freebsd-skq/sys/netinet/ip_mroute.c
Warner Losh d980b05275 Add back missing copyright and license statement. This is identical
to the statement in ip_mroute.h, as well as being the same as what
OpenBSD has done with this file.  It matches the copyright in NetBSD's
1.1 through 1.14 versions of the file as well, which they subsequently
added back.

It appears to have been lost in the 4.4-lite1 import for FreeBSD 2.0,
but where and why I've not investigated further.  OpenBSD had the same
problem.  NetBSD had a copyright notice until Multicast 3.5 was
integrated verbatim back in 1995.  This appears to be the version that
made it into 4.4-lite1.

Approved by: re (scottl)
MFC after: 3 days
2005-06-23 18:42:58 +00:00

3470 lines
89 KiB
C

/*-
* Copyright (c) 1989 Stephen Deering
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Stephen Deering of Stanford University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
*/
/*
* IP multicast forwarding procedures
*
* Written by David Waitzman, BBN Labs, August 1988.
* Modified by Steve Deering, Stanford, February 1989.
* Modified by Mark J. Steiglitz, Stanford, May, 1991
* Modified by Van Jacobson, LBL, January 1993
* Modified by Ajit Thyagarajan, PARC, August 1993
* Modified by Bill Fenner, PARC, April 1995
* Modified by Ahmed Helmy, SGI, June 1996
* Modified by George Edmond Eddy (Rusty), ISI, February 1998
* Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
* Modified by Hitoshi Asaeda, WIDE, August 2000
* Modified by Pavlin Radoslavov, ICSI, October 2002
*
* MROUTING Revision: 3.5
* and PIM-SMv2 and PIM-DM support, advanced API support,
* bandwidth metering and signaling
*
* $FreeBSD$
*/
#include "opt_mac.h"
#include "opt_mrouting.h"
#ifdef PIM
#define _PIM_VT 1
#endif
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <net/if.h>
#include <net/netisr.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/igmp.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_encap.h>
#include <netinet/ip_mroute.h>
#include <netinet/ip_var.h>
#ifdef PIM
#include <netinet/pim.h>
#include <netinet/pim_var.h>
#endif
#include <netinet/udp.h>
#include <machine/in_cksum.h>
/*
* Control debugging code for rsvp and multicast routing code.
* Can only set them with the debugger.
*/
static u_int rsvpdebug; /* non-zero enables debugging */
static u_int mrtdebug; /* any set of the flags below */
#define DEBUG_MFC 0x02
#define DEBUG_FORWARD 0x04
#define DEBUG_EXPIRE 0x08
#define DEBUG_XMIT 0x10
#define DEBUG_PIM 0x20
#define VIFI_INVALID ((vifi_t) -1)
#define M_HASCL(m) ((m)->m_flags & M_EXT)
static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
/*
* Locking. We use two locks: one for the virtual interface table and
* one for the forwarding table. These locks may be nested in which case
* the VIF lock must always be taken first. Note that each lock is used
* to cover not only the specific data structure but also related data
* structures. It may be better to add more fine-grained locking later;
* it's not clear how performance-critical this code is.
*/
static struct mrtstat mrtstat;
SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
&mrtstat, mrtstat,
"Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
static struct mfc *mfctable[MFCTBLSIZ];
SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
&mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
"Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
static struct mtx mfc_mtx;
#define MFC_LOCK() mtx_lock(&mfc_mtx)
#define MFC_UNLOCK() mtx_unlock(&mfc_mtx)
#define MFC_LOCK_ASSERT() do { \
mtx_assert(&mfc_mtx, MA_OWNED); \
NET_ASSERT_GIANT(); \
} while (0)
#define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
#define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx)
static struct vif viftable[MAXVIFS];
SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
&viftable, sizeof(viftable), "S,vif[MAXVIFS]",
"Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
static struct mtx vif_mtx;
#define VIF_LOCK() mtx_lock(&vif_mtx)
#define VIF_UNLOCK() mtx_unlock(&vif_mtx)
#define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED)
#define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
#define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx)
static u_char nexpire[MFCTBLSIZ];
static struct callout expire_upcalls_ch;
#define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
#define UPCALL_EXPIRE 6 /* number of timeouts */
/*
* Define the token bucket filter structures
* tbftable -> each vif has one of these for storing info
*/
static struct tbf tbftable[MAXVIFS];
#define TBF_REPROCESS (hz / 100) /* 100x / second */
/*
* 'Interfaces' associated with decapsulator (so we can tell
* packets that went through it from ones that get reflected
* by a broken gateway). These interfaces are never linked into
* the system ifnet list & no routes point to them. I.e., packets
* can't be sent this way. They only exist as a placeholder for
* multicast source verification.
