE_NVM_CFG2, flash->config2);
|
|
REG_WR(sc, BCE_NVM_CFG3, flash->config3);
|
|
REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
|
|
bce_disable_nvram_access(sc);
|
|
bce_release_nvram_lock(sc);
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check if a matching device was found. */
|
|
if (j == entry_count) {
|
|
sc->bce_flash_info = NULL;
|
|
BCE_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENODEV;
|
|
}
|
|
|
|
/* Write the flash config data to the shared memory interface. */
|
|
val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_SHARED_HW_CFG_CONFIG2);
|
|
val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
|
|
if (val)
|
|
sc->bce_flash_size = val;
|
|
else
|
|
sc->bce_flash_size = sc->bce_flash_info->total_size;
|
|
|
|
DBPRINT(sc, BCE_INFO_LOAD, "bce_init_nvram() flash->total_size = 0x%08X\n",
|
|
sc->bce_flash_info->total_size);
|
|
|
|
DBPRINT(sc,BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Read an arbitrary range of data from NVRAM. */
|
|
/* */
|
|
/* Prepares the NVRAM interface for access and reads the requested data */
|
|
/* into the supplied buffer. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success and the data read, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
|
|
int buf_size)
|
|
{
|
|
int rc = 0;
|
|
u32 cmd_flags, offset32, len32, extra;
|
|
|
|
if (buf_size == 0)
|
|
return 0;
|
|
|
|
/* Request access to the flash interface. */
|
|
if ((rc = bce_acquire_nvram_lock(sc)) != 0)
|
|
return rc;
|
|
|
|
/* Enable access to flash interface */
|
|
bce_enable_nvram_access(sc);
|
|
|
|
len32 = buf_size;
|
|
offset32 = offset;
|
|
extra = 0;
|
|
|
|
cmd_flags = 0;
|
|
|
|
if (offset32 & 3) {
|
|
u8 buf[4];
|
|
u32 pre_len;
|
|
|
|
offset32 &= ~3;
|
|
pre_len = 4 - (offset & 3);
|
|
|
|
if (pre_len >= len32) {
|
|
pre_len = len32;
|
|
cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
|
|
}
|
|
else {
|
|
cmd_flags = BCE_NVM_COMMAND_FIRST;
|
|
}
|
|
|
|
rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
memcpy(ret_buf, buf + (offset & 3), pre_len);
|
|
|
|
offset32 += 4;
|
|
ret_buf += pre_len;
|
|
len32 -= pre_len;
|
|
}
|
|
|
|
if (len32 & 3) {
|
|
extra = 4 - (len32 & 3);
|
|
len32 = (len32 + 4) & ~3;
|
|
}
|
|
|
|
if (len32 == 4) {
|
|
u8 buf[4];
|
|
|
|
if (cmd_flags)
|
|
cmd_flags = BCE_NVM_COMMAND_LAST;
|
|
else
|
|
cmd_flags = BCE_NVM_COMMAND_FIRST |
|
|
BCE_NVM_COMMAND_LAST;
|
|
|
|
rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
|
|
|
|
memcpy(ret_buf, buf, 4 - extra);
|
|
}
|
|
else if (len32 > 0) {
|
|
u8 buf[4];
|
|
|
|
/* Read the first word. */
|
|
if (cmd_flags)
|
|
cmd_flags = 0;
|
|
else
|
|
cmd_flags = BCE_NVM_COMMAND_FIRST;
|
|
|
|
rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
|
|
|
|
/* Advance to the next dword. */
|
|
offset32 += 4;
|
|
ret_buf += 4;
|
|
len32 -= 4;
|
|
|
|
while (len32 > 4 && rc == 0) {
|
|
rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
|
|
|
|
/* Advance to the next dword. */
|
|
offset32 += 4;
|
|
ret_buf += 4;
|
|
len32 -= 4;
|
|
}
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
cmd_flags = BCE_NVM_COMMAND_LAST;
|
|
rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
|
|
|
|
memcpy(ret_buf, buf, 4 - extra);
|
|
}
|
|
|
|
/* Disable access to flash interface and release the lock. */
|
|
bce_disable_nvram_access(sc);
|
|
bce_release_nvram_lock(sc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
#ifdef BCE_NVRAM_WRITE_SUPPORT
|
|
/****************************************************************************/
|
|
/* Write an arbitrary range of data from NVRAM. */
|
|
/* */
|
|
/* Prepares the NVRAM interface for write access and writes the requested */
|
|
/* data from the supplied buffer. The caller is responsible for */
|
|
/* calculating any appropriate CRCs. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
|
|
int buf_size)
|
|
{
|
|
u32 written, offset32, len32;
|
|
u8 *buf, start[4], end[4];
|
|
int rc = 0;
|
|
int align_start, align_end;
|
|
|
|
buf = data_buf;
|
|
offset32 = offset;
|
|
len32 = buf_size;
|
|
align_start = align_end = 0;
|
|
|
|
if ((align_start = (offset32 & 3))) {
|
|
offset32 &= ~3;
|
|
len32 += align_start;
|
|
if ((rc = bce_nvram_read(sc, offset32, start, 4)))
|
|
return rc;
|
|
}
|
|
|
|
if (len32 & 3) {
|
|
if ((len32 > 4) || !align_start) {
|
|
align_end = 4 - (len32 & 3);
|
|
len32 += align_end;
|
|
if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
|
|
end, 4))) {
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (align_start || align_end) {
|
|
buf = malloc(len32, M_DEVBUF, M_NOWAIT);
|
|
if (buf == 0)
|
|
return ENOMEM;
|
|
if (align_start) {
|
|
memcpy(buf, start, 4);
|
|
}
|
|
if (align_end) {
|
|
memcpy(buf + len32 - 4, end, 4);
|
|
}
|
|
memcpy(buf + align_start, data_buf, buf_size);
|
|
}
|
|
|
|
written = 0;
|
|
while ((written < len32) && (rc == 0)) {
|
|
u32 page_start, page_end, data_start, data_end;
|
|
u32 addr, cmd_flags;
|
|
int i;
|
|
u8 flash_buffer[264];
|
|
|
|
/* Find the page_start addr */
|
|
page_start = offset32 + written;
|
|
page_start -= (page_start % sc->bce_flash_info->page_size);
|
|
/* Find the page_end addr */
|
|
page_end = page_start + sc->bce_flash_info->page_size;
|
|
/* Find the data_start addr */
|
|
data_start = (written == 0) ? offset32 : page_start;
|
|
/* Find the data_end addr */
|
|
data_end = (page_end > offset32 + len32) ?
|
|
(offset32 + len32) : page_end;
|
|
|
|
/* Request access to the flash interface. */
|
|
if ((rc = bce_acquire_nvram_lock(sc)) != 0)
|
|
goto nvram_write_end;
|
|
|
|
/* Enable access to flash interface */
|
|
bce_enable_nvram_access(sc);
|
|
|
|
cmd_flags = BCE_NVM_COMMAND_FIRST;
|
|
if (sc->bce_flash_info->buffered == 0) {
|
|
int j;
|
|
|
|
/* Read the whole page into the buffer
|
|
* (non-buffer flash only) */
|
|
for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
|
|
if (j == (sc->bce_flash_info->page_size - 4)) {
|
|
cmd_flags |= BCE_NVM_COMMAND_LAST;
|
|
}
|
|
rc = bce_nvram_read_dword(sc,
|
|
page_start + j,
|
|
&flash_buffer[j],
|
|
cmd_flags);
|
|
|
|
if (rc)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Enable writes to flash interface (unlock write-protect) */
|
|
if ((rc = bce_enable_nvram_write(sc)) != 0)
|
|
goto nvram_write_end;
|
|
|
|
/* Erase the page */
|
|
if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
|
|
goto nvram_write_end;
|
|
|
|
/* Re-enable the write again for the actual write */
|
|
bce_enable_nvram_write(sc);
|
|
|
|
/* Loop to write back the buffer data from page_start to
|
|
* data_start */
|
|
i = 0;
|
|
if (sc->bce_flash_info->buffered == 0) {
|
|
for (addr = page_start; addr < data_start;
|
|
addr += 4, i += 4) {
|
|
|
|
rc = bce_nvram_write_dword(sc, addr,
|
|
&flash_buffer[i], cmd_flags);
|
|
|
|
if (rc != 0)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Loop to write the new data from data_start to data_end */
|
|
for (addr = data_start; addr < data_end; addr += 4, i++) {
|
|
if ((addr == page_end - 4) ||
|
|
((sc->bce_flash_info->buffered) &&
|
|
(addr == data_end - 4))) {
|
|
|
|
cmd_flags |= BCE_NVM_COMMAND_LAST;
|
|
}
|
|
rc = bce_nvram_write_dword(sc, addr, buf,
|
|
cmd_flags);
|
|
|
|
if (rc != 0)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
buf += 4;
|
|
}
|
|
|
|
/* Loop to write back the buffer data from data_end
|
|
* to page_end */
|
|
if (sc->bce_flash_info->buffered == 0) {
|
|
for (addr = data_end; addr < page_end;
|
|
addr += 4, i += 4) {
|
|
|
|
if (addr == page_end-4) {
|
|
cmd_flags = BCE_NVM_COMMAND_LAST;
|
|
}
|
|
rc = bce_nvram_write_dword(sc, addr,
|
|
&flash_buffer[i], cmd_flags);
|
|
|
|
if (rc != 0)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Disable writes to flash interface (lock write-protect) */
|
|
bce_disable_nvram_write(sc);
|
|
|
|
/* Disable access to flash interface */
|
|
bce_disable_nvram_access(sc);
|
|
bce_release_nvram_lock(sc);
|
|
|
|
/* Increment written */
|
|
written += data_end - data_start;
|
|
}
|
|
|
|
nvram_write_end:
|
|
if (align_start || align_end)
|
|
free(buf, M_DEVBUF);
|
|
|
|
return rc;
|
|
}
|
|
#endif /* BCE_NVRAM_WRITE_SUPPORT */
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Verifies that NVRAM is accessible and contains valid data. */
|
|
/* */
|
|
/* Reads the configuration data from NVRAM and verifies that the CRC is */
|
|
/* correct. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 on success, positive value on failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_nvram_test(struct bce_softc *sc)
|
|
{
|
|
u32 buf[BCE_NVRAM_SIZE / 4];
|
|
u8 *data = (u8 *) buf;
|
|
int rc = 0;
|
|
u32 magic, csum;
|
|
|
|
|
|
/*
|
|
* Check that the device NVRAM is valid by reading
|
|
* the magic value at offset 0.
|
|
*/
|
|
if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0)
|
|
goto bce_nvram_test_done;
|
|
|
|
|
|
magic = bce_be32toh(buf[0]);
|
|
if (magic != BCE_NVRAM_MAGIC) {
|
|
rc = ENODEV;
|
|
BCE_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, "
|
|
"Found: 0x%08X\n",
|
|
__FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
|
|
goto bce_nvram_test_done;
|
|
}
|
|
|
|
/*
|
|
* Verify that the device NVRAM includes valid
|
|
* configuration data.
|
|
*/
|
|
if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0)
|
|
goto bce_nvram_test_done;
|
|
|
|
csum = ether_crc32_le(data, 0x100);
|
|
if (csum != BCE_CRC32_RESIDUAL) {
|
|
rc = ENODEV;
|
|
BCE_PRINTF(sc, "%s(%d): Invalid Manufacturing Information NVRAM CRC! "
|
|
"Expected: 0x%08X, Found: 0x%08X\n",
|
|
__FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
|
|
goto bce_nvram_test_done;
|
|
}
|
|
|
|
csum = ether_crc32_le(data + 0x100, 0x100);
|
|
if (csum != BCE_CRC32_RESIDUAL) {
|
|
BCE_PRINTF(sc, "%s(%d): Invalid Feature Configuration Information "
|
|
"NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
|
|
__FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
|
|
rc = ENODEV;
|
|
}
|
|
|
|
bce_nvram_test_done:
|
|
return rc;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Free any DMA memory owned by the driver. */
|
|
/* */
|
|
/* Scans through each data structre that requires DMA memory and frees */
|
|
/* the memory if allocated. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_dma_free(struct bce_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
DBPRINT(sc,BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/* Destroy the status block. */
|
|
if (sc->status_block != NULL)
|
|
bus_dmamem_free(
|
|
sc->status_tag,
|
|
sc->status_block,
|
|
sc->status_map);
|
|
|
|
if (sc->status_map != NULL) {
|
|
bus_dmamap_unload(
|
|
sc->status_tag,
|
|
sc->status_map);
|
|
bus_dmamap_destroy(sc->status_tag,
|
|
sc->status_map);
|
|
}
|
|
|
|
if (sc->status_tag != NULL)
|
|
bus_dma_tag_destroy(sc->status_tag);
|
|
|
|
|
|
/* Destroy the statistics block. */
|
|
if (sc->stats_block != NULL)
|
|
bus_dmamem_free(
|
|
sc->stats_tag,
|
|
sc->stats_block,
|
|
sc->stats_map);
|
|
|
|
if (sc->stats_map != NULL) {
|
|
bus_dmamap_unload(
|
|
sc->stats_tag,
|
|
sc->stats_map);
|
|
bus_dmamap_destroy(sc->stats_tag,
|
|
sc->stats_map);
|
|
}
|
|
|
|
if (sc->stats_tag != NULL)
|
|
bus_dma_tag_destroy(sc->stats_tag);
|
|
|
|
|
|
/* Free, unmap and destroy all TX buffer descriptor chain pages. */
|
|
for (i = 0; i < TX_PAGES; i++ ) {
|
|
if (sc->tx_bd_chain[i] != NULL)
|
|
bus_dmamem_free(
|
|
sc->tx_bd_chain_tag,
|
|
sc->tx_bd_chain[i],
|
|
sc->tx_bd_chain_map[i]);
|
|
|
|
if (sc->tx_bd_chain_map[i] != NULL) {
|
|
bus_dmamap_unload(
|
|
sc->tx_bd_chain_tag,
|
|
sc->tx_bd_chain_map[i]);
|
|
bus_dmamap_destroy(
|
|
sc->tx_bd_chain_tag,
|
|
sc->tx_bd_chain_map[i]);
|
|
}
|
|
|
|
}
|
|
|
|
/* Destroy the TX buffer descriptor tag. */
|
|
if (sc->tx_bd_chain_tag != NULL)
|
|
bus_dma_tag_destroy(sc->tx_bd_chain_tag);
|
|
|
|
|
|
/* Free, unmap and destroy all RX buffer descriptor chain pages. */
|
|
for (i = 0; i < RX_PAGES; i++ ) {
|
|
if (sc->rx_bd_chain[i] != NULL)
|
|
bus_dmamem_free(
|
|
sc->rx_bd_chain_tag,
|
|
sc->rx_bd_chain[i],
|
|
sc->rx_bd_chain_map[i]);
|
|
|
|
if (sc->rx_bd_chain_map[i] != NULL) {
|
|
bus_dmamap_unload(
|
|
sc->rx_bd_chain_tag,
|
|
sc->rx_bd_chain_map[i]);
|
|
bus_dmamap_destroy(
|
|
sc->rx_bd_chain_tag,
|
|
sc->rx_bd_chain_map[i]);
|
|
}
|
|
}
|
|
|
|
/* Destroy the RX buffer descriptor tag. */
|
|
if (sc->rx_bd_chain_tag != NULL)
|
|
bus_dma_tag_destroy(sc->rx_bd_chain_tag);
|
|
|
|
|
|
/* Unload and destroy the TX mbuf maps. */
|
|
for (i = 0; i < TOTAL_TX_BD; i++) {
|
|
if (sc->tx_mbuf_map[i] != NULL) {
|
|
bus_dmamap_unload(sc->tx_mbuf_tag,
|
|
sc->tx_mbuf_map[i]);
|
|
bus_dmamap_destroy(sc->tx_mbuf_tag,
|
|
sc->tx_mbuf_map[i]);
|
|
}
|
|
}
|
|
|
|
/* Destroy the TX mbuf tag. */
|
|
if (sc->tx_mbuf_tag != NULL)
|
|
bus_dma_tag_destroy(sc->tx_mbuf_tag);
|
|
|
|
|
|
/* Unload and destroy the RX mbuf maps. */
|
|
for (i = 0; i < TOTAL_RX_BD; i++) {
|
|
if (sc->rx_mbuf_map[i] != NULL) {
|
|
bus_dmamap_unload(sc->rx_mbuf_tag,
|
|
sc->rx_mbuf_map[i]);
|
|
bus_dmamap_destroy(sc->rx_mbuf_tag,
|
|
sc->rx_mbuf_map[i]);
|
|
}
|
|
}
|
|
|
|
/* Destroy the RX mbuf tag. */
|
|
if (sc->rx_mbuf_tag != NULL)
|
|
bus_dma_tag_destroy(sc->rx_mbuf_tag);
|
|
|
|
|
|
/* Destroy the parent tag */
|
|
if (sc->parent_tag != NULL)
|
|
bus_dma_tag_destroy(sc->parent_tag);
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Get DMA memory from the OS. */
|
|
/* */
|
|
/* Validates that the OS has provided DMA buffers in response to a */
|
|
/* bus_dmamap_load() call and saves the physical address of those buffers. */
|
|
/* When the callback is used the OS will return 0 for the mapping function */
|
|
/* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */
|
|
/* failures back to the caller. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct bce_dmamap_arg *map_arg = arg;
|
|
struct bce_softc *sc = map_arg->sc;
|
|
|
|
/* Simulate a mapping failure. */
|
|
DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure),
|
|
BCE_PRINTF(sc, "%s(%d): Simulating DMA mapping error.\n",
|
|
__FILE__, __LINE__);
|
|
error = ENOMEM);
|
|
|
|
/* Check for an error and signal the caller that an error occurred. */
|
|
if (error || (nseg > map_arg->maxsegs)) {
|
|
BCE_PRINTF(sc, "%s(%d): DMA mapping error! error = %d, "
|
|
"nseg = %d, maxsegs = %d\n",
|
|
__FILE__, __LINE__, error, nseg, map_arg->maxsegs);
|
|
map_arg->maxsegs = 0;
|
|
goto bce_dma_map_addr_exit;
|
|
}
|
|
|
|
map_arg->busaddr = segs->ds_addr;
|
|
|
|
bce_dma_map_addr_exit:
|
|
return;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Map TX buffers into TX buffer descriptors. */
|
|
/* */
|
|
/* Given a series of DMA memory containting an outgoing frame, map the */
|
|
/* segments into the tx_bd structure used by the hardware. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs,
|
|
int nseg, bus_size_t mapsize, int error)
|
|
{
|
|
struct bce_dmamap_arg *map_arg;
|
|
struct bce_softc *sc;
|
|
struct tx_bd *txbd = NULL;
|
|
int i = 0;
|
|
u16 prod, chain_prod;
|
|
u32 prod_bseq;
|
|
#ifdef BCE_DEBUG
|
|
u16 debug_prod;
|
|
#endif
|
|
|
|
map_arg = arg;
|
|
sc = map_arg->sc;
|
|
|
|
if (error) {
|
|
DBPRINT(sc, BCE_WARN, "%s(): Called with error = %d\n",
|
|
__FUNCTION__, error);
|
|
return;
|
|
}
|
|
|
|
/* Signal error to caller if there's too many segments */
|
|
if (nseg > map_arg->maxsegs) {
|
|
DBPRINT(sc, BCE_WARN,
|
|
"%s(): Mapped TX descriptors: max segs = %d, "
|
|
"actual segs = %d\n",
|
|
__FUNCTION__, map_arg->maxsegs, nseg);
|
|
|
|
map_arg->maxsegs = 0;
|
|
return;
|
|
}
|
|
|
|
/* prod points to an empty tx_bd at this point. */
|
|
prod = map_arg->prod;
|
|
chain_prod = map_arg->chain_prod;
|
|
prod_bseq = map_arg->prod_bseq;
|
|
|
|
#ifdef BCE_DEBUG
|
|
debug_prod = chain_prod;
|
|
#endif
|
|
|
|
DBPRINT(sc, BCE_INFO_SEND,
|
|
"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
|
|
"prod_bseq = 0x%08X\n",
|
|
__FUNCTION__, prod, chain_prod, prod_bseq);
|
|
|
|
/*
|
|
* Cycle through each mbuf segment that makes up
|
|
* the outgoing frame, gathering the mapping info
|
|
* for that segment and creating a tx_bd to for
|
|
* the mbuf.
