freebsd-skq/sys/dev/ath/if_ath_tx_edma.c
adrian 4d334b94a5 Make sure the holding descriptor and link pointer are both freed during
a non-loss reset.

When the drain functions are called, the holding descriptor and link pointers
are NULLed out.

But when the processq function is called during a non-loss reset, this
doesn't occur.  So the next time a DMA occurs, it's chained to a descriptor
that no longer exists and the hardware gets angry.

Tested:

* AR5416, STA mode; use sysctl dev.ath.X.forcebstuck=1 to force a non-loss
  reset.

TODO:

* Further AR9380 testing just to check that the behaviour for the EDMA
  chips is sane.

PR:		kern/178477
2013-05-10 10:06:45 +00:00

883 lines
22 KiB
C

/*-
* Copyright (c) 2012 Adrian Chadd <adrian@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#include "opt_inet.h"
#include "opt_ath.h"
/*
* This is needed for register operations which are performed
* by the driver - eg, calls to ath_hal_gettsf32().
*
* It's also required for any AH_DEBUG checks in here, eg the
* module dependencies.
*/
#include "opt_ah.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/priv.h>
#include <sys/module.h>
#include <sys/ktr.h>
#include <sys/smp.h> /* for mp_ncpus */
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <dev/ath/if_athvar.h>
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
#include <dev/ath/ath_hal/ah_diagcodes.h>
#include <dev/ath/if_ath_debug.h>
#include <dev/ath/if_ath_misc.h>
#include <dev/ath/if_ath_tsf.h>
#include <dev/ath/if_ath_tx.h>
#include <dev/ath/if_ath_sysctl.h>
#include <dev/ath/if_ath_led.h>
#include <dev/ath/if_ath_keycache.h>
#include <dev/ath/if_ath_rx.h>
#include <dev/ath/if_ath_beacon.h>
#include <dev/ath/if_athdfs.h>
#ifdef ATH_TX99_DIAG
#include <dev/ath/ath_tx99/ath_tx99.h>
#endif
#include <dev/ath/if_ath_tx_edma.h>
#ifdef ATH_DEBUG_ALQ
#include <dev/ath/if_ath_alq.h>
#endif
/*
* some general macros
*/
#define INCR(_l, _sz) (_l) ++; (_l) &= ((_sz) - 1)
#define DECR(_l, _sz) (_l) --; (_l) &= ((_sz) - 1)
/*
* XXX doesn't belong here, and should be tunable
*/
#define ATH_TXSTATUS_RING_SIZE 512
MALLOC_DECLARE(M_ATHDEV);
static void ath_edma_tx_processq(struct ath_softc *sc, int dosched);
/*
* Push some frames into the TX FIFO if we have space.
*/
static void
ath_edma_tx_fifo_fill(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_buf *bf, *bf_last;
int i = 0;
ATH_TXQ_LOCK_ASSERT(txq);
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d: called\n",
__func__,
txq->axq_qnum);
TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
if (txq->axq_fifo_depth >= HAL_TXFIFO_DEPTH)
break;
/*
* We have space in the FIFO - so let's push a frame
* into it.
*/
/*
* Remove it from the normal list
*/
ATH_TXQ_REMOVE(txq, bf, bf_list);
/*
* XXX for now, we only dequeue a frame at a time, so
* that's only one buffer. Later on when we just
* push this staging _list_ into the queue, we'll
* set bf_last to the end pointer in the list.
*/
bf_last = bf;
DPRINTF(sc, ATH_DEBUG_TX_PROC,
"%s: Q%d: depth=%d; pushing %p->%p\n",
__func__,
txq->axq_qnum,
txq->axq_fifo_depth,
bf,
bf_last);
/*
* Append it to the FIFO staging list
*/
ATH_TXQ_INSERT_TAIL(&txq->fifo, bf, bf_list);
/*
* Set fifo start / fifo end flags appropriately
*
*/
bf->bf_flags |= ATH_BUF_FIFOPTR;
bf_last->bf_flags |= ATH_BUF_FIFOEND;
/*
* Push _into_ the FIFO.
*/
ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
ath_printtxbuf(sc, bf, txq->axq_qnum, i, 0);
#endif/* ATH_DEBUG */
#ifdef ATH_DEBUG_ALQ
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
ath_tx_alq_post(sc, bf);
#endif /* ATH_DEBUG_ALQ */
txq->axq_fifo_depth++;
i++;
}
if (i > 0)
ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
}
/*
* Re-initialise the DMA FIFO with the current contents of
* said TXQ.
*
* This should only be called as part of the chip reset path, as it
* assumes the FIFO is currently empty.
*/
static void