*/
static struct ifnet multicast_decap_if[MAXVIFS];
#define ENCAP_TTL 64
#define ENCAP_PROTO IPPROTO_IPIP /* 4 */
/* prototype IP hdr for encapsulated packets */
static struct ip multicast_encap_iphdr = {
#if BYTE_ORDER == LITTLE_ENDIAN
sizeof(struct ip) >> 2, IPVERSION,
#else
IPVERSION, sizeof(struct ip) >> 2,
#endif
0, /* tos */
sizeof(struct ip), /* total length */
0, /* id */
0, /* frag offset */
ENCAP_TTL, ENCAP_PROTO,
0, /* checksum */
};
/*
* Bandwidth meter variables and constants
*/
static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
/*
* Pending timeouts are stored in a hash table, the key being the
* expiration time. Periodically, the entries are analysed and processed.
*/
#define BW_METER_BUCKETS 1024
static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
static struct callout bw_meter_ch;
#define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
/*
* Pending upcalls are stored in a vector which is flushed when
* full, or periodically
*/
static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
static u_int bw_upcalls_n; /* # of pending upcalls */
static struct callout bw_upcalls_ch;
#define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
#ifdef PIM
static struct pimstat pimstat;
SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
&pimstat, pimstat,
"PIM Statistics (struct pimstat, netinet/pim_var.h)");
/*
* Note: the PIM Register encapsulation adds the following in front of a
* data packet:
*
* struct pim_encap_hdr {
* struct ip ip;
* struct pim_encap_pimhdr pim;
* }
*
*/
struct pim_encap_pimhdr {
struct pim pim;
uint32_t flags;
};
static struct ip pim_encap_iphdr = {
#if BYTE_ORDER == LITTLE_ENDIAN
sizeof(struct ip) >> 2,
IPVERSION,
#else
IPVERSION,
sizeof(struct ip) >> 2,
#endif
0, /* tos */
sizeof(struct ip), /* total length */
0, /* id */
0, /* frag offset */
ENCAP_TTL,
IPPROTO_PIM,
0, /* checksum */
};
static struct pim_encap_pimhdr pim_encap_pimhdr = {
{
PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
0, /* reserved */
0, /* checksum */
},
0 /* flags */
};
static struct ifnet multicast_register_if;
static vifi_t reg_vif_num = VIFI_INVALID;
#endif /* PIM */
/*
* Private variables.
*/
static vifi_t numvifs;
static const struct encaptab *encap_cookie;
/*
* one-back cache used by mroute_encapcheck to locate a tunnel's vif
* given a datagram's src ip address.
*/
static u_long last_encap_src;
static struct vif *last_encap_vif;
/*
* Callout for queue processing.