|
|
*/
|
|
|
|
txbd = &map_arg->tx_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
|
|
|
|
/* Setup the first tx_bd for the first segment. */
|
|
txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
|
|
txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
|
|
txbd->tx_bd_mss_nbytes = htole16(segs[i].ds_len);
|
|
txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags |
|
|
TX_BD_FLAGS_START);
|
|
prod_bseq += segs[i].ds_len;
|
|
|
|
/* Setup any remaing segments. */
|
|
for (i = 1; i < nseg; i++) {
|
|
prod = NEXT_TX_BD(prod);
|
|
chain_prod = TX_CHAIN_IDX(prod);
|
|
|
|
txbd = &map_arg->tx_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
|
|
|
|
txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
|
|
txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
|
|
txbd->tx_bd_mss_nbytes = htole16(segs[i].ds_len);
|
|
txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags);
|
|
|
|
prod_bseq += segs[i].ds_len;
|
|
}
|
|
|
|
/* Set the END flag on the last TX buffer descriptor. */
|
|
txbd->tx_bd_vlan_tag_flags |= htole16(TX_BD_FLAGS_END);
|
|
|
|
DBRUN(BCE_INFO_SEND, bce_dump_tx_chain(sc, debug_prod, nseg));
|
|
|
|
DBPRINT(sc, BCE_INFO_SEND,
|
|
"%s(): End: prod = 0x%04X, chain_prod = %04X, "
|
|
"prod_bseq = 0x%08X\n",
|
|
__FUNCTION__, prod, chain_prod, prod_bseq);
|
|
|
|
/* prod points to the last tx_bd at this point. */
|
|
map_arg->maxsegs = nseg;
|
|
map_arg->prod = prod;
|
|
map_arg->chain_prod = chain_prod;
|
|
map_arg->prod_bseq = prod_bseq;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Allocate any DMA memory needed by the driver. */
|
|
/* */
|
|
/* Allocates DMA memory needed for the various global structures needed by */
|
|
/* hardware. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_dma_alloc(device_t dev)
|
|
{
|
|
struct bce_softc *sc;
|
|
int i, error, rc = 0;
|
|
struct bce_dmamap_arg map_arg;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/*
|
|
* Allocate the parent bus DMA tag appropriate for PCI.
|
|
*/
|
|
if (bus_dma_tag_create(NULL, /* parent */
|
|
BCE_DMA_ALIGN, /* alignment */
|
|
BCE_DMA_BOUNDARY, /* boundary */
|
|
sc->max_bus_addr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, /* filterfunc */
|
|
NULL, /* filterarg */
|
|
MAXBSIZE, /* maxsize */
|
|
BUS_SPACE_UNRESTRICTED, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* locfunc */
|
|
NULL, /* lockarg */
|
|
&sc->parent_tag)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate parent DMA tag!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
/*
|
|
* Create a DMA tag for the status block, allocate and clear the
|
|
* memory, map the memory into DMA space, and fetch the physical
|
|
* address of the block.
|
|
*/
|
|
if (bus_dma_tag_create(
|
|
sc->parent_tag, /* parent */
|
|
BCE_DMA_ALIGN, /* alignment */
|
|
BCE_DMA_BOUNDARY, /* boundary */
|
|
sc->max_bus_addr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, /* filterfunc */
|
|
NULL, /* filterarg */
|
|
BCE_STATUS_BLK_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
BCE_STATUS_BLK_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&sc->status_tag)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate status block DMA tag!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
if(bus_dmamem_alloc(
|
|
sc->status_tag, /* dmat */
|
|
(void **)&sc->status_block, /* vaddr */
|
|
BUS_DMA_NOWAIT, /* flags */
|
|
&sc->status_map)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate status block DMA memory!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ);
|
|
|
|
map_arg.sc = sc;
|
|
map_arg.maxsegs = 1;
|
|
|
|
error = bus_dmamap_load(
|
|
sc->status_tag, /* dmat */
|
|
sc->status_map, /* map */
|
|
sc->status_block, /* buf */
|
|
BCE_STATUS_BLK_SZ, /* buflen */
|
|
bce_dma_map_addr, /* callback */
|
|
&map_arg, /* callbackarg */
|
|
BUS_DMA_NOWAIT); /* flags */
|
|
|
|
if(error || (map_arg.maxsegs == 0)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not map status block DMA memory!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
sc->status_block_paddr = map_arg.busaddr;
|
|
/* DRC - Fix for 64 bit addresses. */
|
|
DBPRINT(sc, BCE_INFO, "status_block_paddr = 0x%08X\n",
|
|
(u32) sc->status_block_paddr);
|
|
|
|
/*
|
|
* Create a DMA tag for the statistics block, allocate and clear the
|
|
* memory, map the memory into DMA space, and fetch the physical
|
|
* address of the block.
|
|
*/
|
|
if (bus_dma_tag_create(
|
|
sc->parent_tag, /* parent */
|
|
BCE_DMA_ALIGN, /* alignment */
|
|
BCE_DMA_BOUNDARY, /* boundary */
|
|
sc->max_bus_addr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, /* filterfunc */
|
|
NULL, /* filterarg */
|
|
BCE_STATS_BLK_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
BCE_STATS_BLK_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&sc->stats_tag)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate statistics block DMA tag!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
if (bus_dmamem_alloc(
|
|
sc->stats_tag, /* dmat */
|
|
(void **)&sc->stats_block, /* vaddr */
|
|
BUS_DMA_NOWAIT, /* flags */
|
|
&sc->stats_map)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate statistics block DMA memory!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ);
|
|
|
|
map_arg.sc = sc;
|
|
map_arg.maxsegs = 1;
|
|
|
|
error = bus_dmamap_load(
|
|
sc->stats_tag, /* dmat */
|
|
sc->stats_map, /* map */
|
|
sc->stats_block, /* buf */
|
|
BCE_STATS_BLK_SZ, /* buflen */
|
|
bce_dma_map_addr, /* callback */
|
|
&map_arg, /* callbackarg */
|
|
BUS_DMA_NOWAIT); /* flags */
|
|
|
|
if(error || (map_arg.maxsegs == 0)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not map statistics block DMA memory!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
sc->stats_block_paddr = map_arg.busaddr;
|
|
/* DRC - Fix for 64 bit address. */
|
|
DBPRINT(sc,BCE_INFO, "stats_block_paddr = 0x%08X\n",
|
|
(u32) sc->stats_block_paddr);
|
|
|
|
/*
|
|
* Create a DMA tag for the TX buffer descriptor chain,
|
|
* allocate and clear the memory, and fetch the
|
|
* physical address of the block.
|
|
*/
|
|
if(bus_dma_tag_create(
|
|
sc->parent_tag, /* parent */
|
|
BCM_PAGE_SIZE, /* alignment */
|
|
BCE_DMA_BOUNDARY, /* boundary */
|
|
sc->max_bus_addr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, /* filterfunc */
|
|
NULL, /* filterarg */
|
|
BCE_TX_CHAIN_PAGE_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
BCE_TX_CHAIN_PAGE_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&sc->tx_bd_chain_tag)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate TX descriptor chain DMA tag!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
for (i = 0; i < TX_PAGES; i++) {
|
|
|
|
if(bus_dmamem_alloc(
|
|
sc->tx_bd_chain_tag, /* tag */
|
|
(void **)&sc->tx_bd_chain[i], /* vaddr */
|
|
BUS_DMA_NOWAIT, /* flags */
|
|
&sc->tx_bd_chain_map[i])) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate TX descriptor "
|
|
"chain DMA memory!\n", __FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
map_arg.maxsegs = 1;
|
|
map_arg.sc = sc;
|
|
|
|
error = bus_dmamap_load(
|
|
sc->tx_bd_chain_tag, /* dmat */
|
|
sc->tx_bd_chain_map[i], /* map */
|
|
sc->tx_bd_chain[i], /* buf */
|
|
BCE_TX_CHAIN_PAGE_SZ, /* buflen */
|
|
bce_dma_map_addr, /* callback */
|
|
&map_arg, /* callbackarg */
|
|
BUS_DMA_NOWAIT); /* flags */
|
|
|
|
if(error || (map_arg.maxsegs == 0)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not map TX descriptor chain DMA memory!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
sc->tx_bd_chain_paddr[i] = map_arg.busaddr;
|
|
/* DRC - Fix for 64 bit systems. */
|
|
DBPRINT(sc, BCE_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
|
|
i, (u32) sc->tx_bd_chain_paddr[i]);
|
|
}
|
|
|
|
/* Create a DMA tag for TX mbufs. */
|
|
if (bus_dma_tag_create(
|
|
sc->parent_tag, /* parent */
|
|
BCE_DMA_ALIGN, /* alignment */
|
|
BCE_DMA_BOUNDARY, /* boundary */
|
|
sc->max_bus_addr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, /* filterfunc */
|
|
NULL, /* filterarg */
|
|
MCLBYTES * BCE_MAX_SEGMENTS, /* maxsize */
|
|
BCE_MAX_SEGMENTS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&sc->tx_mbuf_tag)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate TX mbuf DMA tag!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
/* Create DMA maps for the TX mbufs clusters. */
|
|
for (i = 0; i < TOTAL_TX_BD; i++) {
|
|
if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
|
|
&sc->tx_mbuf_map[i])) {
|
|
BCE_PRINTF(sc, "%s(%d): Unable to create TX mbuf DMA map!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a DMA tag for the RX buffer descriptor chain,
|
|
* allocate and clear the memory, and fetch the physical
|
|
* address of the blocks.
|
|
*/
|
|
if (bus_dma_tag_create(
|
|
sc->parent_tag, /* parent */
|
|
BCM_PAGE_SIZE, /* alignment */
|
|
BCE_DMA_BOUNDARY, /* boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
sc->max_bus_addr, /* lowaddr */
|
|
NULL, /* filter */
|
|
NULL, /* filterarg */
|
|
BCE_RX_CHAIN_PAGE_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
BCE_RX_CHAIN_PAGE_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&sc->rx_bd_chain_tag)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate RX descriptor chain DMA tag!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
for (i = 0; i < RX_PAGES; i++) {
|
|
|
|
if (bus_dmamem_alloc(
|
|
sc->rx_bd_chain_tag, /* tag */
|
|
(void **)&sc->rx_bd_chain[i], /* vaddr */
|
|
BUS_DMA_NOWAIT, /* flags */
|
|
&sc->rx_bd_chain_map[i])) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate RX descriptor chain "
|
|
"DMA memory!\n", __FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
|
|
|
|
map_arg.maxsegs = 1;
|
|
map_arg.sc = sc;
|
|
|
|
error = bus_dmamap_load(
|
|
sc->rx_bd_chain_tag, /* dmat */
|
|
sc->rx_bd_chain_map[i], /* map */
|
|
sc->rx_bd_chain[i], /* buf */
|
|
BCE_RX_CHAIN_PAGE_SZ, /* buflen */
|
|
bce_dma_map_addr, /* callback */
|
|
&map_arg, /* callbackarg */
|
|
BUS_DMA_NOWAIT); /* flags */
|
|
|
|
if(error || (map_arg.maxsegs == 0)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not map RX descriptor chain DMA memory!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
sc->rx_bd_chain_paddr[i] = map_arg.busaddr;
|
|
/* DRC - Fix for 64 bit systems. */
|
|
DBPRINT(sc, BCE_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
|
|
i, (u32) sc->rx_bd_chain_paddr[i]);
|
|
}
|
|
|
|
/*
|
|
* Create a DMA tag for RX mbufs.
|
|
*/
|
|
if (bus_dma_tag_create(
|
|
sc->parent_tag, /* parent */
|
|
BCE_DMA_ALIGN, /* alignment */
|
|
BCE_DMA_BOUNDARY, /* boundary */
|
|
sc->max_bus_addr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, /* filterfunc */
|
|
NULL, /* filterarg */
|
|
MJUM9BYTES, /* maxsize */
|
|
BCE_MAX_SEGMENTS, /* nsegments */
|
|
MJUM9BYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&sc->rx_mbuf_tag)) {
|
|
BCE_PRINTF(sc, "%s(%d): Could not allocate RX mbuf DMA tag!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
|
|
/* Create DMA maps for the RX mbuf clusters. */
|
|
for (i = 0; i < TOTAL_RX_BD; i++) {
|
|
if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
|
|
&sc->rx_mbuf_map[i])) {
|
|
BCE_PRINTF(sc, "%s(%d): Unable to create RX mbuf DMA map!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOMEM;
|
|
goto bce_dma_alloc_exit;
|
|
}
|
|
}
|
|
|
|
bce_dma_alloc_exit:
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return(rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Release all resources used by the driver. */
|
|
/* */
|
|
/* Releases all resources acquired by the driver including interrupts, */
|
|
/* interrupt handler, interfaces, mutexes, and DMA memory. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_release_resources(struct bce_softc *sc)
|
|
{
|
|
device_t dev;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
dev = sc->bce_dev;
|
|
|
|
bce_dma_free(sc);
|
|
|
|
if (sc->bce_intrhand != NULL)
|
|
bus_teardown_intr(dev, sc->bce_irq, sc->bce_intrhand);
|
|
|
|
if (sc->bce_irq != NULL)
|
|
bus_release_resource(dev,
|
|
SYS_RES_IRQ,
|
|
0,
|
|
sc->bce_irq);
|
|
|
|
if (sc->bce_res != NULL)
|
|
bus_release_resource(dev,
|
|
SYS_RES_MEMORY,
|
|
PCIR_BAR(0),
|
|
sc->bce_res);
|
|
|
|
if (sc->bce_ifp != NULL)
|
|
if_free(sc->bce_ifp);
|
|
|
|
|
|
if (mtx_initialized(&sc->bce_mtx))
|
|
BCE_LOCK_DESTROY(sc);
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Firmware synchronization. */
|
|
/* */
|
|
/* Before performing certain events such as a chip reset, synchronize with */
|
|
/* the firmware first. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_fw_sync(struct bce_softc *sc, u32 msg_data)
|
|
{
|
|
int i, rc = 0;
|
|
u32 val;
|
|
|
|
/* Don't waste any time if we've timed out before. */
|
|
if (sc->bce_fw_timed_out) {
|
|
rc = EBUSY;
|
|
goto bce_fw_sync_exit;
|
|
}
|
|
|
|
/* Increment the message sequence number. */
|
|
sc->bce_fw_wr_seq++;
|
|
msg_data |= sc->bce_fw_wr_seq;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE, "bce_fw_sync(): msg_data = 0x%08X\n", msg_data);
|
|
|
|
/* Send the message to the bootcode driver mailbox. */
|
|
REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data);
|
|
|
|
/* Wait for the bootcode to acknowledge the message. */
|
|
for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
|
|
/* Check for a response in the bootcode firmware mailbox. */
|
|
val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_FW_MB);
|
|
if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
|
|
/* If we've timed out, tell the bootcode that we've stopped waiting. */
|
|
if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
|
|
((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
|
|
|
|
BCE_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
|
|
"msg_data = 0x%08X\n",
|
|
__FILE__, __LINE__, msg_data);
|
|
|
|
msg_data &= ~BCE_DRV_MSG_CODE;
|
|
msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
|
|
|
|
REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data);
|
|
|
|
sc->bce_fw_timed_out = 1;
|
|
rc = EBUSY;
|
|
}
|
|
|
|
bce_fw_sync_exit:
|
|
return (rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
|
|
u32 rv2p_code_len, u32 rv2p_proc)
|
|
{
|
|
int i;
|
|
u32 val;
|
|
|
|
for (i = 0; i < rv2p_code_len; i += 8) {
|
|
REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
|
|
rv2p_code++;
|
|
REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
|
|
rv2p_code++;
|
|
|
|
if (rv2p_proc == RV2P_PROC1) {
|
|
val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
|
|
REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
|
|
}
|
|
else {
|
|
val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
|
|
REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
|
|
}
|
|
}
|
|
|
|
/* Reset the processor, un-stall is done later. */
|
|
if (rv2p_proc == RV2P_PROC1) {
|
|
REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
|
|
}
|
|
else {
|
|
REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Load RISC processor firmware. */
|
|
/* */
|
|
/* Loads firmware from the file if_bcefw.h into the scratchpad memory */
|
|
/* associated with a particular processor. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
|
|
struct fw_info *fw)
|
|
{
|
|
u32 offset;
|
|
u32 val;
|
|
|
|
/* Halt the CPU. */
|
|
val = REG_RD_IND(sc, cpu_reg->mode);
|
|
val |= cpu_reg->mode_value_halt;
|
|
REG_WR_IND(sc, cpu_reg->mode, val);
|
|
REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
|
|
|
|
/* Load the Text area. */
|
|
offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
|
|
if (fw->text) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
|
|
REG_WR_IND(sc, offset, fw->text[j]);
|
|
}
|
|
}
|
|
|
|
/* Load the Data area. */
|
|
offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
|
|
if (fw->data) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
|
|
REG_WR_IND(sc, offset, fw->data[j]);
|
|
}
|
|
}
|
|
|
|
/* Load the SBSS area. */
|
|
offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