ath_edma_dma_restart(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_buf *bf;
int i = 0;
int fifostart = 1;
int old_fifo_depth;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%d: called\n",
__func__,
txq->axq_qnum);
ATH_TXQ_LOCK_ASSERT(txq);
/*
* Let's log if the tracked FIFO depth doesn't match
* what we actually push in.
*/
old_fifo_depth = txq->axq_fifo_depth;
txq->axq_fifo_depth = 0;
/*
* Walk the FIFO staging list, looking for "head" entries.
* Since we may have a partially completed list of frames,
* we push the first frame we see into the FIFO and re-mark
* it as the head entry. We then skip entries until we see
* FIFO end, at which point we get ready to push another
* entry into the FIFO.
*/
TAILQ_FOREACH(bf, &txq->fifo.axq_q, bf_list) {
/*
* If we're looking for FIFOEND and we haven't found
* it, skip.
*
* If we're looking for FIFOEND and we've found it,
* reset for another descriptor.
*/
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
ath_printtxbuf(sc, bf, txq->axq_qnum, i, 0);
#endif/* ATH_DEBUG */
#ifdef ATH_DEBUG_ALQ
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
ath_tx_alq_post(sc, bf);
#endif /* ATH_DEBUG_ALQ */
if (fifostart == 0) {
if (bf->bf_flags & ATH_BUF_FIFOEND)
fifostart = 1;
continue;
}
/* Make sure we're not overflowing the FIFO! */
if (txq->axq_fifo_depth >= HAL_TXFIFO_DEPTH) {
device_printf(sc->sc_dev,
"%s: Q%d: more frames in the queue; FIFO depth=%d?!\n",
__func__,
txq->axq_qnum,
txq->axq_fifo_depth);
}
#if 0
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: Q%d: depth=%d: pushing bf=%p; start=%d, end=%d\n",
__func__,
txq->axq_qnum,
txq->axq_fifo_depth,
bf,
!! (bf->bf_flags & ATH_BUF_FIFOPTR),
!! (bf->bf_flags & ATH_BUF_FIFOEND));
#endif
/*
* Set this to be the first buffer in the FIFO
* list - even if it's also the last buffer in
* a FIFO list!
*/
bf->bf_flags |= ATH_BUF_FIFOPTR;
/* Push it into the FIFO and bump the FIFO count */
ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
txq->axq_fifo_depth++;
/*
* If this isn't the last entry either, let's
* clear fifostart so we continue looking for
* said last entry.
*/
if (! (bf->bf_flags & ATH_BUF_FIFOEND))
fifostart = 0;
i++;
}
/* Only bother starting the queue if there's something in it */
if (i > 0)
ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%d: FIFO depth was %d, is %d\n",
__func__,
txq->axq_qnum,
old_fifo_depth,
txq->axq_fifo_depth);
/* And now, let's check! */
if (txq->axq_fifo_depth != old_fifo_depth) {
device_printf(sc->sc_dev,
"%s: Q%d: FIFO depth should be %d, is %d\n",
__func__,
txq->axq_qnum,
old_fifo_depth,
txq->axq_fifo_depth);
}
}
/*
* Hand off this frame to a hardware queue.
*
* Things are a bit hairy in the EDMA world. The TX FIFO is only
* 8 entries deep, so we need to keep track of exactly what we've
* pushed into the FIFO and what's just sitting in the TX queue,
* waiting to go out.
*
* So this is split into two halves - frames get appended to the
* TXQ; then a scheduler is called to push some frames into the
* actual TX FIFO.
*/
static void
ath_edma_xmit_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
ATH_TXQ_LOCK(txq);
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
("%s: busy status 0x%x", __func__, bf->bf_flags));
/*
* XXX TODO: write a hard-coded check to ensure that
* the queue id in the TX descriptor matches txq->axq_qnum.
*/
/* Update aggr stats */
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth++;
/* Push and update frame stats */
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
/* For now, set the link pointer in the last descriptor
* to be NULL.
*
* Later on, when it comes time to handling multiple descriptors
* in one FIFO push, we can link descriptors together this way.
*/
/*
* Finally, call the FIFO schedule routine to schedule some
* frames to the FIFO.
*/
ath_edma_tx_fifo_fill(sc, txq);
ATH_TXQ_UNLOCK(txq);
}
/*
* Hand off this frame to a multicast software queue.
*