*/
static struct callout tbf_reprocess_ch;
static u_long X_ip_mcast_src(int vifi);
static int X_ip_mforward(struct ip *ip, struct ifnet *ifp,
struct mbuf *m, struct ip_moptions *imo);
static int X_ip_mrouter_done(void);
static int X_ip_mrouter_get(struct socket *so, struct sockopt *m);
static int X_ip_mrouter_set(struct socket *so, struct sockopt *m);
static int X_legal_vif_num(int vif);
static int X_mrt_ioctl(int cmd, caddr_t data);
static int get_sg_cnt(struct sioc_sg_req *);
static int get_vif_cnt(struct sioc_vif_req *);
static int ip_mrouter_init(struct socket *, int);
static int add_vif(struct vifctl *);
static int del_vif(vifi_t);
static int add_mfc(struct mfcctl2 *);
static int del_mfc(struct mfcctl2 *);
static int set_api_config(uint32_t *); /* chose API capabilities */
static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
static int set_assert(int);
static void expire_upcalls(void *);
static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
static void phyint_send(struct ip *, struct vif *, struct mbuf *);
static void encap_send(struct ip *, struct vif *, struct mbuf *);
static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
static void tbf_queue(struct vif *, struct mbuf *);
static void tbf_process_q(struct vif *);
static void tbf_reprocess_q(void *);
static int tbf_dq_sel(struct vif *, struct ip *);
static void tbf_send_packet(struct vif *, struct mbuf *);
static void tbf_update_tokens(struct vif *);
static int priority(struct vif *, struct ip *);
/*
* Bandwidth monitoring
*/
static void free_bw_list(struct bw_meter *list);
static int add_bw_upcall(struct bw_upcall *);
static int del_bw_upcall(struct bw_upcall *);
static void bw_meter_receive_packet(struct bw_meter *x, int plen,
struct timeval *nowp);
static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
static void bw_upcalls_send(void);
static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
static void unschedule_bw_meter(struct bw_meter *x);
static void bw_meter_process(void);
static void expire_bw_upcalls_send(void *);
static void expire_bw_meter_process(void *);
#ifdef PIM
static int pim_register_send(struct ip *, struct vif *,
struct mbuf *, struct mfc *);
static int pim_register_send_rp(struct ip *, struct vif *,
struct mbuf *, struct mfc *);
static int pim_register_send_upcall(struct ip *, struct vif *,
struct mbuf *, struct mfc *);
static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
#endif
/*
* whether or not special PIM assert processing is enabled.
*/
static int pim_assert;
/*
* Rate limit for assert notification messages, in usec
*/
#define ASSERT_MSG_TIME 3000000
/*
* Kernel multicast routing API capabilities and setup.
* If more API capabilities are added to the kernel, they should be
* recorded in `mrt_api_support'.
*/
static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
MRT_MFC_FLAGS_BORDER_VIF |
MRT_MFC_RP |
MRT_MFC_BW_UPCALL);
static uint32_t mrt_api_config = 0;
/*
* Hash function for a source, group entry
*/
#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
((g) >> 20) ^ ((g) >> 10) ^ (g))
/*
* Find a route for a given origin IP address and Multicast group address
* Type of service parameter to be added in the future!!!
* Statistics are updated by the caller if needed
* (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
*/
static struct mfc *
mfc_find(in_addr_t o, in_addr_t g)
{
struct mfc *rt;
MFC_LOCK_ASSERT();
for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
if ((rt->mfc_origin.s_addr == o) &&
(rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
break;
return rt;
}
/*
* Macros to compute elapsed time efficiently
* Borrowed from Van Jacobson's scheduling code
*/
#define TV_DELTA(a, b, delta) { \
int xxs; \
delta = (a).tv_usec - (b).tv_usec; \
if ((xxs = (a).tv_sec - (b).tv_sec)) { \
switch (xxs) { \
case 2: \
delta += 1000000; \
/* FALLTHROUGH */ \
case 1: \
delta += 1000000; \
break; \
default: \
delta += (1000000 * xxs); \
} \
} \
}
#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
(a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
/*
* Handle MRT setsockopt commands to modify the multicast routing tables.
*/
static int
X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
{
int error, optval;
vifi_t vifi;
struct vifctl vifc;
struct mfcctl2 mfc;
struct bw_upcall bw_upcall;
uint32_t i;
if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
return EPERM;
error = 0;
switch (sopt->sopt_name) {
case MRT_INIT:
error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
if (error)
break;
error = ip_mrouter_init(so, optval);
break;
case MRT_DONE:
error = ip_mrouter_done();
break;
case MRT_ADD_VIF:
error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
if (error)
break;
error = add_vif(&vifc);
break;
case MRT_DEL_VIF:
error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
if (error)
break;
error = del_vif(vifi);
break;
case MRT_ADD_MFC:
case MRT_DEL_MFC:
/*
* select data size depending on API version.