|
|
if (fw->sbss) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
|
|
REG_WR_IND(sc, offset, fw->sbss[j]);
|
|
}
|
|
}
|
|
|
|
/* Load the BSS area. */
|
|
offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
|
|
if (fw->bss) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
|
|
REG_WR_IND(sc, offset, fw->bss[j]);
|
|
}
|
|
}
|
|
|
|
/* Load the Read-Only area. */
|
|
offset = cpu_reg->spad_base +
|
|
(fw->rodata_addr - cpu_reg->mips_view_base);
|
|
if (fw->rodata) {
|
|
int j;
|
|
|
|
for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
|
|
REG_WR_IND(sc, offset, fw->rodata[j]);
|
|
}
|
|
}
|
|
|
|
/* Clear the pre-fetch instruction. */
|
|
REG_WR_IND(sc, cpu_reg->inst, 0);
|
|
REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
|
|
|
|
/* Start the CPU. */
|
|
val = REG_RD_IND(sc, cpu_reg->mode);
|
|
val &= ~cpu_reg->mode_value_halt;
|
|
REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
|
|
REG_WR_IND(sc, cpu_reg->mode, val);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
|
|
/* */
|
|
/* Loads the firmware for each CPU and starts the CPU. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_init_cpus(struct bce_softc *sc)
|
|
{
|
|
struct cpu_reg cpu_reg;
|
|
struct fw_info fw;
|
|
|
|
/* Initialize the RV2P processor. */
|
|
bce_load_rv2p_fw(sc, bce_rv2p_proc1, sizeof(bce_rv2p_proc1), RV2P_PROC1);
|
|
bce_load_rv2p_fw(sc, bce_rv2p_proc2, sizeof(bce_rv2p_proc2), RV2P_PROC2);
|
|
|
|
/* Initialize the RX Processor. */
|
|
cpu_reg.mode = BCE_RXP_CPU_MODE;
|
|
cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
|
|
cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
|
|
cpu_reg.state = BCE_RXP_CPU_STATE;
|
|
cpu_reg.state_value_clear = 0xffffff;
|
|
cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
|
|
cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
|
|
cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
|
|
cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
|
|
cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
|
|
cpu_reg.spad_base = BCE_RXP_SCRATCH;
|
|
cpu_reg.mips_view_base = 0x8000000;
|
|
|
|
fw.ver_major = bce_RXP_b06FwReleaseMajor;
|
|
fw.ver_minor = bce_RXP_b06FwReleaseMinor;
|
|
fw.ver_fix = bce_RXP_b06FwReleaseFix;
|
|
fw.start_addr = bce_RXP_b06FwStartAddr;
|
|
|
|
fw.text_addr = bce_RXP_b06FwTextAddr;
|
|
fw.text_len = bce_RXP_b06FwTextLen;
|
|
fw.text_index = 0;
|
|
fw.text = bce_RXP_b06FwText;
|
|
|
|
fw.data_addr = bce_RXP_b06FwDataAddr;
|
|
fw.data_len = bce_RXP_b06FwDataLen;
|
|
fw.data_index = 0;
|
|
fw.data = bce_RXP_b06FwData;
|
|
|
|
fw.sbss_addr = bce_RXP_b06FwSbssAddr;
|
|
fw.sbss_len = bce_RXP_b06FwSbssLen;
|
|
fw.sbss_index = 0;
|
|
fw.sbss = bce_RXP_b06FwSbss;
|
|
|
|
fw.bss_addr = bce_RXP_b06FwBssAddr;
|
|
fw.bss_len = bce_RXP_b06FwBssLen;
|
|
fw.bss_index = 0;
|
|
fw.bss = bce_RXP_b06FwBss;
|
|
|
|
fw.rodata_addr = bce_RXP_b06FwRodataAddr;
|
|
fw.rodata_len = bce_RXP_b06FwRodataLen;
|
|
fw.rodata_index = 0;
|
|
fw.rodata = bce_RXP_b06FwRodata;
|
|
|
|
DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
|
|
bce_load_cpu_fw(sc, &cpu_reg, &fw);
|
|
|
|
/* Initialize the TX Processor. */
|
|
cpu_reg.mode = BCE_TXP_CPU_MODE;
|
|
cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
|
|
cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
|
|
cpu_reg.state = BCE_TXP_CPU_STATE;
|
|
cpu_reg.state_value_clear = 0xffffff;
|
|
cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
|
|
cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
|
|
cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
|
|
cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
|
|
cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
|
|
cpu_reg.spad_base = BCE_TXP_SCRATCH;
|
|
cpu_reg.mips_view_base = 0x8000000;
|
|
|
|
fw.ver_major = bce_TXP_b06FwReleaseMajor;
|
|
fw.ver_minor = bce_TXP_b06FwReleaseMinor;
|
|
fw.ver_fix = bce_TXP_b06FwReleaseFix;
|
|
fw.start_addr = bce_TXP_b06FwStartAddr;
|
|
|
|
fw.text_addr = bce_TXP_b06FwTextAddr;
|
|
fw.text_len = bce_TXP_b06FwTextLen;
|
|
fw.text_index = 0;
|
|
fw.text = bce_TXP_b06FwText;
|
|
|
|
fw.data_addr = bce_TXP_b06FwDataAddr;
|
|
fw.data_len = bce_TXP_b06FwDataLen;
|
|
fw.data_index = 0;
|
|
fw.data = bce_TXP_b06FwData;
|
|
|
|
fw.sbss_addr = bce_TXP_b06FwSbssAddr;
|
|
fw.sbss_len = bce_TXP_b06FwSbssLen;
|
|
fw.sbss_index = 0;
|
|
fw.sbss = bce_TXP_b06FwSbss;
|
|
|
|
fw.bss_addr = bce_TXP_b06FwBssAddr;
|
|
fw.bss_len = bce_TXP_b06FwBssLen;
|
|
fw.bss_index = 0;
|
|
fw.bss = bce_TXP_b06FwBss;
|
|
|
|
fw.rodata_addr = bce_TXP_b06FwRodataAddr;
|
|
fw.rodata_len = bce_TXP_b06FwRodataLen;
|
|
fw.rodata_index = 0;
|
|
fw.rodata = bce_TXP_b06FwRodata;
|
|
|
|
DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
|
|
bce_load_cpu_fw(sc, &cpu_reg, &fw);
|
|
|
|
/* Initialize the TX Patch-up Processor. */
|
|
cpu_reg.mode = BCE_TPAT_CPU_MODE;
|
|
cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
|
|
cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
|
|
cpu_reg.state = BCE_TPAT_CPU_STATE;
|
|
cpu_reg.state_value_clear = 0xffffff;
|
|
cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
|
|
cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
|
|
cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
|
|
cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
|
|
cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
|
|
cpu_reg.spad_base = BCE_TPAT_SCRATCH;
|
|
cpu_reg.mips_view_base = 0x8000000;
|
|
|
|
fw.ver_major = bce_TPAT_b06FwReleaseMajor;
|
|
fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
|
|
fw.ver_fix = bce_TPAT_b06FwReleaseFix;
|
|
fw.start_addr = bce_TPAT_b06FwStartAddr;
|
|
|
|
fw.text_addr = bce_TPAT_b06FwTextAddr;
|
|
fw.text_len = bce_TPAT_b06FwTextLen;
|
|
fw.text_index = 0;
|
|
fw.text = bce_TPAT_b06FwText;
|
|
|
|
fw.data_addr = bce_TPAT_b06FwDataAddr;
|
|
fw.data_len = bce_TPAT_b06FwDataLen;
|
|
fw.data_index = 0;
|
|
fw.data = bce_TPAT_b06FwData;
|
|
|
|
fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
|
|
fw.sbss_len = bce_TPAT_b06FwSbssLen;
|
|
fw.sbss_index = 0;
|
|
fw.sbss = bce_TPAT_b06FwSbss;
|
|
|
|
fw.bss_addr = bce_TPAT_b06FwBssAddr;
|
|
fw.bss_len = bce_TPAT_b06FwBssLen;
|
|
fw.bss_index = 0;
|
|
fw.bss = bce_TPAT_b06FwBss;
|
|
|
|
fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
|
|
fw.rodata_len = bce_TPAT_b06FwRodataLen;
|
|
fw.rodata_index = 0;
|
|
fw.rodata = bce_TPAT_b06FwRodata;
|
|
|
|
DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
|
|
bce_load_cpu_fw(sc, &cpu_reg, &fw);
|
|
|
|
/* Initialize the Completion Processor. */
|
|
cpu_reg.mode = BCE_COM_CPU_MODE;
|
|
cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
|
|
cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
|
|
cpu_reg.state = BCE_COM_CPU_STATE;
|
|
cpu_reg.state_value_clear = 0xffffff;
|
|
cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
|
|
cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
|
|
cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
|
|
cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
|
|
cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
|
|
cpu_reg.spad_base = BCE_COM_SCRATCH;
|
|
cpu_reg.mips_view_base = 0x8000000;
|
|
|
|
fw.ver_major = bce_COM_b06FwReleaseMajor;
|
|
fw.ver_minor = bce_COM_b06FwReleaseMinor;
|
|
fw.ver_fix = bce_COM_b06FwReleaseFix;
|
|
fw.start_addr = bce_COM_b06FwStartAddr;
|
|
|
|
fw.text_addr = bce_COM_b06FwTextAddr;
|
|
fw.text_len = bce_COM_b06FwTextLen;
|
|
fw.text_index = 0;
|
|
fw.text = bce_COM_b06FwText;
|
|
|
|
fw.data_addr = bce_COM_b06FwDataAddr;
|
|
fw.data_len = bce_COM_b06FwDataLen;
|
|
fw.data_index = 0;
|
|
fw.data = bce_COM_b06FwData;
|
|
|
|
fw.sbss_addr = bce_COM_b06FwSbssAddr;
|
|
fw.sbss_len = bce_COM_b06FwSbssLen;
|
|
fw.sbss_index = 0;
|
|
fw.sbss = bce_COM_b06FwSbss;
|
|
|
|
fw.bss_addr = bce_COM_b06FwBssAddr;
|
|
fw.bss_len = bce_COM_b06FwBssLen;
|
|
fw.bss_index = 0;
|
|
fw.bss = bce_COM_b06FwBss;
|
|
|
|
fw.rodata_addr = bce_COM_b06FwRodataAddr;
|
|
fw.rodata_len = bce_COM_b06FwRodataLen;
|
|
fw.rodata_index = 0;
|
|
fw.rodata = bce_COM_b06FwRodata;
|
|
|
|
DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
|
|
bce_load_cpu_fw(sc, &cpu_reg, &fw);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Initialize context memory. */
|
|
/* */
|
|
/* Clears the memory associated with each Context ID (CID). */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_init_context(struct bce_softc *sc)
|
|
{
|
|
u32 vcid;
|
|
|
|
vcid = 96;
|
|
while (vcid) {
|
|
u32 vcid_addr, pcid_addr, offset;
|
|
|
|
vcid--;
|
|
|
|
vcid_addr = GET_CID_ADDR(vcid);
|
|
pcid_addr = vcid_addr;
|
|
|
|
REG_WR(sc, BCE_CTX_VIRT_ADDR, 0x00);
|
|
REG_WR(sc, BCE_CTX_PAGE_TBL, pcid_addr);
|
|
|
|
/* Zero out the context. */
|
|
for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
|
|
CTX_WR(sc, 0x00, offset, 0);
|
|
}
|
|
|
|
REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
|
|
REG_WR(sc, BCE_CTX_PAGE_TBL, pcid_addr);
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Fetch the permanent MAC address of the controller. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_get_mac_addr(struct bce_softc *sc)
|
|
{
|
|
u32 mac_lo = 0, mac_hi = 0;
|
|
|
|
/*
|
|
* The NetXtreme II bootcode populates various NIC
|
|
* power-on and runtime configuration items in a
|
|
* shared memory area. The factory configured MAC
|
|
* address is available from both NVRAM and the
|
|
* shared memory area so we'll read the value from
|
|
* shared memory for speed.
|
|
*/
|
|
|
|
mac_hi = REG_RD_IND(sc, sc->bce_shmem_base +
|
|
BCE_PORT_HW_CFG_MAC_UPPER);
|
|
mac_lo = REG_RD_IND(sc, sc->bce_shmem_base +
|
|
BCE_PORT_HW_CFG_MAC_LOWER);
|
|
|
|
if ((mac_lo == 0) && (mac_hi == 0)) {
|
|
BCE_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
|
|
__FILE__, __LINE__);
|
|
} else {
|
|
sc->eaddr[0] = (u_char)(mac_hi >> 8);
|
|
sc->eaddr[1] = (u_char)(mac_hi >> 0);
|
|
sc->eaddr[2] = (u_char)(mac_lo >> 24);
|
|
sc->eaddr[3] = (u_char)(mac_lo >> 16);
|
|
sc->eaddr[4] = (u_char)(mac_lo >> 8);
|
|
sc->eaddr[5] = (u_char)(mac_lo >> 0);
|
|
}
|
|
|
|
DBPRINT(sc, BCE_INFO, "Permanent Ethernet address = %6D\n", sc->eaddr, ":");
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Program the MAC address. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_set_mac_addr(struct bce_softc *sc)
|
|
{
|
|
u32 val;
|
|
u8 *mac_addr = sc->eaddr;
|
|
|
|
DBPRINT(sc, BCE_INFO, "Setting Ethernet address = %6D\n", sc->eaddr, ":");
|
|
|
|
val = (mac_addr[0] << 8) | mac_addr[1];
|
|
|
|
REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
|
|
|
|
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
|
|
(mac_addr[4] << 8) | mac_addr[5];
|
|
|
|
REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Stop the controller. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_stop(struct bce_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmedia_entry *ifm;
|
|
struct mii_data *mii = NULL;
|
|
int mtmp, itmp;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
BCE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->bce_ifp;
|
|
|
|
mii = device_get_softc(sc->bce_miibus);
|
|
|
|
callout_stop(&sc->bce_stat_ch);
|
|
|
|
/* Disable the transmit/receive blocks. */
|
|
REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 0x5ffffff);
|
|
REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
|
|
DELAY(20);
|
|
|
|
bce_disable_intr(sc);
|
|
|
|
/* Tell firmware that the driver is going away. */
|
|
bce_reset(sc, BCE_DRV_MSG_CODE_SUSPEND_NO_WOL);
|
|
|
|
/* Free the RX lists. */
|
|
bce_free_rx_chain(sc);
|
|
|
|
/* Free TX buffers. */
|
|
bce_free_tx_chain(sc);
|
|
|
|
/*
|
|
* Isolate/power down the PHY, but leave the media selection
|
|
* unchanged so that things will be put back to normal when
|
|
* we bring the interface back up.
|
|
*/
|
|
|
|
itmp = ifp->if_flags;
|
|
ifp->if_flags |= IFF_UP;
|
|
/*
|
|
* If we are called from bce_detach(), mii is already NULL.
|
|
*/
|
|
if (mii != NULL) {
|
|
ifm = mii->mii_media.ifm_cur;
|
|
mtmp = ifm->ifm_media;
|
|
ifm->ifm_media = IFM_ETHER | IFM_NONE;
|
|
mii_mediachg(mii);
|
|
ifm->ifm_media = mtmp;
|
|
}
|
|
|
|
ifp->if_flags = itmp;
|
|
ifp->if_timer = 0;
|
|
|
|
sc->bce_link = 0;
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
}
|
|
|
|
|
|
static int
|
|
bce_reset(struct bce_softc *sc, u32 reset_code)
|
|
{
|
|
u32 val;
|
|
int i, rc = 0;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/* Wait for pending PCI transactions to complete. */
|
|
REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
|
|
BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
|
|
BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
|
|
BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
|
|
BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
|
|
val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
|
|
DELAY(5);
|
|
|
|
/* Assume bootcode is running. */
|
|
sc->bce_fw_timed_out = 0;
|
|
|
|
/* Give the firmware a chance to prepare for the reset. */
|
|
rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
|
|
if (rc)
|
|
goto bce_reset_exit;
|
|
|
|
/* Set a firmware reminder that this is a soft reset. */
|
|
REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_RESET_SIGNATURE,
|
|
BCE_DRV_RESET_SIGNATURE_MAGIC);
|
|
|
|
/* Dummy read to force the chip to complete all current transactions. */
|
|
val = REG_RD(sc, BCE_MISC_ID);
|
|
|
|
/* Chip reset. */
|
|
val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
|
|
BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
|
|
BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
|
|
REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
|
|
|
|
/* Allow up to 30us for reset to complete. */
|
|
for (i = 0; i < 10; i++) {
|
|
val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
|
|
if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
|
|
BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
|
|
break;
|
|
}
|
|
DELAY(10);
|
|
}
|
|
|
|
/* Check that reset completed successfully. */
|
|
if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
|
|
BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
|
|
BCE_PRINTF(sc, "%s(%d): Reset failed!\n",
|
|
__FILE__, __LINE__);
|
|
rc = EBUSY;
|
|
goto bce_reset_exit;
|
|
}
|
|
|
|
/* Make sure byte swapping is properly configured. */
|
|
val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
|
|
if (val != 0x01020304) {
|
|
BCE_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENODEV;
|
|
goto bce_reset_exit;
|
|
}
|
|
|
|
/* Just completed a reset, assume that firmware is running again. */
|
|
sc->bce_fw_timed_out = 0;
|
|
|
|
/* Wait for the firmware to finish its initialization. */
|
|
rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
|
|
if (rc)
|
|
BCE_PRINTF(sc, "%s(%d): Firmware did not complete initialization!\n",
|
|
__FILE__, __LINE__);
|
|
|
|
bce_reset_exit:
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
static int
|
|
bce_chipinit(struct bce_softc *sc)
|
|
{
|
|
u32 val;
|
|
int rc = 0;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/* Make sure the interrupt is not active. */
|
|
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
|
|
/* Initialize DMA byte/word swapping, configure the number of DMA */
|
|
/* channels and PCI clock compensation delay. */
|
|
val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
|
|
BCE_DMA_CONFIG_DATA_WORD_SWAP |
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
|
|
#endif
|
|
BCE_DMA_CONFIG_CNTL_WORD_SWAP |
|
|
DMA_READ_CHANS << 12 |
|
|
DMA_WRITE_CHANS << 16;
|
|
|
|
val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
|
|
|
|
if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
|
|
val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
|
|
|
|
/*
|
|
* This setting resolves a problem observed on certain Intel PCI
|
|
* chipsets that cannot handle multiple outstanding DMA operations.
|
|
* See errata E9_5706A1_65.