* The EDMA TX CABQ will get a list of chained frames, chained
* together using the next pointer. The single head of that
* particular queue is pushed to the hardware CABQ.
*/
static void
ath_edma_xmit_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
ATH_TX_LOCK_ASSERT(sc);
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
("%s: busy status 0x%x", __func__, bf->bf_flags));
ATH_TXQ_LOCK(txq);
/*
* XXX this is mostly duplicated in ath_tx_handoff_mcast().
*/
if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) {
struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s);
struct ieee80211_frame *wh;
/* mark previous frame */
wh = mtod(bf_last->bf_m, struct ieee80211_frame *);
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
/* re-sync buffer to memory */
bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap,
BUS_DMASYNC_PREWRITE);
/* link descriptor */
ath_hal_settxdesclink(sc->sc_ah,
bf_last->bf_lastds,
bf->bf_daddr);
}
#ifdef ATH_DEBUG_ALQ
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
ath_tx_alq_post(sc, bf);
#endif /* ATH_DEBUG_ALQ */
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
ATH_TXQ_UNLOCK(txq);
}
/*
* Handoff this frame to the hardware.
*
* For the multicast queue, this will treat it as a software queue
* and append it to the list, after updating the MORE_DATA flag
* in the previous frame. The cabq processing code will ensure
* that the queue contents gets transferred over.
*
* For the hardware queues, this will queue a frame to the queue
* like before, then populate the FIFO from that. Since the
* EDMA hardware has 8 FIFO slots per TXQ, this ensures that
* frames such as management frames don't get prematurely dropped.
*
* This does imply that a similar flush-hwq-to-fifoq method will
* need to be called from the processq function, before the
* per-node software scheduler is called.
*/
static void
ath_edma_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
DPRINTF(sc, ATH_DEBUG_XMIT_DESC,
"%s: called; bf=%p, txq=%p, qnum=%d\n",
__func__,
bf,
txq,
txq->axq_qnum);
if (txq->axq_qnum == ATH_TXQ_SWQ)
ath_edma_xmit_handoff_mcast(sc, txq, bf);
else
ath_edma_xmit_handoff_hw(sc, txq, bf);
}
static int
ath_edma_setup_txfifo(struct ath_softc *sc, int qnum)
{
struct ath_tx_edma_fifo *te = &sc->sc_txedma[qnum];
te->m_fifo = malloc(sizeof(struct ath_buf *) * HAL_TXFIFO_DEPTH,
M_ATHDEV,
M_NOWAIT | M_ZERO);
if (te->m_fifo == NULL) {
device_printf(sc->sc_dev, "%s: malloc failed\n",
__func__);
return (-ENOMEM);
}
/*
* Set initial "empty" state.
*/
te->m_fifo_head = te->m_fifo_tail = te->m_fifo_depth = 0;
return (0);
}
static int
ath_edma_free_txfifo(struct ath_softc *sc, int qnum)
{
struct ath_tx_edma_fifo *te = &sc->sc_txedma[qnum];
/* XXX TODO: actually deref the ath_buf entries? */
free(te->m_fifo, M_ATHDEV);
return (0);
}
static int
ath_edma_dma_txsetup(struct ath_softc *sc)
{
int error;
int i;
error = ath_descdma_alloc_desc(sc, &sc->sc_txsdma,
NULL, "txcomp", sc->sc_tx_statuslen, ATH_TXSTATUS_RING_SIZE);
if (error != 0)
return (error);
ath_hal_setuptxstatusring(sc->sc_ah,
(void *) sc->sc_txsdma.dd_desc,
sc->sc_txsdma.dd_desc_paddr,
ATH_TXSTATUS_RING_SIZE);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
ath_edma_setup_txfifo(sc, i);
}
return (0);
}
static int
ath_edma_dma_txteardown(struct ath_softc *sc)
{
int i;
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
ath_edma_free_txfifo(sc, i);
}
ath_descdma_cleanup(sc, &sc->sc_txsdma, NULL);
return (0);
}
/*
* Drain all TXQs, potentially after completing the existing completed
* frames.
*/
static void
ath_edma_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
{
struct ifnet *ifp = sc->sc_ifp;
int i;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
(void) ath_stoptxdma(sc);
/*
* If reset type is noloss, the TX FIFO needs to be serviced
* and those frames need to be handled.
*
* Otherwise, just toss everything in each TX queue.
*/