*/
if (sopt->sopt_name == MRT_ADD_MFC &&
mrt_api_config & MRT_API_FLAGS_ALL) {
error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
sizeof(struct mfcctl2));
} else {
error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
sizeof(struct mfcctl));
bzero((caddr_t)&mfc + sizeof(struct mfcctl),
sizeof(mfc) - sizeof(struct mfcctl));
}
if (error)
break;
if (sopt->sopt_name == MRT_ADD_MFC)
error = add_mfc(&mfc);
else
error = del_mfc(&mfc);
break;
case MRT_ASSERT:
error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
if (error)
break;
set_assert(optval);
break;
case MRT_API_CONFIG:
error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
if (!error)
error = set_api_config(&i);
if (!error)
error = sooptcopyout(sopt, &i, sizeof i);
break;
case MRT_ADD_BW_UPCALL:
case MRT_DEL_BW_UPCALL:
error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
sizeof bw_upcall);
if (error)
break;
if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
error = add_bw_upcall(&bw_upcall);
else
error = del_bw_upcall(&bw_upcall);
break;
default:
error = EOPNOTSUPP;
break;
}
return error;
}
/*
* Handle MRT getsockopt commands
*/
static int
X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
{
int error;
static int version = 0x0305; /* !!! why is this here? XXX */
switch (sopt->sopt_name) {
case MRT_VERSION:
error = sooptcopyout(sopt, &version, sizeof version);
break;
case MRT_ASSERT:
error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
break;
case MRT_API_SUPPORT:
error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
break;
case MRT_API_CONFIG:
error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
break;
default:
error = EOPNOTSUPP;
break;
}
return error;
}
/*
* Handle ioctl commands to obtain information from the cache
*/
static int
X_mrt_ioctl(int cmd, caddr_t data)
{
int error = 0;
/*
* Currently the only function calling this ioctl routine is rtioctl().
* Typically, only root can create the raw socket in order to execute
* this ioctl method, however the request might be coming from a prison
*/
error = suser(curthread);
if (error)
return (error);
switch (cmd) {
case (SIOCGETVIFCNT):
error = get_vif_cnt((struct sioc_vif_req *)data);
break;
case (SIOCGETSGCNT):
error = get_sg_cnt((struct sioc_sg_req *)data);
break;
default:
error = EINVAL;
break;
}
return error;
}
/*
* returns the packet, byte, rpf-failure count for the source group provided
*/
static int
get_sg_cnt(struct sioc_sg_req *req)
{
struct mfc *rt;
MFC_LOCK();
rt = mfc_find(req->src.s_addr, req->grp.s_addr);
if (rt == NULL) {
MFC_UNLOCK();
req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
return EADDRNOTAVAIL;
}
req->pktcnt = rt->mfc_pkt_cnt;
req->bytecnt = rt->mfc_byte_cnt;
req->wrong_if = rt->mfc_wrong_if;
MFC_UNLOCK();
return 0;
}
/*
* returns the input and output packet and byte counts on the vif provided
*/
static int
get_vif_cnt(struct sioc_vif_req *req)
{
vifi_t vifi = req->vifi;
VIF_LOCK();
if (vifi >= numvifs) {
VIF_UNLOCK();
return EINVAL;
}
req->icount = viftable[vifi].v_pkt_in;
req->ocount = viftable[vifi].v_pkt_out;
req->ibytes = viftable[vifi].v_bytes_in;
req->obytes = viftable[vifi].v_bytes_out;
VIF_UNLOCK();
return 0;
}
static void
ip_mrouter_reset(void)
{
bzero((caddr_t)mfctable, sizeof(mfctable));
bzero((caddr_t)nexpire, sizeof(nexpire));
pim_assert = 0;
mrt_api_config = 0;
callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
bw_upcalls_n = 0;
bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE);
}
static struct mtx mrouter_mtx; /* used to synch init/done work */
/*
* Enable multicast routing
*/
static int
ip_mrouter_init(struct socket *so, int version)
{
if (mrtdebug)
log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
return EOPNOTSUPP;
if (version != 1)
return ENOPROTOOPT;
mtx_lock(&mrouter_mtx);
if (ip_mrouter != NULL) {
mtx_unlock(&mrouter_mtx);
return EADDRINUSE;
}
callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
expire_bw_upcalls_send, NULL);
callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
ip_mrouter = so;
mtx_unlock(&mrouter_mtx);
if (mrtdebug)
log(LOG_DEBUG, "ip_mrouter_init\n");
return 0;
}
/*
* Disable multicast routing
*/
static int
X_ip_mrouter_done(void)
{
vifi_t vifi;
int i;
struct ifnet *ifp;
struct ifreq ifr;
struct mfc *rt;
struct rtdetq *rte;
mtx_lock(&mrouter_mtx);
if (ip_mrouter == NULL) {
mtx_unlock(&mrouter_mtx);
return EINVAL;
}
/*
* Detach/disable hooks to the reset of the system.