|
|
*/
|
|
if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
|
|
(BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
|
|
!(sc->bce_flags & BCE_PCIX_FLAG))
|
|
val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
|
|
|
|
REG_WR(sc, BCE_DMA_CONFIG, val);
|
|
|
|
/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
|
|
if (sc->bce_flags & BCE_PCIX_FLAG) {
|
|
u16 val;
|
|
|
|
val = pci_read_config(sc->bce_dev, BCE_PCI_PCIX_CMD, 2);
|
|
pci_write_config(sc->bce_dev, BCE_PCI_PCIX_CMD, val & ~0x2, 2);
|
|
}
|
|
|
|
/* Enable the RX_V2P and Context state machines before access. */
|
|
REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
|
|
BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
|
|
BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
|
|
BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
|
|
|
|
/* Initialize context mapping and zero out the quick contexts. */
|
|
bce_init_context(sc);
|
|
|
|
/* Initialize the on-boards CPUs */
|
|
bce_init_cpus(sc);
|
|
|
|
/* Prepare NVRAM for access. */
|
|
if (bce_init_nvram(sc)) {
|
|
rc = ENODEV;
|
|
goto bce_chipinit_exit;
|
|
}
|
|
|
|
/* Set the kernel bypass block size */
|
|
val = REG_RD(sc, BCE_MQ_CONFIG);
|
|
val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
|
|
val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
|
|
REG_WR(sc, BCE_MQ_CONFIG, val);
|
|
|
|
val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
|
|
REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
|
|
REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
|
|
|
|
val = (BCM_PAGE_BITS - 8) << 24;
|
|
REG_WR(sc, BCE_RV2P_CONFIG, val);
|
|
|
|
/* Configure page size. */
|
|
val = REG_RD(sc, BCE_TBDR_CONFIG);
|
|
val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
|
|
val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
|
|
REG_WR(sc, BCE_TBDR_CONFIG, val);
|
|
|
|
bce_chipinit_exit:
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return(rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Initialize the controller in preparation to send/receive traffic. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_blockinit(struct bce_softc *sc)
|
|
{
|
|
u32 reg, val;
|
|
int rc = 0;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/* Load the hardware default MAC address. */
|
|
bce_set_mac_addr(sc);
|
|
|
|
/* Set the Ethernet backoff seed value */
|
|
val = sc->eaddr[0] + (sc->eaddr[1] << 8) +
|
|
(sc->eaddr[2] << 16) + (sc->eaddr[3] ) +
|
|
(sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
|
|
REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
|
|
|
|
sc->last_status_idx = 0;
|
|
sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
|
|
|
|
/* Set up link change interrupt generation. */
|
|
REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
|
|
|
|
/* Program the physical address of the status block. */
|
|
REG_WR(sc, BCE_HC_STATUS_ADDR_L,
|
|
BCE_ADDR_LO(sc->status_block_paddr));
|
|
REG_WR(sc, BCE_HC_STATUS_ADDR_H,
|
|
BCE_ADDR_HI(sc->status_block_paddr));
|
|
|
|
/* Program the physical address of the statistics block. */
|
|
REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
|
|
BCE_ADDR_LO(sc->stats_block_paddr));
|
|
REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
|
|
BCE_ADDR_HI(sc->stats_block_paddr));
|
|
|
|
/* Program various host coalescing parameters. */
|
|
REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
|
|
(sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
|
|
REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
|
|
(sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
|
|
REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
|
|
(sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
|
|
REG_WR(sc, BCE_HC_TX_TICKS,
|
|
(sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
|
|
REG_WR(sc, BCE_HC_RX_TICKS,
|
|
(sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
|
|
REG_WR(sc, BCE_HC_COM_TICKS,
|
|
(sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
|
|
REG_WR(sc, BCE_HC_CMD_TICKS,
|
|
(sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
|
|
REG_WR(sc, BCE_HC_STATS_TICKS,
|
|
(sc->bce_stats_ticks & 0xffff00));
|
|
REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS,
|
|
0xbb8); /* 3ms */
|
|
REG_WR(sc, BCE_HC_CONFIG,
|
|
(BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
|
|
BCE_HC_CONFIG_COLLECT_STATS));
|
|
|
|
/* Clear the internal statistics counters. */
|
|
REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
|
|
|
|
/* Verify that bootcode is running. */
|
|
reg = REG_RD_IND(sc, sc->bce_shmem_base + BCE_DEV_INFO_SIGNATURE);
|
|
|
|
DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure),
|
|
BCE_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
|
|
__FILE__, __LINE__);
|
|
reg = 0);
|
|
|
|
if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
|
|
BCE_DEV_INFO_SIGNATURE_MAGIC) {
|
|
BCE_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
|
|
"Expected: 08%08X\n", __FILE__, __LINE__,
|
|
(reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
|
|
BCE_DEV_INFO_SIGNATURE_MAGIC);
|
|
rc = ENODEV;
|
|
goto bce_blockinit_exit;
|
|
}
|
|
|
|
/* Check if any management firmware is running. */
|
|
reg = REG_RD_IND(sc, sc->bce_shmem_base + BCE_PORT_FEATURE);
|
|
if (reg & (BCE_PORT_FEATURE_ASF_ENABLED | BCE_PORT_FEATURE_IMD_ENABLED)) {
|
|
DBPRINT(sc, BCE_INFO, "Management F/W Enabled.\n");
|
|
sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
|
|
}
|
|
|
|
sc->bce_fw_ver = REG_RD_IND(sc, sc->bce_shmem_base + BCE_DEV_INFO_BC_REV);
|
|
DBPRINT(sc, BCE_INFO, "bootcode rev = 0x%08X\n", sc->bce_fw_ver);
|
|
|
|
/* Allow bootcode to apply any additional fixes before enabling MAC. */
|
|
rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
|
|
|
|
/* Enable link state change interrupt generation. */
|
|
REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
|
|
|
|
/* Enable all remaining blocks in the MAC. */
|
|
REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 0x5ffffff);
|
|
REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
|
|
DELAY(20);
|
|
|
|
bce_blockinit_exit:
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Encapsulate an mbuf cluster into the rx_bd chain. */
|
|
/* */
|
|
/* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
|
|
/* This routine will map an mbuf cluster into 1 or more rx_bd's as */
|
|
/* necessary. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_get_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, u16 *chain_prod,
|
|
u32 *prod_bseq)
|
|
{
|
|
bus_dmamap_t map;
|
|
bus_dma_segment_t segs[4];
|
|
struct mbuf *m_new = NULL;
|
|
struct rx_bd *rxbd;
|
|
int i, nsegs, error, rc = 0;
|
|
#ifdef BCE_DEBUG
|
|
u16 debug_chain_prod = *chain_prod;
|
|
#endif
|
|
|
|
DBPRINT(sc, (BCE_VERBOSE_RESET | BCE_VERBOSE_RECV), "Entering %s()\n",
|
|
__FUNCTION__);
|
|
|
|
/* Make sure the inputs are valid. */
|
|
DBRUNIF((*chain_prod > MAX_RX_BD),
|
|
BCE_PRINTF(sc, "%s(%d): RX producer out of range: 0x%04X > 0x%04X\n",
|
|
__FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD));
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, "
|
|
"prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq);
|
|
|
|
if (m == NULL) {
|
|
|
|
DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure),
|
|
BCE_PRINTF(sc, "%s(%d): Simulating mbuf allocation failure.\n",
|
|
__FILE__, __LINE__);
|
|
sc->mbuf_alloc_failed++;
|
|
rc = ENOBUFS;
|
|
goto bce_get_buf_exit);
|
|
|
|
/* This is a new mbuf allocation. */
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
|
|
DBPRINT(sc, BCE_WARN, "%s(%d): RX mbuf header allocation failed!\n",
|
|
__FILE__, __LINE__);
|
|
|
|
DBRUNIF(1, sc->mbuf_alloc_failed++);
|
|
|
|
rc = ENOBUFS;
|
|
goto bce_get_buf_exit;
|
|
}
|
|
|
|
DBRUNIF(1, sc->rx_mbuf_alloc++);
|
|
m_cljget(m_new, M_DONTWAIT, sc->mbuf_alloc_size);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
|
|
DBPRINT(sc, BCE_WARN, "%s(%d): RX mbuf chain allocation failed!\n",
|
|
__FILE__, __LINE__);
|
|
|
|
m_freem(m_new);
|
|
|
|
DBRUNIF(1, sc->rx_mbuf_alloc--);
|
|
DBRUNIF(1, sc->mbuf_alloc_failed++);
|
|
|
|
rc = ENOBUFS;
|
|
goto bce_get_buf_exit;
|
|
}
|
|
|
|
m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
|
|
} else {
|
|
m_new = m;
|
|
m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
}
|
|
|
|
/* Map the mbuf cluster into device memory. */
|
|
map = sc->rx_mbuf_map[*chain_prod];
|
|
error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
|
|
segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (error) {
|
|
BCE_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
|
|
__FILE__, __LINE__);
|
|
|
|
m_freem(m_new);
|
|
|
|
DBRUNIF(1, sc->rx_mbuf_alloc--);
|
|
|
|
rc = ENOBUFS;
|
|
goto bce_get_buf_exit;
|
|
}
|
|
|
|
/* Watch for overflow. */
|
|
DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
|
|
BCE_PRINTF(sc, "%s(%d): Too many free rx_bd (0x%04X > 0x%04X)!\n",
|
|
__FILE__, __LINE__, sc->free_rx_bd, (u16) USABLE_RX_BD));
|
|
|
|
DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
|
|
sc->rx_low_watermark = sc->free_rx_bd);
|
|
|
|
/* Setup the rx_bd for the first segment. */
|
|
rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
|
|
|
|
rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr));
|
|
rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr));
|
|
rxbd->rx_bd_len = htole32(segs[0].ds_len);
|
|
rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
|
|
*prod_bseq += segs[0].ds_len;
|
|
|
|
for (i = 1; i < nsegs; i++) {
|
|
|
|
*prod = NEXT_RX_BD(*prod);
|
|
*chain_prod = RX_CHAIN_IDX(*prod);
|
|
|
|
rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
|
|
|
|
rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
|
|
rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
|
|
rxbd->rx_bd_len = htole32(segs[i].ds_len);
|
|
rxbd->rx_bd_flags = 0;
|
|
*prod_bseq += segs[i].ds_len;
|
|
}
|
|
|
|
rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
|
|
|
|
/* Save the mbuf and update our counter. */
|
|
sc->rx_mbuf_ptr[*chain_prod] = m_new;
|
|
sc->free_rx_bd -= nsegs;
|
|
|
|
DBRUN(BCE_VERBOSE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod,
|
|
nsegs));
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, "
|
|
"prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq);
|
|
|
|
bce_get_buf_exit:
|
|
DBPRINT(sc, (BCE_VERBOSE_RESET | BCE_VERBOSE_RECV), "Exiting %s()\n",
|
|
__FUNCTION__);
|
|
|
|
return(rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Allocate memory and initialize the TX data structures. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_init_tx_chain(struct bce_softc *sc)
|
|
{
|
|
struct tx_bd *txbd;
|
|
u32 val;
|
|
int i, rc = 0;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/* Set the initial TX producer/consumer indices. */
|
|
sc->tx_prod = 0;
|
|
sc->tx_cons = 0;
|
|
sc->tx_prod_bseq = 0;
|
|
sc->used_tx_bd = 0;
|
|
DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
|
|
|
|
/*
|
|
* The NetXtreme II supports a linked-list structre called
|
|
* a Buffer Descriptor Chain (or BD chain). A BD chain
|
|
* consists of a series of 1 or more chain pages, each of which
|
|
* consists of a fixed number of BD entries.
|
|
* The last BD entry on each page is a pointer to the next page
|
|
* in the chain, and the last pointer in the BD chain
|
|
* points back to the beginning of the chain.
|
|
*/
|
|
|
|
/* Set the TX next pointer chain entries. */
|
|
for (i = 0; i < TX_PAGES; i++) {
|
|
int j;
|
|
|
|
txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
|
|
|
|
/* Check if we've reached the last page. */
|
|
if (i == (TX_PAGES - 1))
|
|
j = 0;
|
|
else
|
|
j = i + 1;
|
|
|
|
txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
|
|
txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
|
|
}
|
|
|
|
/*
|
|
* Initialize the context ID for an L2 TX chain.
|
|
*/
|
|
val = BCE_L2CTX_TYPE_TYPE_L2;
|
|
val |= BCE_L2CTX_TYPE_SIZE_L2;
|
|
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TYPE, val);
|
|
|
|
val = BCE_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
|
|
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_CMD_TYPE, val);
|
|
|
|
/* Point the hardware to the first page in the chain. */
|
|
val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
|
|
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TBDR_BHADDR_HI, val);
|
|
val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
|
|
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TBDR_BHADDR_LO, val);
|
|
|
|
DBRUN(BCE_VERBOSE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return(rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Free memory and clear the TX data structures. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_free_tx_chain(struct bce_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
|
|
for (i = 0; i < TOTAL_TX_BD; i++) {
|
|
if (sc->tx_mbuf_ptr[i] != NULL) {
|
|
if (sc->tx_mbuf_map != NULL)
|
|
bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i],
|
|
BUS_DMASYNC_POSTWRITE);
|
|
m_freem(sc->tx_mbuf_ptr[i]);
|
|
sc->tx_mbuf_ptr[i] = NULL;
|
|
DBRUNIF(1, sc->tx_mbuf_alloc--);
|
|
}
|
|
}
|
|
|
|
/* Clear each TX chain page. */
|
|
for (i = 0; i < TX_PAGES; i++)
|
|
bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
|
|
|
|
/* Check if we lost any mbufs in the process. */
|
|
DBRUNIF((sc->tx_mbuf_alloc),
|
|
BCE_PRINTF(sc, "%s(%d): Memory leak! Lost %d mbufs "
|
|
"from tx chain!\n",
|
|
__FILE__, __LINE__, sc->tx_mbuf_alloc));
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Allocate memory and initialize the RX data structures. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_init_rx_chain(struct bce_softc *sc)
|
|
{
|
|
struct rx_bd *rxbd;
|
|
int i, rc = 0;
|
|
u16 prod, chain_prod;
|
|
u32 prod_bseq, val;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/* Initialize the RX producer and consumer indices. */
|
|
sc->rx_prod = 0;
|
|
sc->rx_cons = 0;
|
|
sc->rx_prod_bseq = 0;
|
|
sc->free_rx_bd = BCE_RX_SLACK_SPACE;
|
|
DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
|
|
|
|
/* Initialize the RX next pointer chain entries. */
|
|
for (i = 0; i < RX_PAGES; i++) {
|
|
int j;
|
|
|
|
rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
|
|
|
|
/* Check if we've reached the last page. */
|
|
if (i == (RX_PAGES - 1))
|
|
j = 0;
|
|
else
|
|
j = i + 1;
|
|
|
|
/* Setup the chain page pointers. */
|
|
rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
|
|
rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
|
|
}
|
|
|
|
/* Initialize the context ID for an L2 RX chain. */
|
|
val = BCE_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
|
|
val |= BCE_L2CTX_CTX_TYPE_SIZE_L2;
|
|
val |= 0x02 << 8;
|
|
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_CTX_TYPE, val);
|
|
|
|
/* Point the hardware to the first page in the chain. */
|
|
val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
|
|
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_NX_BDHADDR_HI, val);
|
|
val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
|
|
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_NX_BDHADDR_LO, val);
|
|
|
|
/* Allocate mbuf clusters for the rx_bd chain. */
|
|
prod = prod_bseq = 0;
|
|
while (prod < BCE_RX_SLACK_SPACE) {
|
|
chain_prod = RX_CHAIN_IDX(prod);
|
|
if (bce_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
|
|
BCE_PRINTF(sc, "%s(%d): Error filling RX chain: rx_bd[0x%04X]!\n",
|
|
__FILE__, __LINE__, chain_prod);
|
|
rc = ENOBUFS;
|
|
break;
|
|
}
|
|
prod = NEXT_RX_BD(prod);
|
|
}
|
|
|
|
/* Save the RX chain producer index. */
|
|
sc->rx_prod = prod;
|
|
sc->rx_prod_bseq = prod_bseq;
|
|
|
|
for (i = 0; i < RX_PAGES; i++) {
|
|
bus_dmamap_sync(
|
|
sc->rx_bd_chain_tag,
|
|
sc->rx_bd_chain_map[i],
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/* Tell the chip about the waiting rx_bd's. */
|
|
REG_WR16(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BDIDX, sc->rx_prod);
|
|
REG_WR(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
|
|
|
|
DBRUN(BCE_VERBOSE_RECV, bce_dump_rx_chain(sc, 0, TOTAL_RX_BD));
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return(rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Free memory and clear the RX data structures. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_free_rx_chain(struct bce_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
/* Free any mbufs still in the RX mbuf chain. */
|
|
for (i = 0; i < TOTAL_RX_BD; i++) {
|
|
if (sc->rx_mbuf_ptr[i] != NULL) {
|
|
if (sc->rx_mbuf_map[i] != NULL)
|
|
bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i],
|
|
BUS_DMASYNC_POSTREAD);
|
|
m_freem(sc->rx_mbuf_ptr[i]);
|
|
sc->rx_mbuf_ptr[i] = NULL;
|
|
DBRUNIF(1, sc->rx_mbuf_alloc--);
|
|
}
|
|
}
|
|
|
|
/* Clear each RX chain page. */
|
|
for (i = 0; i < RX_PAGES; i++)
|
|
bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
|
|
|
|
/* Check if we lost any mbufs in the process. */
|
|
DBRUNIF((sc->rx_mbuf_alloc),
|
|
BCE_PRINTF(sc, "%s(%d): Memory leak! Lost %d mbufs from rx chain!\n",
|
|
__FILE__, __LINE__, sc->rx_mbuf_alloc));
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Set media options. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct bce_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
int rc = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
ifm = &sc->bce_ifmedia;
|
|
|
|
/* DRC - ToDo: Add SerDes support. */
|
|
|
|
mii = device_get_softc(sc->bce_miibus);
|
|
sc->bce_link = 0;
|
|
if (mii->mii_instance) {
|
|
struct mii_softc *miisc;
|
|
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
|
|
miisc = LIST_NEXT(miisc, mii_list))
|
|
mii_phy_reset(miisc);
|
|
}
|
|
mii_mediachg(mii);
|
|
|
|
return(rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Reports current media status. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct bce_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
BCE_LOCK(sc);
|
|
|
|
mii = device_get_softc(sc->bce_miibus);
|
|
|
|
/* DRC - ToDo: Add SerDes support. */
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
|
|
BCE_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Handles PHY generated interrupt events. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_phy_intr(struct bce_softc *sc)
|
|
{
|
|
u32 new_link_state, old_link_state;
|
|
|
|
new_link_state = sc->status_block->status_attn_bits &
|
|
STATUS_ATTN_BITS_LINK_STATE;
|
|
old_link_state = sc->status_block->status_attn_bits_ack &
|
|
STATUS_ATTN_BITS_LINK_STATE;
|
|
|
|
/* Handle any changes if the link state has changed. */
|
|
if (new_link_state != old_link_state) {
|
|
|
|
DBRUN(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
|
|
|
|
sc->bce_link = 0;
|
|
callout_stop(&sc->bce_stat_ch);
|
|
bce_tick_locked(sc);
|
|
|
|
/* Update the status_attn_bits_ack field in the status block. */
|
|
if (new_link_state) {
|
|
REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
|
|
STATUS_ATTN_BITS_LINK_STATE);
|
|
DBPRINT(sc, BCE_INFO, "Link is now UP.\n");
|
|
}
|
|
else {
|
|
REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
|
|
STATUS_ATTN_BITS_LINK_STATE);
|
|
DBPRINT(sc, BCE_INFO, "Link is now DOWN.\n");
|
|
}
|
|
|
|
}
|
|
|
|
/* Acknowledge the link change interrupt. */
|
|
REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Handles received frame interrupt events. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_rx_intr(struct bce_softc *sc)
|
|
{
|
|
struct status_block *sblk = sc->status_block;
|
|
struct ifnet *ifp = sc->bce_ifp;
|
|
u16 hw_cons, sw_cons, sw_chain_cons, sw_prod, sw_chain_prod;
|
|
u32 sw_prod_bseq;
|
|
struct l2_fhdr *l2fhdr;
|
|
|
|
DBRUNIF(1, sc->rx_interrupts++);
|
|
|
|
/* Prepare the RX chain pages to be accessed by the host CPU. */
|
|
for (int i = 0; i < RX_PAGES; i++)
|
|
bus_dmamap_sync(sc->rx_bd_chain_tag,
|
|
sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTWRITE);
|
|
|
|
/* Get the hardware's view of the RX consumer index. */
|
|
hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
|
|
if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
|
|
hw_cons++;
|
|
|
|
/* Get working copies of the driver's view of the RX indices. */
|
|
sw_cons = sc->rx_cons;
|
|
sw_prod = sc->rx_prod;
|
|
sw_prod_bseq = sc->rx_prod_bseq;
|
|
|
|
DBPRINT(sc, BCE_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
|
|
"sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
|
|
__FUNCTION__, sw_prod, sw_cons,
|
|
sw_prod_bseq);
|
|
|
|
/* Prevent speculative reads from getting ahead of the status block. */
|
|
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
|
|
BUS_SPACE_BARRIER_READ);
|
|
|
|
DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
|
|
sc->rx_low_watermark = sc->free_rx_bd);
|
|
|
|
/*
|
|
* Scan through the receive chain as long
|
|
* as there is work to do.
|
|
*/
|
|
while (sw_cons != hw_cons) {
|
|
struct mbuf *m;
|
|
struct rx_bd *rxbd;
|
|
unsigned int len;
|
|
u32 status;
|
|
|
|
/* Convert the producer/consumer indices to an actual rx_bd index. */
|
|
sw_chain_cons = RX_CHAIN_IDX(sw_cons);
|
|
sw_chain_prod = RX_CHAIN_IDX(sw_prod);
|
|
|
|
/* Get the used rx_bd. */
|
|
rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
|
|
sc->free_rx_bd++;
|
|
|
|
DBRUN(BCE_VERBOSE_RECV,
|
|
BCE_PRINTF(sc, "%s(): ", __FUNCTION__);
|
|
bce_dump_rxbd(sc, sw_chain_cons, rxbd));
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
if (sc->bce_rxcycles <= 0)
|
|
break;
|
|
sc->bce_rxcycles--;
|
|
}
|
|
#endif
|
|
|
|
/* The mbuf is stored with the last rx_bd entry of a packet. */
|
|
if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
|
|
|
|
/* Validate that this is the last rx_bd. */
|
|
DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)),
|
|
BCE_PRINTF(sc, "%s(%d): Unexpected mbuf found in rx_bd[0x%04X]!\n",
|
|
__FILE__, __LINE__, sw_chain_cons);
|
|
bce_breakpoint(sc));
|
|
|
|
/* DRC - ToDo: If the received packet is small, say less */
|
|
/* than 128 bytes, allocate a new mbuf here, */
|
|
/* copy the data to that mbuf, and recycle */
|
|
/* the mapped jumbo frame. */
|
|
|
|
/* Unmap the mbuf from DMA space. */
|
|
bus_dmamap_sync(sc->rx_mbuf_tag,
|
|
sc->rx_mbuf_map[sw_chain_cons],
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->rx_mbuf_tag,
|
|
sc->rx_mbuf_map[sw_chain_cons]);
|
|
|
|
/* Remove the mbuf from the driver's chain. */
|
|
m = sc->rx_mbuf_ptr[sw_chain_cons];
|
|
sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
|
|
|
|
/*
|
|
* Frames received on the NetXteme II are prepended
|
|
* with the l2_fhdr structure which provides status
|
|
* information about the received frame (including
|
|
* VLAN tags and checksum info) and are also
|
|
* automatically adjusted to align the IP header
|
|
* (i.e. two null bytes are inserted before the
|
|
* Ethernet header).