if (reset_type == ATH_RESET_NOLOSS) {
ath_edma_tx_processq(sc, 0);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ATH_TXQ_LOCK(&sc->sc_txq[i]);
/*
* Free the holding buffer; DMA is now
* stopped.
*/
ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
/*
* Reset the link pointer to NULL; there's
* no frames to chain DMA to.
*/
sc->sc_txq[i].axq_link = NULL;
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
}
}
} else {
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i))
ath_tx_draintxq(sc, &sc->sc_txq[i]);
}
}
/* XXX dump out the TX completion FIFO contents */
/* XXX dump out the frames */
IF_LOCK(&ifp->if_snd);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&ifp->if_snd);
sc->sc_wd_timer = 0;
}
/*
* TX completion tasklet.
*/
static void
ath_edma_tx_proc(void *arg, int npending)
{
struct ath_softc *sc = (struct ath_softc *) arg;
#if 0
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: called, npending=%d\n",
__func__, npending);
#endif
ath_edma_tx_processq(sc, 1);
}
/*
* Process the TX status queue.
*/
static void
ath_edma_tx_processq(struct ath_softc *sc, int dosched)
{
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
struct ath_tx_status ts;
struct ath_txq *txq;
struct ath_buf *bf;
struct ieee80211_node *ni;
int nacked = 0;
int idx;
#ifdef ATH_DEBUG
/* XXX */
uint32_t txstatus[32];
#endif
for (idx = 0; ; idx++) {
bzero(&ts, sizeof(ts));
ATH_TXSTATUS_LOCK(sc);
#ifdef ATH_DEBUG
ath_hal_gettxrawtxdesc(ah, txstatus);
#endif
status = ath_hal_txprocdesc(ah, NULL, (void *) &ts);
ATH_TXSTATUS_UNLOCK(sc);
if (status == HAL_EINPROGRESS)
break;
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_TX_PROC)
if (ts.ts_queue_id != sc->sc_bhalq)
ath_printtxstatbuf(sc, NULL, txstatus, ts.ts_queue_id,
idx, (status == HAL_OK));
#endif
/*
* If there is an error with this descriptor, continue
* processing.
*
* XXX TBD: log some statistics?
*/
if (status == HAL_EIO) {
device_printf(sc->sc_dev, "%s: invalid TX status?\n",
__func__);
break;
}
#if defined(ATH_DEBUG_ALQ) && defined(ATH_DEBUG)
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS))
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
sc->sc_tx_statuslen,
(char *) txstatus);
#endif /* ATH_DEBUG_ALQ */
/*
* At this point we have a valid status descriptor.
* The QID and descriptor ID (which currently isn't set)
* is part of the status.
*
* We then assume that the descriptor in question is the
* -head- of the given QID. Eventually we should verify
* this by using the descriptor ID.
*/
/*
* The beacon queue is not currently a "real" queue.
* Frames aren't pushed onto it and the lock isn't setup.
* So skip it for now; the beacon handling code will
* free and alloc more beacon buffers as appropriate.
*/
if (ts.ts_queue_id == sc->sc_bhalq)
continue;
txq = &sc->sc_txq[ts.ts_queue_id];
ATH_TXQ_LOCK(txq);
bf = ATH_TXQ_FIRST(&txq->fifo);
/*
* Work around the situation where I'm seeing notifications
* for Q1 when no frames are available. That needs to be
* debugged but not by crashing _here_.
*/
if (bf == NULL) {
device_printf(sc->sc_dev, "%s: Q%d: empty?\n",
__func__,
ts.ts_queue_id);
ATH_TXQ_UNLOCK(txq);
continue;
}
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d, bf=%p, start=%d, end=%d\n",
__func__,
ts.ts_queue_id, bf,
!! (bf->bf_flags & ATH_BUF_FIFOPTR),
!! (bf->bf_flags & ATH_BUF_FIFOEND));
/* XXX TODO: actually output debugging info about this */
#if 0
/* XXX assert the buffer/descriptor matches the status descid */
if (ts.ts_desc_id != bf->bf_descid) {
device_printf(sc->sc_dev,
"%s: mismatched descid (qid=%d, tsdescid=%d, "
"bfdescid=%d\n",
__func__,
ts.ts_queue_id,
ts.ts_desc_id,
bf->bf_descid);
}
#endif
/* This removes the buffer and decrements the queue depth */
ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth--;
/*
* If this was the end of a FIFO set, decrement FIFO depth
*/
if (bf->bf_flags & ATH_BUF_FIFOEND)
txq->axq_fifo_depth--;
/*