*/
ip_mrouter = NULL;
mrt_api_config = 0;
VIF_LOCK();
if (encap_cookie) {
const struct encaptab *c = encap_cookie;
encap_cookie = NULL;
encap_detach(c);
}
VIF_UNLOCK();
callout_stop(&tbf_reprocess_ch);
VIF_LOCK();
/*
* For each phyint in use, disable promiscuous reception of all IP
* multicasts.
*/
for (vifi = 0; vifi < numvifs; vifi++) {
if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
!(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
so->sin_len = sizeof(struct sockaddr_in);
so->sin_family = AF_INET;
so->sin_addr.s_addr = INADDR_ANY;
ifp = viftable[vifi].v_ifp;
if_allmulti(ifp, 0);
}
}
bzero((caddr_t)tbftable, sizeof(tbftable));
bzero((caddr_t)viftable, sizeof(viftable));
numvifs = 0;
pim_assert = 0;
VIF_UNLOCK();
/*
* Free all multicast forwarding cache entries.
*/
callout_stop(&expire_upcalls_ch);
callout_stop(&bw_upcalls_ch);
callout_stop(&bw_meter_ch);
MFC_LOCK();
for (i = 0; i < MFCTBLSIZ; i++) {
for (rt = mfctable[i]; rt != NULL; ) {
struct mfc *nr = rt->mfc_next;
for (rte = rt->mfc_stall; rte != NULL; ) {
struct rtdetq *n = rte->next;
m_freem(rte->m);
free(rte, M_MRTABLE);
rte = n;
}
free_bw_list(rt->mfc_bw_meter);
free(rt, M_MRTABLE);
rt = nr;
}
}
bzero((caddr_t)mfctable, sizeof(mfctable));
bzero((caddr_t)nexpire, sizeof(nexpire));
bw_upcalls_n = 0;
bzero(bw_meter_timers, sizeof(bw_meter_timers));
MFC_UNLOCK();
/*
* Reset de-encapsulation cache
*/
last_encap_src = INADDR_ANY;
last_encap_vif = NULL;
#ifdef PIM
reg_vif_num = VIFI_INVALID;
#endif
mtx_unlock(&mrouter_mtx);
if (mrtdebug)
log(LOG_DEBUG, "ip_mrouter_done\n");
return 0;
}
/*
* Set PIM assert processing global
*/
static int
set_assert(int i)
{
if ((i != 1) && (i != 0))
return EINVAL;
pim_assert = i;
return 0;
}
/*
* Configure API capabilities
*/
int
set_api_config(uint32_t *apival)
{
int i;
/*
* We can set the API capabilities only if it is the first operation
* after MRT_INIT. I.e.:
* - there are no vifs installed
* - pim_assert is not enabled
* - the MFC table is empty
*/
if (numvifs > 0) {
*apival = 0;
return EPERM;
}
if (pim_assert) {
*apival = 0;
return EPERM;
}
for (i = 0; i < MFCTBLSIZ; i++) {
if (mfctable[i] != NULL) {
*apival = 0;
return EPERM;
}
}
mrt_api_config = *apival & mrt_api_support;
*apival = mrt_api_config;
return 0;
}
/*
* Decide if a packet is from a tunnelled peer.