|
|
*/
|
|
l2fhdr = mtod(m, struct l2_fhdr *);
|
|
|
|
len = l2fhdr->l2_fhdr_pkt_len;
|
|
status = l2fhdr->l2_fhdr_status;
|
|
|
|
DBRUNIF(DB_RANDOMTRUE(bce_debug_l2fhdr_status_check),
|
|
BCE_PRINTF(sc, "Simulating l2_fhdr status error.\n");
|
|
status = status | L2_FHDR_ERRORS_PHY_DECODE);
|
|
|
|
/* Watch for unusual sized frames. */
|
|
DBRUNIF(((len < BCE_MIN_MTU) || (len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
|
|
BCE_PRINTF(sc, "%s(%d): Unusual frame size found. "
|
|
"Min(%d), Actual(%d), Max(%d)\n",
|
|
__FILE__, __LINE__, (int) BCE_MIN_MTU,
|
|
len, (int) BCE_MAX_JUMBO_ETHER_MTU_VLAN);
|
|
bce_dump_mbuf(sc, m);
|
|
bce_breakpoint(sc));
|
|
|
|
len -= ETHER_CRC_LEN;
|
|
|
|
/* Check the received frame for errors. */
|
|
if (status & (L2_FHDR_ERRORS_BAD_CRC |
|
|
L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
|
|
L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) {
|
|
|
|
ifp->if_ierrors++;
|
|
DBRUNIF(1, sc->l2fhdr_status_errors++);
|
|
|
|
/* Reuse the mbuf for a new frame. */
|
|
if (bce_get_buf(sc, m, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) {
|
|
|
|
DBRUNIF(1, bce_breakpoint(sc));
|
|
panic("bce%d: Can't reuse RX mbuf!\n", sc->bce_unit);
|
|
|
|
}
|
|
goto bce_rx_int_next_rx;
|
|
}
|
|
|
|
/*
|
|
* Get a new mbuf for the rx_bd. If no new
|
|
* mbufs are available then reuse the current mbuf,
|
|
* log an ierror on the interface, and generate
|
|
* an error in the system log.
|
|
*/
|
|
if (bce_get_buf(sc, NULL, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) {
|
|
|
|
DBRUN(BCE_WARN,
|
|
BCE_PRINTF(sc, "%s(%d): Failed to allocate "
|
|
"new mbuf, incoming frame dropped!\n",
|
|
__FILE__, __LINE__));
|
|
|
|
ifp->if_ierrors++;
|
|
|
|
/* Try and reuse the exisitng mbuf. */
|
|
if (bce_get_buf(sc, m, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) {
|
|
|
|
DBRUNIF(1, bce_breakpoint(sc));
|
|
panic("bce%d: Double mbuf allocation failure!", sc->bce_unit);
|
|
|
|
}
|
|
goto bce_rx_int_next_rx;
|
|
}
|
|
|
|
/* Skip over the l2_fhdr when passing the data up the stack. */
|
|
m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
|
|
|
|
/* Adjust the packet length to match the received data. */
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
/* Send the packet to the appropriate interface. */
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
DBRUN(BCE_VERBOSE_RECV,
|
|
struct ether_header *eh;
|
|
eh = mtod(m, struct ether_header *);
|
|
BCE_PRINTF(sc, "%s(): to: %6D, from: %6D, type: 0x%04X\n",
|
|
__FUNCTION__, eh->ether_dhost, ":",
|
|
eh->ether_shost, ":", htons(eh->ether_type)));
|
|
|
|
/* Validate the checksum if offload enabled. */
|
|
if (ifp->if_capenable & IFCAP_RXCSUM) {
|
|
|
|
/* Check for an IP datagram. */
|
|
if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
|
|
/* Check if the IP checksum is valid. */
|
|
if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
else
|
|
DBPRINT(sc, BCE_WARN_SEND,
|
|
"%s(): Invalid IP checksum = 0x%04X!\n",
|
|
__FUNCTION__, l2fhdr->l2_fhdr_ip_xsum);
|
|
}
|
|
|
|
/* Check for a valid TCP/UDP frame. */
|
|
if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
|
|
L2_FHDR_STATUS_UDP_DATAGRAM)) {
|
|
|
|
/* Check for a good TCP/UDP checksum. */
|
|
if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
|
|
L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
|
|
m->m_pkthdr.csum_data =
|
|
l2fhdr->l2_fhdr_tcp_udp_xsum;
|
|
m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID
|
|
| CSUM_PSEUDO_HDR);
|
|
} else
|
|
DBPRINT(sc, BCE_WARN_SEND,
|
|
"%s(): Invalid TCP/UDP checksum = 0x%04X!\n",
|
|
__FUNCTION__, l2fhdr->l2_fhdr_tcp_udp_xsum);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* If we received a packet with a vlan tag,
|
|
* attach that information to the packet.
|
|
*/
|
|
if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
|
|
DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): VLAN tag = 0x%04X\n",
|
|
__FUNCTION__, l2fhdr->l2_fhdr_vlan_tag);
|
|
#if __FreeBSD_version < 700000
|
|
VLAN_INPUT_TAG(ifp, m, l2fhdr->l2_fhdr_vlan_tag, continue);
|
|
#else
|
|
VLAN_INPUT_TAG(ifp, m, l2fhdr->l2_fhdr_vlan_tag);
|
|
if (m == NULL)
|
|
continue;
|
|
#endif
|
|
}
|
|
|
|
/* Pass the mbuf off to the upper layers. */
|
|
ifp->if_ipackets++;
|
|
DBPRINT(sc, BCE_VERBOSE_RECV, "%s(): Passing received frame up.\n",
|
|
__FUNCTION__);
|
|
BCE_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
DBRUNIF(1, sc->rx_mbuf_alloc--);
|
|
BCE_LOCK(sc);
|
|
|
|
bce_rx_int_next_rx:
|
|
sw_prod = NEXT_RX_BD(sw_prod);
|
|
}
|
|
|
|
sw_cons = NEXT_RX_BD(sw_cons);
|
|
|
|
/* Refresh hw_cons to see if there's new work */
|
|
if (sw_cons == hw_cons) {
|
|
hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
|
|
if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
|
|
hw_cons++;
|
|
}
|
|
|
|
/* Prevent speculative reads from getting ahead of the status block. */
|
|
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
|
|
BUS_SPACE_BARRIER_READ);
|
|
}
|
|
|
|
for (int i = 0; i < RX_PAGES; i++)
|
|
bus_dmamap_sync(sc->rx_bd_chain_tag,
|
|
sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->rx_cons = sw_cons;
|
|
sc->rx_prod = sw_prod;
|
|
sc->rx_prod_bseq = sw_prod_bseq;
|
|
|
|
REG_WR16(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BDIDX, sc->rx_prod);
|
|
REG_WR(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
|
|
|
|
DBPRINT(sc, BCE_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
|
|
"rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
|
|
__FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Handles transmit completion interrupt events. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_tx_intr(struct bce_softc *sc)
|
|
{
|
|
struct status_block *sblk = sc->status_block;
|
|
struct ifnet *ifp = sc->bce_ifp;
|
|
u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
|
|
|
|
BCE_LOCK_ASSERT(sc);
|
|
|
|
DBRUNIF(1, sc->tx_interrupts++);
|
|
|
|
/* Get the hardware's view of the TX consumer index. */
|
|
hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
|
|
|
|
/* Skip to the next entry if this is a chain page pointer. */
|
|
if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
|
|
hw_tx_cons++;
|
|
|
|
sw_tx_cons = sc->tx_cons;
|
|
|
|
/* Prevent speculative reads from getting ahead of the status block. */
|
|
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
|
|
BUS_SPACE_BARRIER_READ);
|
|
|
|
/* Cycle through any completed TX chain page entries. */
|
|
while (sw_tx_cons != hw_tx_cons) {
|
|
#ifdef BCE_DEBUG
|
|
struct tx_bd *txbd = NULL;
|
|
#endif
|
|
sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
|
|
|
|
DBPRINT(sc, BCE_INFO_SEND,
|
|
"%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
|
|
"sw_tx_chain_cons = 0x%04X\n",
|
|
__FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
|
|
|
|
DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
|
|
BCE_PRINTF(sc, "%s(%d): TX chain consumer out of range! "
|
|
" 0x%04X > 0x%04X\n",
|
|
__FILE__, __LINE__, sw_tx_chain_cons,
|
|
(int) MAX_TX_BD);
|
|
bce_breakpoint(sc));
|
|
|
|
DBRUNIF(1,
|
|
txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
|
|
[TX_IDX(sw_tx_chain_cons)]);
|
|
|
|
DBRUNIF((txbd == NULL),
|
|
BCE_PRINTF(sc, "%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
|
|
__FILE__, __LINE__, sw_tx_chain_cons);
|
|
bce_breakpoint(sc));
|
|
|
|
DBRUN(BCE_INFO_SEND,
|
|
BCE_PRINTF(sc, "%s(): ", __FUNCTION__);
|
|
bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
|
|
|
|
/*
|
|
* Free the associated mbuf. Remember
|
|
* that only the last tx_bd of a packet
|
|
* has an mbuf pointer and DMA map.
|
|
*/
|
|
if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
|
|
|
|
/* Validate that this is the last tx_bd. */
|
|
DBRUNIF((!(txbd->tx_bd_vlan_tag_flags & TX_BD_FLAGS_END)),
|
|
BCE_PRINTF(sc, "%s(%d): tx_bd END flag not set but "
|
|
"txmbuf == NULL!\n", __FILE__, __LINE__);
|
|
bce_breakpoint(sc));
|
|
|
|
DBRUN(BCE_INFO_SEND,
|
|
BCE_PRINTF(sc, "%s(): Unloading map/freeing mbuf "
|
|
"from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons));
|
|
|
|
/* Unmap the mbuf. */
|
|
bus_dmamap_unload(sc->tx_mbuf_tag,
|
|
sc->tx_mbuf_map[sw_tx_chain_cons]);
|
|
|
|
/* Free the mbuf. */
|
|
m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
|
|
sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
|
|
DBRUNIF(1, sc->tx_mbuf_alloc--);
|
|
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
sc->used_tx_bd--;
|
|
sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
|
|
|
|
/* Refresh hw_cons to see if there's new work. */
|
|
hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
|
|
if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
|
|
hw_tx_cons++;
|
|
|
|
/* Prevent speculative reads from getting ahead of the status block. */
|
|
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
|
|
BUS_SPACE_BARRIER_READ);
|
|
}
|
|
|
|
/* Clear the TX timeout timer. */
|
|
ifp->if_timer = 0;
|
|
|
|
/* Clear the tx hardware queue full flag. */
|
|
if ((sc->used_tx_bd + BCE_TX_SLACK_SPACE) < USABLE_TX_BD) {
|
|
DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
|
|
BCE_PRINTF(sc, "%s(): TX chain is open for business! Used tx_bd = %d\n",
|
|
__FUNCTION__, sc->used_tx_bd));
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
}
|
|
|
|
sc->tx_cons = sw_tx_cons;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Disables interrupt generation. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_disable_intr(struct bce_softc *sc)
|
|
{
|
|
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
|
|
BCE_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Enables interrupt generation. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_enable_intr(struct bce_softc *sc)
|
|
{
|
|
u32 val;
|
|
|
|
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
|
|
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
|
|
|
|
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
|
|
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
|
|
|
|
val = REG_RD(sc, BCE_HC_COMMAND);
|
|
REG_WR(sc, BCE_HC_COMMAND, val | BCE_HC_COMMAND_COAL_NOW);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Handles controller initialization. */
|
|
/* */
|
|
/* Must be called from a locked routine. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_init_locked(struct bce_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
u32 ether_mtu;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
BCE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->bce_ifp;
|
|
|
|
/* Check if the driver is still running and bail out if it is. */
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
goto bce_init_locked_exit;
|
|
|
|
bce_stop(sc);
|
|
|
|
if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
|
|
BCE_PRINTF(sc, "%s(%d): Controller reset failed!\n",
|
|
__FILE__, __LINE__);
|
|
goto bce_init_locked_exit;
|
|
}
|
|
|
|
if (bce_chipinit(sc)) {
|
|
BCE_PRINTF(sc, "%s(%d): Controller initialization failed!\n",
|
|
__FILE__, __LINE__);
|
|
goto bce_init_locked_exit;
|
|
}
|
|
|
|
if (bce_blockinit(sc)) {
|
|
BCE_PRINTF(sc, "%s(%d): Block initialization failed!\n",
|
|
__FILE__, __LINE__);
|
|
goto bce_init_locked_exit;
|
|
}
|
|
|
|
/* Load our MAC address. */
|
|
bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
|
|
bce_set_mac_addr(sc);
|
|
|
|
/* Calculate and program the Ethernet MTU size. */
|
|
ether_mtu = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu +
|
|
ETHER_CRC_LEN;
|
|
|
|
DBPRINT(sc, BCE_INFO, "%s(): setting mtu = %d\n",__FUNCTION__, ether_mtu);
|
|
|
|
/*
|
|
* Program the mtu, enabling jumbo frame
|
|
* support if necessary. Also set the mbuf
|
|
* allocation count for RX frames.
|
|
*/
|
|
if (ether_mtu > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
|
|
REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu |
|
|
BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
|
|
sc->mbuf_alloc_size = MJUM9BYTES;
|
|
} else {
|
|
REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
|
|
sc->mbuf_alloc_size = MCLBYTES;
|
|
}
|
|
|
|
/* Calculate the RX Ethernet frame size for rx_bd's. */
|
|
sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
|
|
|
|
DBPRINT(sc, BCE_INFO,
|
|
"%s(): mclbytes = %d, mbuf_alloc_size = %d, "
|
|
"max_frame_size = %d\n",
|
|
__FUNCTION__, (int) MCLBYTES, sc->mbuf_alloc_size, sc->max_frame_size);
|
|
|
|
/* Program appropriate promiscuous/multicast filtering. */
|
|
bce_set_rx_mode(sc);
|
|
|
|
/* Init RX buffer descriptor chain. */
|
|
bce_init_rx_chain(sc);
|
|
|
|
/* Init TX buffer descriptor chain. */
|
|
bce_init_tx_chain(sc);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/* Disable interrupts if we are polling. */
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
bce_disable_intr(sc);
|
|
|
|
REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
|
|
(1 << 16) | sc->bce_rx_quick_cons_trip);
|
|
REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
|
|
(1 << 16) | sc->bce_tx_quick_cons_trip);
|
|
} else
|
|
#endif
|
|
/* Enable host interrupts. */
|
|
bce_enable_intr(sc);
|
|
|
|
bce_ifmedia_upd(ifp);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
callout_reset(&sc->bce_stat_ch, hz, bce_tick, sc);
|
|
|
|
bce_init_locked_exit:
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Handles controller initialization when called from an unlocked routine. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_init(void *xsc)
|
|
{
|
|
struct bce_softc *sc = xsc;
|
|
|
|
BCE_LOCK(sc);
|
|
bce_init_locked(sc);
|
|
BCE_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
|
|
/* memory visible to the controller. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_tx_encap(struct bce_softc *sc, struct mbuf *m_head, u16 *prod,
|
|
u16 *chain_prod, u32 *prod_bseq)
|
|
{
|
|
u32 vlan_tag_flags = 0;
|
|
struct m_tag *mtag;
|
|
struct bce_dmamap_arg map_arg;
|
|
bus_dmamap_t map;
|
|
int i, error, rc = 0;
|
|
|
|
/* Transfer any checksum offload flags to the bd. */
|
|
if (m_head->m_pkthdr.csum_flags) {
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
|
|
vlan_tag_flags |= TX_BD_FLAGS_IP_CKSUM;
|
|
if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
|
|
vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
|
|
}
|
|
|
|
/* Transfer any VLAN tags to the bd. */
|
|
mtag = VLAN_OUTPUT_TAG(sc->bce_ifp, m_head);
|
|
if (mtag != NULL)
|
|
vlan_tag_flags |= (TX_BD_FLAGS_VLAN_TAG |
|
|
(VLAN_TAG_VALUE(mtag) << 16));
|
|
|
|
/* Map the mbuf into DMAable memory. */
|
|
map = sc->tx_mbuf_map[*chain_prod];
|
|
map_arg.sc = sc;
|
|
map_arg.prod = *prod;
|
|
map_arg.chain_prod = *chain_prod;
|
|
map_arg.prod_bseq = *prod_bseq;
|
|
map_arg.tx_flags = vlan_tag_flags;
|
|
map_arg.maxsegs = USABLE_TX_BD - sc->used_tx_bd -
|
|
BCE_TX_SLACK_SPACE;
|
|
|
|
KASSERT(map_arg.maxsegs > 0, ("Invalid TX maxsegs value!"));
|
|
|
|
for (i = 0; i < TX_PAGES; i++)
|
|
map_arg.tx_chain[i] = sc->tx_bd_chain[i];
|
|
|
|
/* Map the mbuf into our DMA address space. */
|
|
error = bus_dmamap_load_mbuf(sc->tx_mbuf_tag, map, m_head,
|
|
bce_dma_map_tx_desc, &map_arg, BUS_DMA_NOWAIT);
|
|
|
|
if (error || map_arg.maxsegs == 0) {
|
|
|
|
/* Try to defrag the mbuf if there are too many segments. */
|
|
if (error == EFBIG && map_arg.maxsegs != 0) {
|
|
struct mbuf *m0;
|
|
|
|
DBPRINT(sc, BCE_WARN, "%s(): fragmented mbuf (%d pieces)\n",
|
|
__FUNCTION__, map_arg.maxsegs);
|
|
|
|
m0 = m_defrag(m_head, M_DONTWAIT);
|
|
if (m0 != NULL) {
|
|
m_head = m0;
|
|
error = bus_dmamap_load_mbuf(sc->tx_mbuf_tag,
|
|
map, m_head, bce_dma_map_tx_desc, &map_arg,
|
|
BUS_DMA_NOWAIT);
|
|
}
|
|
}
|
|
|
|
/* Still getting an error after a defrag. */
|
|
if (error) {
|
|
BCE_PRINTF(sc,
|
|
"%s(%d): Error mapping mbuf into TX chain!\n",
|
|
__FILE__, __LINE__);
|
|
rc = ENOBUFS;
|
|
goto bce_tx_encap_exit;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Ensure that the map for this transmission
|
|
* is placed at the array index of the last
|
|
* descriptor in this chain. This is done
|
|
* because a single map is used for all
|
|
* segments of the mbuf and we don't want to
|
|
* delete the map before all of the segments
|
|
* have been freed.