* If this isn't the final buffer in a FIFO set, mark
* the buffer as busy so it goes onto the holding queue.
*/
if (! (bf->bf_flags & ATH_BUF_FIFOEND))
bf->bf_flags |= ATH_BUF_BUSY;
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: Q%d: FIFO depth is now %d (%d)\n",
__func__,
txq->axq_qnum,
txq->axq_fifo_depth,
txq->fifo.axq_depth);
/* XXX assert FIFO depth >= 0 */
ATH_TXQ_UNLOCK(txq);
/*
* Outside of the TX lock - if the buffer is end
* end buffer in this FIFO, we don't need a holding
* buffer any longer.
*/
if (bf->bf_flags & ATH_BUF_FIFOEND) {
ATH_TXQ_LOCK(txq);
ath_txq_freeholdingbuf(sc, txq);
ATH_TXQ_UNLOCK(txq);
}
/*
* First we need to make sure ts_rate is valid.
*
* Pre-EDMA chips pass the whole TX descriptor to
* the proctxdesc function which will then fill out
* ts_rate based on the ts_finaltsi (final TX index)
* in the TX descriptor. However the TX completion
* FIFO doesn't have this information. So here we
* do a separate HAL call to populate that information.
*
* The same problem exists with ts_longretry.
* The FreeBSD HAL corrects ts_longretry in the HAL layer;
* the AR9380 HAL currently doesn't. So until the HAL
* is imported and this can be added, we correct for it
* here.
*/
/* XXX TODO */
/* XXX faked for now. Ew. */
if (ts.ts_finaltsi < 4) {
ts.ts_rate =
bf->bf_state.bfs_rc[ts.ts_finaltsi].ratecode;
switch (ts.ts_finaltsi) {
case 3: ts.ts_longretry +=
bf->bf_state.bfs_rc[2].tries;
case 2: ts.ts_longretry +=
bf->bf_state.bfs_rc[1].tries;
case 1: ts.ts_longretry +=
bf->bf_state.bfs_rc[0].tries;
}
} else {
device_printf(sc->sc_dev, "%s: finaltsi=%d\n",
__func__,
ts.ts_finaltsi);
ts.ts_rate = bf->bf_state.bfs_rc[0].ratecode;
}
/*
* XXX This is terrible.
*
* Right now, some code uses the TX status that is
* passed in here, but the completion handlers in the
* software TX path also use bf_status.ds_txstat.
* Ew. That should all go away.
*
* XXX It's also possible the rate control completion
* routine is called twice.
*/
memcpy(&bf->bf_status, &ts, sizeof(ts));
ni = bf->bf_node;
/* Update RSSI */
/* XXX duplicate from ath_tx_processq */
if (ni != NULL && ts.ts_status == 0 &&
((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
nacked++;
sc->sc_stats.ast_tx_rssi = ts.ts_rssi;
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
ts.ts_rssi);
}
/* Handle frame completion and rate control update */
ath_tx_process_buf_completion(sc, txq, &ts, bf);
/* bf is invalid at this point */
/*
* Now that there's space in the FIFO, let's push some
* more frames into it.
*/
ATH_TXQ_LOCK(txq);
if (dosched)
ath_edma_tx_fifo_fill(sc, txq);
ATH_TXQ_UNLOCK(txq);
}
sc->sc_wd_timer = 0;
if (idx > 0) {
IF_LOCK(&sc->sc_ifp->if_snd);
sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
IF_UNLOCK(&sc->sc_ifp->if_snd);
}
/* Kick software scheduler */
/*
* XXX It's inefficient to do this if the FIFO queue is full,
* but there's no easy way right now to only populate
* the txq task for _one_ TXQ. This should be fixed.
*/
if (dosched)
ath_tx_swq_kick(sc);
}
static void
ath_edma_attach_comp_func(struct ath_softc *sc)
{
TASK_INIT(&sc->sc_txtask, 0, ath_edma_tx_proc, sc);
}
void
ath_xmit_setup_edma(struct ath_softc *sc)
{
/* Fetch EDMA field and buffer sizes */
(void) ath_hal_gettxdesclen(sc->sc_ah, &sc->sc_tx_desclen);
(void) ath_hal_gettxstatuslen(sc->sc_ah, &sc->sc_tx_statuslen);
(void) ath_hal_getntxmaps(sc->sc_ah, &sc->sc_tx_nmaps);
device_printf(sc->sc_dev, "TX descriptor length: %d\n",
sc->sc_tx_desclen);
device_printf(sc->sc_dev, "TX status length: %d\n",
sc->sc_tx_statuslen);
device_printf(sc->sc_dev, "TX buffers per descriptor: %d\n",
sc->sc_tx_nmaps);
sc->sc_tx.xmit_setup = ath_edma_dma_txsetup;
sc->sc_tx.xmit_teardown = ath_edma_dma_txteardown;
sc->sc_tx.xmit_attach_comp_func = ath_edma_attach_comp_func;
sc->sc_tx.xmit_dma_restart = ath_edma_dma_restart;
sc->sc_tx.xmit_handoff = ath_edma_xmit_handoff;
sc->sc_tx.xmit_drain = ath_edma_tx_drain;
}