* Return 0 if not, 64 if so. XXX yuck.. 64 ???
*/
static int
mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
{
struct ip *ip = mtod(m, struct ip *);
int hlen = ip->ip_hl << 2;
/*
* don't claim the packet if it's not to a multicast destination or if
* we don't have an encapsulating tunnel with the source.
* Note: This code assumes that the remote site IP address
* uniquely identifies the tunnel (i.e., that this site has
* at most one tunnel with the remote site).
*/
if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
return 0;
if (ip->ip_src.s_addr != last_encap_src) {
struct vif *vifp = viftable;
struct vif *vife = vifp + numvifs;
last_encap_src = ip->ip_src.s_addr;
last_encap_vif = NULL;
for ( ; vifp < vife; ++vifp)
if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
last_encap_vif = vifp;
break;
}
}
if (last_encap_vif == NULL) {
last_encap_src = INADDR_ANY;
return 0;
}
return 64;
}
/*
* De-encapsulate a packet and feed it back through ip input (this
* routine is called whenever IP gets a packet that mroute_encap_func()
* claimed).
*/
static void
mroute_encap_input(struct mbuf *m, int off)
{
struct ip *ip = mtod(m, struct ip *);
int hlen = ip->ip_hl << 2;
if (hlen > sizeof(struct ip))
ip_stripoptions(m, (struct mbuf *) 0);
m->m_data += sizeof(struct ip);
m->m_len -= sizeof(struct ip);
m->m_pkthdr.len -= sizeof(struct ip);
m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
netisr_queue(NETISR_IP, m); /* mbuf is free'd on failure. */
/*
* normally we would need a "schednetisr(NETISR_IP)"
* here but we were called by ip_input and it is going
* to loop back & try to dequeue the packet we just
* queued as soon as we return so we avoid the
* unnecessary software interrrupt.
*
* XXX
* This no longer holds - we may have direct-dispatched the packet,
* or there may be a queue processing limit.
*/
}
extern struct domain inetdomain;
static struct protosw mroute_encap_protosw =
{ SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
mroute_encap_input, 0, 0, rip_ctloutput,
0,
0, 0, 0, 0,
&rip_usrreqs
};
/*
* Add a vif to the vif table
*/
static int
add_vif(struct vifctl *vifcp)
{
struct vif *vifp = viftable + vifcp->vifc_vifi;
struct sockaddr_in sin = {sizeof sin, AF_INET};
struct ifaddr *ifa;
struct ifnet *ifp;
int error;
struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
VIF_LOCK();
if (vifcp->vifc_vifi >= MAXVIFS) {
VIF_UNLOCK();
return EINVAL;
}
if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
VIF_UNLOCK();
return EADDRINUSE;
}
if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
VIF_UNLOCK();
return EADDRNOTAVAIL;
}
/* Find the interface with an address in AF_INET family */
#ifdef PIM
if (vifcp->vifc_flags & VIFF_REGISTER) {
/*
* XXX: Because VIFF_REGISTER does not really need a valid
* local interface (e.g. it could be 127.0.0.2), we don't
* check its address.
*/
ifp = NULL;
} else
#endif
{
sin.sin_addr = vifcp->vifc_lcl_addr;
ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
if (ifa == NULL) {
VIF_UNLOCK();
return EADDRNOTAVAIL;
}
ifp = ifa->ifa_ifp;
}
if (vifcp->vifc_flags & VIFF_TUNNEL) {
if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
/*
* An encapsulating tunnel is wanted. Tell
* mroute_encap_input() to start paying attention
* to encapsulated packets.