|
|
*/
|
|
sc->tx_mbuf_map[*chain_prod] =
|
|
sc->tx_mbuf_map[map_arg.chain_prod];
|
|
sc->tx_mbuf_map[map_arg.chain_prod] = map;
|
|
sc->tx_mbuf_ptr[map_arg.chain_prod] = m_head;
|
|
sc->used_tx_bd += map_arg.maxsegs;
|
|
|
|
DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
|
|
sc->tx_hi_watermark = sc->used_tx_bd);
|
|
|
|
DBRUNIF(1, sc->tx_mbuf_alloc++);
|
|
|
|
DBRUN(BCE_VERBOSE_SEND, bce_dump_tx_mbuf_chain(sc, *chain_prod,
|
|
map_arg.maxsegs));
|
|
|
|
/* prod still points the last used tx_bd at this point. */
|
|
*prod = map_arg.prod;
|
|
*chain_prod = map_arg.chain_prod;
|
|
*prod_bseq = map_arg.prod_bseq;
|
|
|
|
bce_tx_encap_exit:
|
|
|
|
return(rc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Main transmit routine when called from another routine with a lock. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct bce_softc *sc = ifp->if_softc;
|
|
struct mbuf *m_head = NULL;
|
|
int count = 0;
|
|
u16 tx_prod, tx_chain_prod;
|
|
u32 tx_prod_bseq;
|
|
|
|
/* If there's no link or the transmit queue is empty then just exit. */
|
|
if (!sc->bce_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
|
|
DBPRINT(sc, BCE_INFO_SEND, "%s(): No link or transmit queue empty.\n",
|
|
__FUNCTION__);
|
|
goto bce_start_locked_exit;
|
|
}
|
|
|
|
/* prod points to the next free tx_bd. */
|
|
tx_prod = sc->tx_prod;
|
|
tx_chain_prod = TX_CHAIN_IDX(tx_prod);
|
|
tx_prod_bseq = sc->tx_prod_bseq;
|
|
|
|
DBPRINT(sc, BCE_INFO_SEND,
|
|
"%s(): Start: tx_prod = 0x%04X, tx_chain_prod = %04X, "
|
|
"tx_prod_bseq = 0x%08X\n",
|
|
__FUNCTION__, tx_prod, tx_chain_prod, tx_prod_bseq);
|
|
|
|
/* Keep adding entries while there is space in the ring. */
|
|
while(sc->tx_mbuf_ptr[tx_chain_prod] == NULL) {
|
|
|
|
/* Check for any frames to send. */
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, place the mbuf back at the
|
|
* head of the queue and set the OACTIVE flag
|
|
* to wait for the NIC to drain the chain.
|
|
*/
|
|
if (bce_tx_encap(sc, m_head, &tx_prod, &tx_chain_prod, &tx_prod_bseq)) {
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
DBPRINT(sc, BCE_INFO_SEND,
|
|
"TX chain is closed for business! Total tx_bd used = %d\n",
|
|
sc->used_tx_bd);
|
|
break;
|
|
}
|
|
|
|
count++;
|
|
|
|
/* Send a copy of the frame to any BPF listeners. */
|
|
BPF_MTAP(ifp, m_head);
|
|
|
|
tx_prod = NEXT_TX_BD(tx_prod);
|
|
tx_chain_prod = TX_CHAIN_IDX(tx_prod);
|
|
}
|
|
|
|
if (count == 0) {
|
|
/* no packets were dequeued */
|
|
DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were dequeued\n",
|
|
__FUNCTION__);
|
|
goto bce_start_locked_exit;
|
|
}
|
|
|
|
/* Update the driver's counters. */
|
|
sc->tx_prod = tx_prod;
|
|
sc->tx_prod_bseq = tx_prod_bseq;
|
|
|
|
DBPRINT(sc, BCE_INFO_SEND,
|
|
"%s(): End: tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
|
|
"tx_prod_bseq = 0x%08X\n",
|
|
__FUNCTION__, tx_prod, tx_chain_prod, tx_prod_bseq);
|
|
|
|
/* Start the transmit. */
|
|
REG_WR16(sc, MB_TX_CID_ADDR + BCE_L2CTX_TX_HOST_BIDX, sc->tx_prod);
|
|
REG_WR(sc, MB_TX_CID_ADDR + BCE_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
|
|
|
|
/* Set the tx timeout. */
|
|
ifp->if_timer = BCE_TX_TIMEOUT;
|
|
|
|
bce_start_locked_exit:
|
|
return;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Main transmit routine when called from another routine without a lock. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_start(struct ifnet *ifp)
|
|
{
|
|
struct bce_softc *sc = ifp->if_softc;
|
|
|
|
BCE_LOCK(sc);
|
|
bce_start_locked(ifp);
|
|
BCE_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Handles any IOCTL calls from the operating system. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct bce_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct mii_data *mii;
|
|
int mask, error = 0;
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
|
|
|
|
switch(command) {
|
|
|
|
/* Set the MTU. */
|
|
case SIOCSIFMTU:
|
|
/* Check that the MTU setting is supported. */
|
|
if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
|
|
(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
DBPRINT(sc, BCE_INFO, "Setting new MTU of %d\n", ifr->ifr_mtu);
|
|
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
bce_init(sc);
|
|
break;
|
|
|
|
/* Set interface. */
|
|
case SIOCSIFFLAGS:
|
|
DBPRINT(sc, BCE_VERBOSE, "Received SIOCSIFFLAGS\n");
|
|
|
|
BCE_LOCK(sc);
|
|
|
|
/* Check if the interface is up. */
|
|
if (ifp->if_flags & IFF_UP) {
|
|
/* Change the promiscuous/multicast flags as necessary. */
|
|
bce_set_rx_mode(sc);
|
|
} else {
|
|
/* The interface is down. Check if the driver is running. */
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
bce_stop(sc);
|
|
}
|
|
}
|
|
|
|
BCE_UNLOCK(sc);
|
|
error = 0;
|
|
|
|
break;
|
|
|
|
/* Add/Delete multicast address */
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
DBPRINT(sc, BCE_VERBOSE, "Received SIOCADDMULTI/SIOCDELMULTI\n");
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
BCE_LOCK(sc);
|
|
bce_set_rx_mode(sc);
|
|
BCE_UNLOCK(sc);
|
|
error = 0;
|
|
}
|
|
|
|
break;
|
|
|
|
/* Set/Get Interface media */
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
DBPRINT(sc, BCE_VERBOSE, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
|
|
|
|
DBPRINT(sc, BCE_VERBOSE, "bce_phy_flags = 0x%08X\n",
|
|
sc->bce_phy_flags);
|
|
|
|
if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
|
|
DBPRINT(sc, BCE_VERBOSE, "SerDes media set/get\n");
|
|
|
|
error = ifmedia_ioctl(ifp, ifr,
|
|
&sc->bce_ifmedia, command);
|
|
} else {
|
|
DBPRINT(sc, BCE_VERBOSE, "Copper media set/get\n");
|
|
mii = device_get_softc(sc->bce_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr,
|
|
&mii->mii_media, command);
|
|
}
|
|
break;
|
|
|
|
/* Set interface capability */
|
|
case SIOCSIFCAP:
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
DBPRINT(sc, BCE_INFO, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
|
|
/* Setup the poll routine to call. */
|
|
error = ether_poll_register(bce_poll, ifp);
|
|
if (error) {
|
|
BCE_PRINTF(sc, "%s(%d): Error registering poll function!\n",
|
|
__FILE__, __LINE__);
|
|
goto bce_ioctl_exit;
|
|
}
|
|
|
|
/* Clear the interrupt. */
|
|
BCE_LOCK(sc);
|
|
bce_disable_intr(sc);
|
|
|
|
REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
|
|
(1 << 16) | sc->bce_rx_quick_cons_trip);
|
|
REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
|
|
(1 << 16) | sc->bce_tx_quick_cons_trip);
|
|
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
BCE_UNLOCK(sc);
|
|
} else {
|
|
/* Clear the poll routine. */
|
|
error = ether_poll_deregister(ifp);
|
|
|
|
/* Enable interrupt even in error case */
|
|
BCE_LOCK(sc);
|
|
bce_enable_intr(sc);
|
|
|
|
REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
|
|
(sc->bce_tx_quick_cons_trip_int << 16) |
|
|
sc->bce_tx_quick_cons_trip);
|
|
REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
|
|
(sc->bce_rx_quick_cons_trip_int << 16) |
|
|
sc->bce_rx_quick_cons_trip);
|
|
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
BCE_UNLOCK(sc);
|
|
}
|
|
}
|
|
#endif /*DEVICE_POLLING */
|
|
|
|
/* Toggle the TX checksum capabilites enable flag. */
|
|
if (mask & IFCAP_TXCSUM) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if (IFCAP_TXCSUM & ifp->if_capenable)
|
|
ifp->if_hwassist = BCE_IF_HWASSIST;
|
|
else
|
|
ifp->if_hwassist = 0;
|
|
}
|
|
|
|
/* Toggle the RX checksum capabilities enable flag. */
|
|
if (mask & IFCAP_RXCSUM) {
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
if (IFCAP_RXCSUM & ifp->if_capenable)
|
|
ifp->if_hwassist = BCE_IF_HWASSIST;
|
|
else
|
|
ifp->if_hwassist = 0;
|
|
}
|
|
|
|
/* Toggle VLAN_MTU capabilities enable flag. */
|
|
if (mask & IFCAP_VLAN_MTU) {
|
|
BCE_PRINTF(sc, "%s(%d): Changing VLAN_MTU not supported.\n",
|
|
__FILE__, __LINE__);
|
|
}
|
|
|
|
/* Toggle VLANHWTAG capabilities enabled flag. */
|
|
if (mask & IFCAP_VLAN_HWTAGGING) {
|
|
if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
|
|
BCE_PRINTF(sc, "%s(%d): Cannot change VLAN_HWTAGGING while "
|
|
"management firmware (ASF/IPMI/UMP) is running!\n",
|
|
__FILE__, __LINE__);
|
|
else
|
|
BCE_PRINTF(sc, "%s(%d): Changing VLAN_HWTAGGING not supported!\n",
|
|
__FILE__, __LINE__);
|
|
}
|
|
|
|
break;
|
|
default:
|
|
DBPRINT(sc, BCE_INFO, "Received unsupported IOCTL: 0x%08X\n",
|
|
(u32) command);
|
|
|
|
/* We don't know how to handle the IOCTL, pass it on. */
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
bce_ioctl_exit:
|
|
#endif
|
|
|
|
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
|
|
|
|
return(error);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Transmit timeout handler. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct bce_softc *sc = ifp->if_softc;
|
|
|
|
DBRUN(BCE_WARN_SEND,
|
|
bce_dump_driver_state(sc);
|
|
bce_dump_status_block(sc));
|
|
|
|
BCE_PRINTF(sc, "%s(%d): Watchdog timeout occurred, resetting!\n",
|
|
__FILE__, __LINE__);
|
|
|
|
/* DBRUN(BCE_FATAL, bce_breakpoint(sc)); */
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
|
|
bce_init(sc);
|
|
ifp->if_oerrors++;
|
|
|
|
}
|
|
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static void
|
|
bce_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct bce_softc *sc = ifp->if_softc;
|
|
|
|
BCE_LOCK_ASSERT(sc);
|
|
|
|
sc->bce_rxcycles = count;
|
|
|
|
bus_dmamap_sync(sc->status_tag, sc->status_map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
|
|
/* Check for any completed RX frames. */
|
|
if (sc->status_block->status_rx_quick_consumer_index0 !=
|
|
sc->hw_rx_cons)
|
|
bce_rx_intr(sc);
|
|
|
|
/* Check for any completed TX frames. */
|
|
if (sc->status_block->status_tx_quick_consumer_index0 !=
|
|
sc->hw_tx_cons)
|
|
bce_tx_intr(sc);
|
|
|
|
/* Check for new frames to transmit. */
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
bce_start_locked(ifp);
|
|
|
|
}
|
|
|
|
|
|
static void
|
|
bce_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct bce_softc *sc = ifp->if_softc;
|
|
|
|
BCE_LOCK(sc);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
bce_poll_locked(ifp, cmd, count);
|
|
BCE_UNLOCK(sc);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
|
|
#if 0
|
|
static inline int
|
|
bce_has_work(struct bce_softc *sc)
|
|
{
|
|
struct status_block *stat = sc->status_block;
|
|
|
|
if ((stat->status_rx_quick_consumer_index0 != sc->hw_rx_cons) ||
|
|
(stat->status_tx_quick_consumer_index0 != sc->hw_tx_cons))
|
|
return 1;
|
|
|
|
if (((stat->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
|
|
bp->link_up)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Interrupt handler.
|
|
*/
|
|
/****************************************************************************/
|
|
/* Main interrupt entry point. Verifies that the controller generated the */
|
|
/* interrupt and then calls a separate routine for handle the various */
|
|
/* interrupt causes (PHY, TX, RX). */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_intr(void *xsc)
|
|
{
|
|
struct bce_softc *sc;
|
|
struct ifnet *ifp;
|
|
u32 status_attn_bits;
|
|
|
|
sc = xsc;
|
|
ifp = sc->bce_ifp;
|
|
|
|
BCE_LOCK(sc);
|
|
|
|
DBRUNIF(1, sc->interrupts_generated++);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
DBPRINT(sc, BCE_INFO, "Polling enabled!\n");
|
|
goto bce_intr_exit;
|
|
}
|
|
#endif
|
|
|
|
bus_dmamap_sync(sc->status_tag, sc->status_map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
|
|
/*
|
|
* If the hardware status block index
|
|
* matches the last value read by the
|
|
* driver and we haven't asserted our
|
|
* interrupt then there's nothing to do.
|
|
*/
|
|
if ((sc->status_block->status_idx == sc->last_status_idx) &&
|
|
(REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE))
|
|
goto bce_intr_exit;
|
|
|
|
/* Ack the interrupt and stop others from occuring. */
|
|
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
|
|
BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
|
|
BCE_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
|
|
/* Keep processing data as long as there is work to do. */
|
|
for (;;) {
|
|
|
|
status_attn_bits = sc->status_block->status_attn_bits;
|
|
|
|
DBRUNIF(DB_RANDOMTRUE(bce_debug_unexpected_attention),
|
|
BCE_PRINTF(sc, "Simulating unexpected status attention bit set.");
|
|
status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR);
|
|
|
|
/* Was it a link change interrupt? */
|
|
if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
|
|
(sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE))
|
|
bce_phy_intr(sc);
|
|
|
|
/* If any other attention is asserted then the chip is toast. */
|
|
if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
|
|
(sc->status_block->status_attn_bits_ack &
|
|
~STATUS_ATTN_BITS_LINK_STATE))) {
|
|
|
|
DBRUN(1, sc->unexpected_attentions++);
|
|
|
|
BCE_PRINTF(sc, "%s(%d): Fatal attention detected: 0x%08X\n",
|
|
__FILE__, __LINE__, sc->status_block->status_attn_bits);
|
|
|
|
DBRUN(BCE_FATAL,
|
|
if (bce_debug_unexpected_attention == 0)
|
|
bce_breakpoint(sc));
|
|
|
|
bce_init_locked(sc);
|
|
goto bce_intr_exit;
|
|
}
|
|
|
|
/* Check for any completed RX frames. */
|
|
if (sc->status_block->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
|
|
bce_rx_intr(sc);
|
|
|
|
/* Check for any completed TX frames. */
|
|
if (sc->status_block->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
|
|
bce_tx_intr(sc);
|
|
|
|
/* Save the status block index value for use during the next interrupt. */
|
|
sc->last_status_idx = sc->status_block->status_idx;
|
|
|
|
/* Prevent speculative reads from getting ahead of the status block. */
|
|
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
|
|
BUS_SPACE_BARRIER_READ);
|
|
|
|
/* If there's no work left then exit the interrupt service routine. */
|
|
if ((sc->status_block->status_rx_quick_consumer_index0 == sc->hw_rx_cons) &&
|
|
(sc->status_block->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
|
|
break;
|
|
|
|
}
|
|
|
|
bus_dmamap_sync(sc->status_tag, sc->status_map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Re-enable interrupts. */
|
|
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
|
|
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
|
|
BCE_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
|
|
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
|
|
|
|
/* Handle any frames that arrived while handling the interrupt. */
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
bce_start_locked(ifp);
|
|
|
|
bce_intr_exit:
|
|
BCE_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Programs the various packet receive modes (broadcast and multicast). */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_set_rx_mode(struct bce_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
u32 hashes[4] = { 0, 0, 0, 0 };
|
|
u32 rx_mode, sort_mode;
|
|
int h, i;
|
|
|
|
BCE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->bce_ifp;
|
|
|
|
/* Initialize receive mode default settings. */
|
|
rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
|
|
BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
|
|
sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
|
|
|
|
/*
|
|
* ASF/IPMI/UMP firmware requires that VLAN tag stripping
|
|
* be enbled.
|
|
*/
|
|
if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
|
|
(!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
|
|
rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
|
|
|
|
/*
|
|
* Check for promiscuous, all multicast, or selected
|
|
* multicast address filtering.
|
|
*/
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
DBPRINT(sc, BCE_INFO, "Enabling promiscuous mode.\n");
|
|
|
|
/* Enable promiscuous mode. */
|
|
rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
|
|
sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
|
|
} else if (ifp->if_flags & IFF_ALLMULTI) {
|
|
DBPRINT(sc, BCE_INFO, "Enabling all multicast mode.\n");
|
|
|
|
/* Enable all multicast addresses. */
|
|
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
|
|
REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
|
|
}
|
|
sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
|
|
} else {
|
|
/* Accept one or more multicast(s). */
|
|
DBPRINT(sc, BCE_INFO, "Enabling selective multicast mode.\n");
|
|
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
|
|
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
|
|
|
|
sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
|
|
}
|
|
|
|
/* Only make changes if the recive mode has actually changed. */
|
|
if (rx_mode != sc->rx_mode) {
|
|
DBPRINT(sc, BCE_VERBOSE, "Enabling new receive mode: 0x%08X\n",
|
|
rx_mode);
|
|
|
|
sc->rx_mode = rx_mode;
|
|
REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
|
|
}
|
|
|
|
/* Disable and clear the exisitng sort before enabling a new sort. */
|
|
REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
|
|
REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
|
|
REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Called periodically to updates statistics from the controllers */
|
|
/* statistics block. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_stats_update(struct bce_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct statistics_block *stats;
|
|
|
|
DBPRINT(sc, BCE_EXCESSIVE, "Entering %s()\n", __FUNCTION__);
|
|
|
|
ifp = sc->bce_ifp;
|
|
|
|
stats = (struct statistics_block *) sc->stats_block;
|
|
|
|
/*
|
|
* Update the interface statistics from the
|
|
* hardware statistics.
|
|
*/
|
|
ifp->if_collisions = (u_long) stats->stat_EtherStatsCollisions;
|
|
|
|
ifp->if_ierrors = (u_long) stats->stat_EtherStatsUndersizePkts +
|
|
(u_long) stats->stat_EtherStatsOverrsizePkts +
|
|
(u_long) stats->stat_IfInMBUFDiscards +
|
|
(u_long) stats->stat_Dot3StatsAlignmentErrors +
|
|
(u_long) stats->stat_Dot3StatsFCSErrors;
|
|
|
|
ifp->if_oerrors = (u_long) stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
|
|
(u_long) stats->stat_Dot3StatsExcessiveCollisions +
|
|
(u_long) stats->stat_Dot3StatsLateCollisions;
|
|
|
|
/*
|
|
* Certain controllers don't report
|
|
* carrier sense errors correctly.
|
|
* See errata E11_5708CA0_1165.
|
|
*/
|
|
if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
|
|
!(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
|
|
ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
|
|
|
|
/*
|
|
* Update the sysctl statistics from the
|
|
* hardware statistics.
|
|
*/
|
|
sc->stat_IfHCInOctets =
|
|
((u64) stats->stat_IfHCInOctets_hi << 32) +
|
|
(u64) stats->stat_IfHCInOctets_lo;
|
|
|
|
sc->stat_IfHCInBadOctets =
|
|
((u64) stats->stat_IfHCInBadOctets_hi << 32) +
|
|
(u64) stats->stat_IfHCInBadOctets_lo;
|
|
|
|
sc->stat_IfHCOutOctets =
|
|
((u64) stats->stat_IfHCOutOctets_hi << 32) +
|
|
(u64) stats->stat_IfHCOutOctets_lo;
|
|
|
|
sc->stat_IfHCOutBadOctets =
|
|
((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
|
|
(u64) stats->stat_IfHCOutBadOctets_lo;
|
|
|
|
sc->stat_IfHCInUcastPkts =
|
|
((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
|
|
(u64) stats->stat_IfHCInUcastPkts_lo;
|
|
|
|
sc->stat_IfHCInMulticastPkts =
|
|
((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
|
|
(u64) stats->stat_IfHCInMulticastPkts_lo;
|
|
|
|
sc->stat_IfHCInBroadcastPkts =
|
|
((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
|
|
(u64) stats->stat_IfHCInBroadcastPkts_lo;
|
|
|
|
sc->stat_IfHCOutUcastPkts =
|
|
((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
|
|
(u64) stats->stat_IfHCOutUcastPkts_lo;
|
|
|
|
sc->stat_IfHCOutMulticastPkts =
|
|
((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
|
|
(u64) stats->stat_IfHCOutMulticastPkts_lo;
|
|
|
|
sc->stat_IfHCOutBroadcastPkts =
|
|
((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
|
|
(u64) stats->stat_IfHCOutBroadcastPkts_lo;
|
|
|
|
sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
|
|
stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
|
|
|
|
sc->stat_Dot3StatsCarrierSenseErrors =
|
|
stats->stat_Dot3StatsCarrierSenseErrors;
|
|
|
|
sc->stat_Dot3StatsFCSErrors =
|
|
stats->stat_Dot3StatsFCSErrors;
|
|
|
|
sc->stat_Dot3StatsAlignmentErrors =
|
|
stats->stat_Dot3StatsAlignmentErrors;
|
|
|
|
sc->stat_Dot3StatsSingleCollisionFrames =
|
|
stats->stat_Dot3StatsSingleCollisionFrames;
|
|
|
|
sc->stat_Dot3StatsMultipleCollisionFrames =
|
|
stats->stat_Dot3StatsMultipleCollisionFrames;
|
|
|
|
sc->stat_Dot3StatsDeferredTransmissions =
|
|
stats->stat_Dot3StatsDeferredTransmissions;
|
|
|
|
sc->stat_Dot3StatsExcessiveCollisions =
|
|
stats->stat_Dot3StatsExcessiveCollisions;
|
|
|
|
sc->stat_Dot3StatsLateCollisions =
|
|
stats->stat_Dot3StatsLateCollisions;
|
|
|
|
sc->stat_EtherStatsCollisions =
|
|
stats->stat_EtherStatsCollisions;
|
|
|
|
sc->stat_EtherStatsFragments =
|
|
stats->stat_EtherStatsFragments;
|
|
|
|
sc->stat_EtherStatsJabbers =
|
|
stats->stat_EtherStatsJabbers;
|
|
|
|
sc->stat_EtherStatsUndersizePkts =
|
|
stats->stat_EtherStatsUndersizePkts;
|
|
|
|
sc->stat_EtherStatsOverrsizePkts =
|
|
stats->stat_EtherStatsOverrsizePkts;
|
|
|
|
sc->stat_EtherStatsPktsRx64Octets =
|
|
stats->stat_EtherStatsPktsRx64Octets;
|
|
|
|
sc->stat_EtherStatsPktsRx65Octetsto127Octets =
|
|
stats->stat_EtherStatsPktsRx65Octetsto127Octets;
|
|
|
|
sc->stat_EtherStatsPktsRx128Octetsto255Octets =
|
|
stats->stat_EtherStatsPktsRx128Octetsto255Octets;
|
|
|
|
sc->stat_EtherStatsPktsRx256Octetsto511Octets =
|
|
stats->stat_EtherStatsPktsRx256Octetsto511Octets;
|
|
|
|
sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
|
|
stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
|
|
|
|
sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
|
|
stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
|
|
|
|
sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
|
|
stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
|
|
|
|
sc->stat_EtherStatsPktsTx64Octets =
|
|
stats->stat_EtherStatsPktsTx64Octets;
|
|
|
|
sc->stat_EtherStatsPktsTx65Octetsto127Octets =
|
|
stats->stat_EtherStatsPktsTx65Octetsto127Octets;
|
|
|
|
sc->stat_EtherStatsPktsTx128Octetsto255Octets =
|
|
stats->stat_EtherStatsPktsTx128Octetsto255Octets;
|
|
|
|
sc->stat_EtherStatsPktsTx256Octetsto511Octets =
|
|
stats->stat_EtherStatsPktsTx256Octetsto511Octets;
|
|
|
|
sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
|
|
stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
|
|
|
|
sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
|
|
stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
|
|
|
|
sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
|
|
stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
|
|
|
|
sc->stat_XonPauseFramesReceived =
|
|
stats->stat_XonPauseFramesReceived;
|
|
|
|
sc->stat_XoffPauseFramesReceived =
|
|
stats->stat_XoffPauseFramesReceived;
|
|
|
|
sc->stat_OutXonSent =
|
|
stats->stat_OutXonSent;
|
|
|
|
sc->stat_OutXoffSent =
|
|
stats->stat_OutXoffSent;
|
|
|
|
sc->stat_FlowControlDone =
|
|
stats->stat_FlowControlDone;
|
|
|
|
sc->stat_MacControlFramesReceived =
|
|
stats->stat_MacControlFramesReceived;
|
|
|
|
sc->stat_XoffStateEntered =
|
|
stats->stat_XoffStateEntered;
|
|
|
|
sc->stat_IfInFramesL2FilterDiscards =
|
|
stats->stat_IfInFramesL2FilterDiscards;
|
|
|
|
sc->stat_IfInRuleCheckerDiscards =
|
|
stats->stat_IfInRuleCheckerDiscards;
|
|
|
|
sc->stat_IfInFTQDiscards =
|
|
stats->stat_IfInFTQDiscards;
|
|
|
|
sc->stat_IfInMBUFDiscards =
|
|
stats->stat_IfInMBUFDiscards;
|
|
|
|
sc->stat_IfInRuleCheckerP4Hit =
|
|
stats->stat_IfInRuleCheckerP4Hit;
|
|
|
|
sc->stat_CatchupInRuleCheckerDiscards =
|
|
stats->stat_CatchupInRuleCheckerDiscards;
|
|
|
|
sc->stat_CatchupInFTQDiscards =
|
|
stats->stat_CatchupInFTQDiscards;
|
|
|
|
sc->stat_CatchupInMBUFDiscards =
|
|
stats->stat_CatchupInMBUFDiscards;
|
|
|
|
sc->stat_CatchupInRuleCheckerP4Hit =
|
|
stats->stat_CatchupInRuleCheckerP4Hit;
|
|
|
|
DBPRINT(sc, BCE_EXCESSIVE, "Exiting %s()\n", __FUNCTION__);
|
|
}
|
|
|
|
|
|
static void
|
|
bce_tick_locked(struct bce_softc *sc)
|
|
{
|
|
struct mii_data *mii = NULL;
|
|
struct ifnet *ifp;
|
|
u32 msg;
|
|
|
|
ifp = sc->bce_ifp;
|
|
|
|
BCE_LOCK_ASSERT(sc);
|
|
|
|
/* Tell the firmware that the driver is still running. */
|
|
#ifdef BCE_DEBUG
|
|
msg = (u32) BCE_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
|
|
#else
|
|
msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
|
|
#endif
|
|
REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_PULSE_MB, msg);
|
|
|
|
/* Update the statistics from the hardware statistics block. */
|
|
bce_stats_update(sc);
|
|
|
|
/* Schedule the next tick. */
|
|
callout_reset(
|
|
&sc->bce_stat_ch, /* callout */
|
|
hz, /* ticks */
|
|
bce_tick, /* function */
|
|
sc); /* function argument */
|
|
|
|
/* If link is up already up then we're done. */
|
|
if (sc->bce_link)
|
|
goto bce_tick_locked_exit;
|
|
|
|
/* DRC - ToDo: Add SerDes support and check SerDes link here. */
|
|
|
|
mii = device_get_softc(sc->bce_miibus);
|
|
mii_tick(mii);
|
|
|
|
/* Check if the link has come up. */
|
|
if (!sc->bce_link && mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->bce_link++;
|
|
if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) &&
|
|
bootverbose)
|
|
BCE_PRINTF(sc, "Gigabit link up\n");
|
|
/* Now that link is up, handle any outstanding TX traffic. */
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
bce_start_locked(ifp);
|
|
}
|
|
|
|
bce_tick_locked_exit:
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
bce_tick(void *xsc)
|
|
{
|
|
struct bce_softc *sc;
|
|
|
|
sc = xsc;
|
|
|
|
BCE_LOCK(sc);
|
|
bce_tick_locked(sc);
|
|
BCE_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
#ifdef BCE_DEBUG
|
|
/****************************************************************************/
|
|
/* Allows the driver state to be dumped through the sysctl interface. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
int result;
|
|
struct bce_softc *sc;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
sc = (struct bce_softc *)arg1;
|
|
bce_dump_driver_state(sc);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Allows the hardware state to be dumped through the sysctl interface. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
int result;
|
|
struct bce_softc *sc;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
sc = (struct bce_softc *)arg1;
|
|
bce_dump_hw_state(sc);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
int result;
|
|
struct bce_softc *sc;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
sc = (struct bce_softc *)arg1;
|
|
bce_dump_rx_chain(sc, 0, USABLE_RX_BD);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static int
|
|
bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
int result;
|
|
struct bce_softc *sc;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
sc = (struct bce_softc *)arg1;
|
|
bce_breakpoint(sc);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Adds any sysctl parameters for tuning or debugging purposes. */
|
|
/* */
|
|
/* Returns: */
|
|
/* 0 for success, positive value for failure. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_add_sysctls(struct bce_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *children;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->bce_dev);
|
|
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
|
|
|
|
SYSCTL_ADD_STRING(ctx, children, OID_AUTO,
|
|
"driver_version",
|
|
CTLFLAG_RD, &bce_driver_version,
|
|
0, "bce driver version");
|
|
|
|
#ifdef BCE_DEBUG
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"rx_low_watermark",
|
|
CTLFLAG_RD, &sc->rx_low_watermark,
|
|
0, "Lowest level of free rx_bd's");
|
|
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"tx_hi_watermark",
|
|
CTLFLAG_RD, &sc->tx_hi_watermark,
|
|
0, "Highest level of used tx_bd's");
|
|
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"l2fhdr_status_errors",
|
|
CTLFLAG_RD, &sc->l2fhdr_status_errors,
|
|
0, "l2_fhdr status errors");
|
|
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"unexpected_attentions",
|
|
CTLFLAG_RD, &sc->unexpected_attentions,
|
|
0, "unexpected attentions");
|
|
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"lost_status_block_updates",
|
|
CTLFLAG_RD, &sc->lost_status_block_updates,
|
|
0, "lost status block updates");
|
|
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"mbuf_alloc_failed",
|
|
CTLFLAG_RD, &sc->mbuf_alloc_failed,
|
|
0, "mbuf cluster allocation failures");
|
|
#endif
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHcInOctets",
|
|
CTLFLAG_RD, &sc->stat_IfHCInOctets,
|
|
"Bytes received");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHCInBadOctets",
|
|
CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
|
|
"Bad bytes received");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHCOutOctets",
|
|
CTLFLAG_RD, &sc->stat_IfHCOutOctets,
|
|
"Bytes sent");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHCOutBadOctets",
|
|
CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
|
|
"Bad bytes sent");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHCInUcastPkts",
|
|
CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
|
|
"Unicast packets received");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHCInMulticastPkts",
|
|
CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
|
|
"Multicast packets received");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHCInBroadcastPkts",
|
|
CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
|
|
"Broadcast packets received");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHCOutUcastPkts",
|
|
CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
|
|
"Unicast packets sent");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHCOutMulticastPkts",
|
|
CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
|
|
"Multicast packets sent");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
|
|
"stat_IfHCOutBroadcastPkts",
|
|
CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
|
|
"Broadcast packets sent");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
|
|
CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
|
|
0, "Internal MAC transmit errors");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_Dot3StatsCarrierSenseErrors",
|
|
CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
|
|
0, "Carrier sense errors");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_Dot3StatsFCSErrors",
|
|
CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
|
|
0, "Frame check sequence errors");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_Dot3StatsAlignmentErrors",
|
|
CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
|
|
0, "Alignment errors");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_Dot3StatsSingleCollisionFrames",
|
|
CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
|
|
0, "Single Collision Frames");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_Dot3StatsMultipleCollisionFrames",
|
|
CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
|
|
0, "Multiple Collision Frames");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_Dot3StatsDeferredTransmissions",
|
|
CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
|
|
0, "Deferred Transmissions");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_Dot3StatsExcessiveCollisions",
|
|
CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
|
|
0, "Excessive Collisions");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_Dot3StatsLateCollisions",
|
|
CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
|
|
0, "Late Collisions");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsCollisions",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
|
|
0, "Collisions");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsFragments",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsFragments,
|
|
0, "Fragments");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsJabbers",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
|
|
0, "Jabbers");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsUndersizePkts",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
|
|
0, "Undersize packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsOverrsizePkts",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts,
|
|
0, "stat_EtherStatsOverrsizePkts");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsRx64Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
|
|
0, "Bytes received in 64 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsRx65Octetsto127Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
|
|
0, "Bytes received in 65 to 127 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsRx128Octetsto255Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
|
|
0, "Bytes received in 128 to 255 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsRx256Octetsto511Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
|
|
0, "Bytes received in 256 to 511 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsRx512Octetsto1023Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
|
|
0, "Bytes received in 512 to 1023 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsRx1024Octetsto1522Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
|
|
0, "Bytes received in 1024 t0 1522 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsRx1523Octetsto9022Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
|
|
0, "Bytes received in 1523 to 9022 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsTx64Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
|
|
0, "Bytes sent in 64 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsTx65Octetsto127Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
|
|
0, "Bytes sent in 65 to 127 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsTx128Octetsto255Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
|
|
0, "Bytes sent in 128 to 255 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsTx256Octetsto511Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
|
|
0, "Bytes sent in 256 to 511 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsTx512Octetsto1023Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
|
|
0, "Bytes sent in 512 to 1023 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsTx1024Octetsto1522Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
|
|
0, "Bytes sent in 1024 to 1522 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_EtherStatsPktsTx1523Octetsto9022Octets",
|
|
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
|
|
0, "Bytes sent in 1523 to 9022 byte packets");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_XonPauseFramesReceived",
|
|
CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
|
|
0, "XON pause frames receved");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_XoffPauseFramesReceived",
|
|
CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
|
|
0, "XOFF pause frames received");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_OutXonSent",
|
|
CTLFLAG_RD, &sc->stat_OutXonSent,
|
|
0, "XON pause frames sent");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_OutXoffSent",
|
|
CTLFLAG_RD, &sc->stat_OutXoffSent,
|
|
0, "XOFF pause frames sent");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_FlowControlDone",
|
|
CTLFLAG_RD, &sc->stat_FlowControlDone,
|
|
0, "Flow control done");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_MacControlFramesReceived",
|
|
CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
|
|
0, "MAC control frames received");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_XoffStateEntered",
|
|
CTLFLAG_RD, &sc->stat_XoffStateEntered,
|
|
0, "XOFF state entered");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_IfInFramesL2FilterDiscards",
|
|
CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
|
|
0, "Received L2 packets discarded");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_IfInRuleCheckerDiscards",
|
|
CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
|
|
0, "Received packets discarded by rule");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_IfInFTQDiscards",
|
|
CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
|
|
0, "Received packet FTQ discards");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_IfInMBUFDiscards",
|
|
CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
|
|
0, "Received packets discarded due to lack of controller buffer memory");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_IfInRuleCheckerP4Hit",
|
|
CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
|
|
0, "Received packets rule checker hits");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_CatchupInRuleCheckerDiscards",
|
|
CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
|
|
0, "Received packets discarded in Catchup path");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_CatchupInFTQDiscards",
|
|
CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
|
|
0, "Received packets discarded in FTQ in Catchup path");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_CatchupInMBUFDiscards",
|
|
CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
|
|
0, "Received packets discarded in controller buffer memory in Catchup path");
|
|
|
|
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
|
|
"stat_CatchupInRuleCheckerP4Hit",
|
|
CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
|
|
0, "Received packets rule checker hits in Catchup path");
|
|
|
|
#ifdef BCE_DEBUG
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
|
|
"driver_state", CTLTYPE_INT | CTLFLAG_RW,
|
|
(void *)sc, 0,
|
|
bce_sysctl_driver_state, "I", "Drive state information");
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
|
|
"hw_state", CTLTYPE_INT | CTLFLAG_RW,
|
|
(void *)sc, 0,
|
|
bce_sysctl_hw_state, "I", "Hardware state information");
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
|
|
"dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW,
|
|
(void *)sc, 0,
|
|
bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain");
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
|
|
"breakpoint", CTLTYPE_INT | CTLFLAG_RW,
|
|
(void *)sc, 0,
|
|
bce_sysctl_breakpoint, "I", "Driver breakpoint");
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* BCE Debug Routines */
|
|
/****************************************************************************/
|
|
#ifdef BCE_DEBUG
|
|
|
|
/****************************************************************************/
|
|
/* Prints out information about an mbuf. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
|
|
{
|
|
u32 val_hi, val_lo;
|
|
struct mbuf *mp = m;
|
|
|
|
if (m == NULL) {
|
|
/* Index out of range. */
|
|
printf("mbuf ptr is null!\n");
|
|
return;
|
|
}
|
|
|
|
while (mp) {
|
|
val_hi = BCE_ADDR_HI(mp);
|
|
val_lo = BCE_ADDR_LO(mp);
|
|
BCE_PRINTF(sc, "mbuf: vaddr = 0x%08X:%08X, m_len = %d, m_flags = ",
|
|
val_hi, val_lo, mp->m_len);
|
|
|
|
if (mp->m_flags & M_EXT)
|
|
printf("M_EXT ");
|
|
if (mp->m_flags & M_PKTHDR)
|
|
printf("M_PKTHDR ");
|
|
printf("\n");
|
|
|
|
if (mp->m_flags & M_EXT) {
|
|
val_hi = BCE_ADDR_HI(mp->m_ext.ext_buf);
|
|
val_lo = BCE_ADDR_LO(mp->m_ext.ext_buf);
|
|
BCE_PRINTF(sc, "- m_ext: vaddr = 0x%08X:%08X, ext_size = 0x%04X\n",
|
|
val_hi, val_lo, mp->m_ext.ext_size);
|
|
}
|
|
|
|
mp = mp->m_next;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Prints out the mbufs in the TX mbuf chain. */
|
|
/* */
|
|
/* Returns: */
|
|
/* Nothing. */
|
|
/****************************************************************************/
|
|
static void
|
|
bce_dump_tx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
" tx mbuf data "
|
|
"----------------------------\n");
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
m = sc->tx_mbuf_ptr[chain_prod];
|
|
BCE_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
|
|
bce_dump_mbuf(sc, m);
|
|
chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
|
|
}
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
"----------------"
|
|
"----------------------------\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine prints the RX mbuf chain.
|
|
*/
|
|
static void
|
|
bce_dump_rx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
" rx mbuf data "
|
|
"----------------------------\n");
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
m = sc->rx_mbuf_ptr[chain_prod];
|
|
BCE_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
|
|
bce_dump_mbuf(sc, m);
|
|
chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
|
|
}
|
|
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
"----------------"
|
|
"----------------------------\n");
|
|
}
|
|
|
|
|
|
static void
|
|
bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
|
|
{
|
|
if (idx > MAX_TX_BD)
|
|
/* Index out of range. */
|
|
BCE_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
|
|
else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
|
|
/* TX Chain page pointer. */
|
|
BCE_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
|
|
idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo);
|
|
else
|
|
/* Normal tx_bd entry. */
|
|
BCE_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
|
|
"flags = 0x%08X\n", idx,
|
|
txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
|
|
txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag_flags);
|
|
}
|
|
|
|
|
|
static void
|
|
bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
|
|
{
|
|
if (idx > MAX_RX_BD)
|
|
/* Index out of range. */
|
|
BCE_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
|
|
else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
|
|
/* TX Chain page pointer. */
|
|
BCE_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
|
|
idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo);
|
|
else
|
|
/* Normal tx_bd entry. */
|
|
BCE_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
|
|
"flags = 0x%08X\n", idx,
|
|
rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
|
|
rxbd->rx_bd_len, rxbd->rx_bd_flags);
|
|
}
|
|
|
|
|
|
static void
|
|
bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
|
|
{
|
|
BCE_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
|
|
"pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
|
|
"tcp_udp_xsum = 0x%04X\n", idx,
|
|
l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
|
|
l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
|
|
l2fhdr->l2_fhdr_tcp_udp_xsum);
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine prints the TX chain.
|
|
*/
|
|
static void
|
|
bce_dump_tx_chain(struct bce_softc *sc, int tx_prod, int count)
|
|
{
|
|
struct tx_bd *txbd;
|
|
|
|
/* First some info about the tx_bd chain structure. */
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
" tx_bd chain "
|
|
"----------------------------\n");
|
|
|
|
BCE_PRINTF(sc, "page size = 0x%08X, tx chain pages = 0x%08X\n",
|
|
(u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
|
|
|
|
BCE_PRINTF(sc, "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
|
|
(u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
|
|
|
|
BCE_PRINTF(sc, "total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD);
|
|
|
|
BCE_PRINTF(sc, ""
|
|
"-----------------------------"
|
|
" tx_bd data "
|
|
"-----------------------------\n");
|
|
|
|
/* Now print out the tx_bd's themselves. */
|
|
for (int i = 0; i < count; i++) {
|
|
txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
|
|
bce_dump_txbd(sc, tx_prod, txbd);
|
|
tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
|
|
}
|
|
|
|
BCE_PRINTF(sc,
|
|
"-----------------------------"
|
|
"--------------"
|
|
"-----------------------------\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine prints the RX chain.
|
|
*/
|
|
static void
|
|
bce_dump_rx_chain(struct bce_softc *sc, int rx_prod, int count)
|
|
{
|
|
struct rx_bd *rxbd;
|
|
|
|
/* First some info about the tx_bd chain structure. */
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
" rx_bd chain "
|
|
"----------------------------\n");
|
|
|
|
BCE_PRINTF(sc, "----- RX_BD Chain -----\n");
|
|
|
|
BCE_PRINTF(sc, "page size = 0x%08X, rx chain pages = 0x%08X\n",
|
|
(u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
|
|
|
|
BCE_PRINTF(sc, "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
|
|
(u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
|
|
|
|
BCE_PRINTF(sc, "total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD);
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
" rx_bd data "
|
|
"----------------------------\n");
|
|
|
|
/* Now print out the rx_bd's themselves. */
|
|
for (int i = 0; i < count; i++) {
|
|
rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
|
|
bce_dump_rxbd(sc, rx_prod, rxbd);
|
|
rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
|
|
}
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
"--------------"
|
|
"----------------------------\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine prints the status block.
|
|
*/
|
|
static void
|
|
bce_dump_status_block(struct bce_softc *sc)
|
|
{
|
|
struct status_block *sblk;
|
|
|
|
sblk = sc->status_block;
|
|
|
|
BCE_PRINTF(sc, "----------------------------- Status Block "
|
|
"-----------------------------\n");
|
|
|
|
BCE_PRINTF(sc, "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
|
|
sblk->status_attn_bits, sblk->status_attn_bits_ack,
|
|
sblk->status_idx);
|
|
|
|
BCE_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index0,
|
|
sblk->status_tx_quick_consumer_index0);
|
|
|
|
BCE_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
|
|
|
|
/* Theses indices are not used for normal L2 drivers. */
|
|
if (sblk->status_rx_quick_consumer_index1 ||
|
|
sblk->status_tx_quick_consumer_index1)
|
|
BCE_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index1,
|
|
sblk->status_tx_quick_consumer_index1);
|
|
|
|
if (sblk->status_rx_quick_consumer_index2 ||
|
|
sblk->status_tx_quick_consumer_index2)
|
|
BCE_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index2,
|
|
sblk->status_tx_quick_consumer_index2);
|
|
|
|
if (sblk->status_rx_quick_consumer_index3 ||
|
|
sblk->status_tx_quick_consumer_index3)
|
|
BCE_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index3,
|
|
sblk->status_tx_quick_consumer_index3);
|
|
|
|
if (sblk->status_rx_quick_consumer_index4 ||
|
|
sblk->status_rx_quick_consumer_index5)
|
|
BCE_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index4,
|
|
sblk->status_rx_quick_consumer_index5);
|
|
|
|
if (sblk->status_rx_quick_consumer_index6 ||
|
|
sblk->status_rx_quick_consumer_index7)
|
|
BCE_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index6,
|
|
sblk->status_rx_quick_consumer_index7);
|
|
|
|
if (sblk->status_rx_quick_consumer_index8 ||
|
|
sblk->status_rx_quick_consumer_index9)
|
|
BCE_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index8,
|
|
sblk->status_rx_quick_consumer_index9);
|
|
|
|
if (sblk->status_rx_quick_consumer_index10 ||
|
|
sblk->status_rx_quick_consumer_index11)
|
|
BCE_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index10,
|
|
sblk->status_rx_quick_consumer_index11);
|
|
|
|
if (sblk->status_rx_quick_consumer_index12 ||
|
|
sblk->status_rx_quick_consumer_index13)
|
|
BCE_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index12,
|
|
sblk->status_rx_quick_consumer_index13);
|
|
|
|
if (sblk->status_rx_quick_consumer_index14 ||
|
|
sblk->status_rx_quick_consumer_index15)
|
|
BCE_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
|
|
sblk->status_rx_quick_consumer_index14,
|
|
sblk->status_rx_quick_consumer_index15);
|
|
|
|
if (sblk->status_completion_producer_index ||
|
|
sblk->status_cmd_consumer_index)
|
|
BCE_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
|
|
sblk->status_completion_producer_index,
|
|
sblk->status_cmd_consumer_index);
|
|
|
|
BCE_PRINTF(sc, "-------------------------------------------"
|
|
"-----------------------------\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine prints the statistics block.
|
|
*/
|
|
static void
|
|
bce_dump_stats_block(struct bce_softc *sc)
|
|
{
|
|
struct statistics_block *sblk;
|
|
|
|
sblk = sc->stats_block;
|
|
|
|
BCE_PRINTF(sc, ""
|
|
"-----------------------------"
|
|
" Stats Block "
|
|
"-----------------------------\n");
|
|
|
|
BCE_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
|
|
"IfHcInBadOctets = 0x%08X:%08X\n",
|
|
sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
|
|
sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
|
|
|
|
BCE_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
|
|
"IfHcOutBadOctets = 0x%08X:%08X\n",
|
|
sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
|
|
sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
|
|
|
|
BCE_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
|
|
"IfHcInMulticastPkts = 0x%08X:%08X\n",
|
|
sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
|
|
sblk->stat_IfHCInMulticastPkts_hi, sblk->stat_IfHCInMulticastPkts_lo);
|
|
|
|
BCE_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
|
|
"IfHcOutUcastPkts = 0x%08X:%08X\n",
|
|
sblk->stat_IfHCInBroadcastPkts_hi, sblk->stat_IfHCInBroadcastPkts_lo,
|
|
sblk->stat_IfHCOutUcastPkts_hi, sblk->stat_IfHCOutUcastPkts_lo);
|
|
|
|
BCE_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, IfHcOutBroadcastPkts = 0x%08X:%08X\n",
|
|
sblk->stat_IfHCOutMulticastPkts_hi, sblk->stat_IfHCOutMulticastPkts_lo,
|
|
sblk->stat_IfHCOutBroadcastPkts_hi, sblk->stat_IfHCOutBroadcastPkts_lo);
|
|
|
|
if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
|
|
BCE_PRINTF(sc, "0x%08X : "
|
|
"emac_tx_stat_dot3statsinternalmactransmiterrors\n",
|
|
sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
|
|
|
|
if (sblk->stat_Dot3StatsCarrierSenseErrors)
|
|
BCE_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
|
|
sblk->stat_Dot3StatsCarrierSenseErrors);
|
|
|
|
if (sblk->stat_Dot3StatsFCSErrors)
|
|
BCE_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
|
|
sblk->stat_Dot3StatsFCSErrors);
|
|
|
|
if (sblk->stat_Dot3StatsAlignmentErrors)
|
|
BCE_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
|
|
sblk->stat_Dot3StatsAlignmentErrors);
|
|
|
|
if (sblk->stat_Dot3StatsSingleCollisionFrames)
|
|
BCE_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
|
|
sblk->stat_Dot3StatsSingleCollisionFrames);
|
|
|
|
if (sblk->stat_Dot3StatsMultipleCollisionFrames)
|
|
BCE_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
|
|
sblk->stat_Dot3StatsMultipleCollisionFrames);
|
|
|
|
if (sblk->stat_Dot3StatsDeferredTransmissions)
|
|
BCE_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
|
|
sblk->stat_Dot3StatsDeferredTransmissions);
|
|
|
|
if (sblk->stat_Dot3StatsExcessiveCollisions)
|
|
BCE_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
|
|
sblk->stat_Dot3StatsExcessiveCollisions);
|
|
|
|
if (sblk->stat_Dot3StatsLateCollisions)
|
|
BCE_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
|
|
sblk->stat_Dot3StatsLateCollisions);
|
|
|
|
if (sblk->stat_EtherStatsCollisions)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
|
|
sblk->stat_EtherStatsCollisions);
|
|
|
|
if (sblk->stat_EtherStatsFragments)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
|
|
sblk->stat_EtherStatsFragments);
|
|
|
|
if (sblk->stat_EtherStatsJabbers)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
|
|
sblk->stat_EtherStatsJabbers);
|
|
|
|
if (sblk->stat_EtherStatsUndersizePkts)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
|
|
sblk->stat_EtherStatsUndersizePkts);
|
|
|
|
if (sblk->stat_EtherStatsOverrsizePkts)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
|
|
sblk->stat_EtherStatsOverrsizePkts);
|
|
|
|
if (sblk->stat_EtherStatsPktsRx64Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
|
|
sblk->stat_EtherStatsPktsRx64Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
|
|
sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx128Octetsto255Octets\n",
|
|
sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx256Octetsto511Octets\n",
|
|
sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n",
|
|
sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n",
|
|
sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n",
|
|
sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsTx64Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
|
|
sblk->stat_EtherStatsPktsTx64Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
|
|
sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx128Octetsto255Octets\n",
|
|
sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx256Octetsto511Octets\n",
|
|
sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n",
|
|
sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n",
|
|
sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
|
|
|
|
if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
|
|
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n",
|
|
sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
|
|
|
|
if (sblk->stat_XonPauseFramesReceived)
|
|
BCE_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
|
|
sblk->stat_XonPauseFramesReceived);
|
|
|
|
if (sblk->stat_XoffPauseFramesReceived)
|
|
BCE_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
|
|
sblk->stat_XoffPauseFramesReceived);
|
|
|
|
if (sblk->stat_OutXonSent)
|
|
BCE_PRINTF(sc, "0x%08X : OutXonSent\n",
|
|
sblk->stat_OutXonSent);
|
|
|
|
if (sblk->stat_OutXoffSent)
|
|
BCE_PRINTF(sc, "0x%08X : OutXoffSent\n",
|
|
sblk->stat_OutXoffSent);
|
|
|
|
if (sblk->stat_FlowControlDone)
|
|
BCE_PRINTF(sc, "0x%08X : FlowControlDone\n",
|
|
sblk->stat_FlowControlDone);
|
|
|
|
if (sblk->stat_MacControlFramesReceived)
|
|
BCE_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
|
|
sblk->stat_MacControlFramesReceived);
|
|
|
|
if (sblk->stat_XoffStateEntered)
|
|
BCE_PRINTF(sc, "0x%08X : XoffStateEntered\n",
|
|
sblk->stat_XoffStateEntered);
|
|
|
|
if (sblk->stat_IfInFramesL2FilterDiscards)
|
|
BCE_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
|
|
sblk->stat_IfInFramesL2FilterDiscards);
|
|
|
|
if (sblk->stat_IfInRuleCheckerDiscards)
|
|
BCE_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
|
|
sblk->stat_IfInRuleCheckerDiscards);
|
|
|
|
if (sblk->stat_IfInFTQDiscards)
|
|
BCE_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
|
|
sblk->stat_IfInFTQDiscards);
|
|
|
|
if (sblk->stat_IfInMBUFDiscards)
|
|
BCE_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
|
|
sblk->stat_IfInMBUFDiscards);
|
|
|
|
if (sblk->stat_IfInRuleCheckerP4Hit)
|
|
BCE_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
|
|
sblk->stat_IfInRuleCheckerP4Hit);
|
|
|
|
if (sblk->stat_CatchupInRuleCheckerDiscards)
|
|
BCE_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
|
|
sblk->stat_CatchupInRuleCheckerDiscards);
|
|
|
|
if (sblk->stat_CatchupInFTQDiscards)
|
|
BCE_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
|
|
sblk->stat_CatchupInFTQDiscards);
|
|
|
|
if (sblk->stat_CatchupInMBUFDiscards)
|
|
BCE_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
|
|
sblk->stat_CatchupInMBUFDiscards);
|
|
|
|
if (sblk->stat_CatchupInRuleCheckerP4Hit)
|
|
BCE_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
|
|
sblk->stat_CatchupInRuleCheckerP4Hit);
|
|
|
|
BCE_PRINTF(sc,
|
|
"-----------------------------"
|
|
"--------------"
|
|
"-----------------------------\n");
|
|
}
|
|
|
|
|
|
static void
|
|
bce_dump_driver_state(struct bce_softc *sc)
|
|
{
|
|
u32 val_hi, val_lo;
|
|
|
|
BCE_PRINTF(sc,
|
|
"-----------------------------"
|
|
" Driver State "
|
|
"-----------------------------\n");
|
|
|
|
val_hi = BCE_ADDR_HI(sc);
|
|
val_lo = BCE_ADDR_LO(sc);
|
|
BCE_PRINTF(sc, "0x%08X:%08X - (sc) driver softc structure virtual address\n",
|
|
val_hi, val_lo);
|
|
|
|
val_hi = BCE_ADDR_HI(sc->bce_vhandle);
|
|
val_lo = BCE_ADDR_LO(sc->bce_vhandle);
|
|
BCE_PRINTF(sc, "0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual address\n",
|
|
val_hi, val_lo);
|
|
|
|
val_hi = BCE_ADDR_HI(sc->status_block);
|
|
val_lo = BCE_ADDR_LO(sc->status_block);
|
|
BCE_PRINTF(sc, "0x%08X:%08X - (sc->status_block) status block virtual address\n",
|
|
val_hi, val_lo);
|
|
|
|
val_hi = BCE_ADDR_HI(sc->stats_block);
|
|
val_lo = BCE_ADDR_LO(sc->stats_block);
|
|
BCE_PRINTF(sc, "0x%08X:%08X - (sc->stats_block) statistics block virtual address\n",
|
|
val_hi, val_lo);
|
|
|
|
val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
|
|
val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
|
|
BCE_PRINTF(sc,
|
|
"0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n",
|
|
val_hi, val_lo);
|
|
|
|
val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
|
|
val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
|
|
BCE_PRINTF(sc,
|
|
"0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n",
|
|
val_hi, val_lo);
|
|
|
|
val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
|
|
val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
|
|
BCE_PRINTF(sc,
|
|
"0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
|
|
val_hi, val_lo);
|
|
|
|
val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
|
|
val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
|
|
BCE_PRINTF(sc,
|
|
"0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
|
|
val_hi, val_lo);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
|
|
sc->interrupts_generated);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
|
|
sc->rx_interrupts);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
|
|
sc->tx_interrupts);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->last_status_idx) status block index\n",
|
|
sc->last_status_idx);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
|
|
sc->tx_prod);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
|
|
sc->tx_cons);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
|
|
sc->tx_prod_bseq);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
|
|
sc->rx_prod);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
|
|
sc->rx_cons);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
|
|
sc->rx_prod_bseq);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
|
|
sc->rx_mbuf_alloc);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
|
|
sc->free_rx_bd);
|
|
|
|
BCE_PRINTF(sc, "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
|
|
sc->rx_low_watermark, (u32) USABLE_RX_BD);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
|
|
sc->tx_mbuf_alloc);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
|
|
sc->rx_mbuf_alloc);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
|
|
sc->used_tx_bd);
|
|
|
|
BCE_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
|
|
sc->tx_hi_watermark, (u32) USABLE_TX_BD);
|
|
|
|
BCE_PRINTF(sc, " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
|
|
sc->mbuf_alloc_failed);
|
|
|
|
BCE_PRINTF(sc,
|
|
"-----------------------------"
|
|
"--------------"
|
|
"-----------------------------\n");
|
|
}
|
|
|
|
|
|
static void
|
|
bce_dump_hw_state(struct bce_softc *sc)
|
|
{
|
|
u32 val1;
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
" Hardware State "
|
|
"----------------------------\n");
|
|
|
|
BCE_PRINTF(sc, "0x%08X : bootcode version\n", sc->bce_fw_ver);
|
|
|
|
val1 = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
|
|
BCE_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
|
|
val1, BCE_MISC_ENABLE_STATUS_BITS);
|
|
|
|
val1 = REG_RD(sc, BCE_DMA_STATUS);
|
|
BCE_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BCE_DMA_STATUS);
|
|
|
|
val1 = REG_RD(sc, BCE_CTX_STATUS);
|
|
BCE_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BCE_CTX_STATUS);
|
|
|
|
val1 = REG_RD(sc, BCE_EMAC_STATUS);
|
|
BCE_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1, BCE_EMAC_STATUS);
|
|
|
|
val1 = REG_RD(sc, BCE_RPM_STATUS);
|
|
BCE_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BCE_RPM_STATUS);
|
|
|
|
val1 = REG_RD(sc, BCE_TBDR_STATUS);
|
|
BCE_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1, BCE_TBDR_STATUS);
|
|
|
|
val1 = REG_RD(sc, BCE_TDMA_STATUS);
|
|
BCE_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1, BCE_TDMA_STATUS);
|
|
|
|
val1 = REG_RD(sc, BCE_HC_STATUS);
|
|
BCE_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BCE_HC_STATUS);
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
"----------------"
|
|
"----------------------------\n");
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
" Register Dump "
|
|
"----------------------------\n");
|
|
|
|
for (int i = 0x400; i < 0x8000; i += 0x10)
|
|
BCE_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
|
|
i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
|
|
REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
|
|
|
|
BCE_PRINTF(sc,
|
|
"----------------------------"
|
|
"----------------"
|
|
"----------------------------\n");
|
|
}
|
|
|
|
|
|
static void
|
|
bce_breakpoint(struct bce_softc *sc)
|
|
{
|
|
|
|
/* Unreachable code to shut the compiler up about unused functions. */
|
|
if (0) {
|
|
bce_dump_txbd(sc, 0, NULL);
|
|
bce_dump_rxbd(sc, 0, NULL);
|
|
bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
|
|
bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
|
|
bce_dump_l2fhdr(sc, 0, NULL);
|
|
bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
|
|
bce_dump_rx_chain(sc, 0, USABLE_RX_BD);
|
|
bce_dump_status_block(sc);
|
|
bce_dump_stats_block(sc);
|
|
bce_dump_driver_state(sc);
|
|
bce_dump_hw_state(sc);
|
|
}
|
|
|
|
bce_dump_driver_state(sc);
|
|
/* Print the important status block fields. */
|
|
bce_dump_status_block(sc);
|
|
|
|
/* Call the debugger. */
|
|
breakpoint();
|
|
|
|
return;
|
|
}
|
|
#endif
|