*/
if (encap_cookie == NULL) {
int i;
encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
mroute_encapcheck,
(struct protosw *)&mroute_encap_protosw, NULL);
if (encap_cookie == NULL) {
printf("ip_mroute: unable to attach encap\n");
VIF_UNLOCK();
return EIO; /* XXX */
}
for (i = 0; i < MAXVIFS; ++i) {
if_initname(&multicast_decap_if[i], "mdecap", i);
}
}
/*
* Set interface to fake encapsulator interface
*/
ifp = &multicast_decap_if[vifcp->vifc_vifi];
/*
* Prepare cached route entry
*/
bzero(&vifp->v_route, sizeof(vifp->v_route));
} else {
log(LOG_ERR, "source routed tunnels not supported\n");
VIF_UNLOCK();
return EOPNOTSUPP;
}
#ifdef PIM
} else if (vifcp->vifc_flags & VIFF_REGISTER) {
ifp = &multicast_register_if;
if (mrtdebug)
log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
(void *)&multicast_register_if);
if (reg_vif_num == VIFI_INVALID) {
if_initname(&multicast_register_if, "register_vif", 0);
multicast_register_if.if_flags = IFF_LOOPBACK;
bzero(&vifp->v_route, sizeof(vifp->v_route));
reg_vif_num = vifcp->vifc_vifi;
}
#endif
} else { /* Make sure the interface supports multicast */
if ((ifp->if_flags & IFF_MULTICAST) == 0) {
VIF_UNLOCK();
return EOPNOTSUPP;
}
/* Enable promiscuous reception of all IP multicasts from the if */
error = if_allmulti(ifp, 1);
if (error) {
VIF_UNLOCK();
return error;
}
}
/* define parameters for the tbf structure */
vifp->v_tbf = v_tbf;
GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
vifp->v_tbf->tbf_n_tok = 0;
vifp->v_tbf->tbf_q_len = 0;
vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
vifp->v_flags = vifcp->vifc_flags;
vifp->v_threshold = vifcp->vifc_threshold;
vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
vifp->v_ifp = ifp;
/* scaling up here allows division by 1024 in critical code */
vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
vifp->v_rsvp_on = 0;
vifp->v_rsvpd = NULL;
/* initialize per vif pkt counters */
vifp->v_pkt_in = 0;
vifp->v_pkt_out = 0;
vifp->v_bytes_in = 0;
vifp->v_bytes_out = 0;
/* Adjust numvifs up if the vifi is higher than numvifs */
if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
VIF_UNLOCK();
if (mrtdebug)
log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
vifcp->vifc_vifi,
(u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
(vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
(u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
vifcp->vifc_threshold,
vifcp->vifc_rate_limit);
return 0;
}
/*
* Delete a vif from the vif table
*/
static int
del_vif(vifi_t vifi)
{
struct vif *vifp;
VIF_LOCK();
if (vifi >= numvifs) {
VIF_UNLOCK();
return EINVAL;
}
vifp = &viftable[vifi];
if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
VIF_UNLOCK();
return EADDRNOTAVAIL;
}
if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
if_allmulti(vifp->v_ifp, 0);
if (vifp == last_encap_vif) {
last_encap_vif = NULL;
last_encap_src = INADDR_ANY;
}
/*
* Free packets queued at the interface
*/
while (vifp->v_tbf->tbf_q) {
struct mbuf *m = vifp->v_tbf->tbf_q;
vifp->v_tbf->tbf_q = m->m_act;
m_freem(m);
}
#ifdef PIM
if (vifp->v_flags & VIFF_REGISTER)
reg_vif_num = VIFI_INVALID;
#endif
bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
bzero((caddr_t)vifp, sizeof (*vifp));
if (mrtdebug)
log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
/* Adjust numvifs down */
for (vifi = numvifs; vifi > 0; vifi--)
if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
break;
numvifs = vifi;
VIF_UNLOCK();
return 0;
}
/*
* update an mfc entry without resetting counters and S,G addresses.
*/
static void
update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
{
int i;
rt->mfc_parent = mfccp->mfcc_parent;
for (i = 0; i < numvifs; i++) {
rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
MRT_MFC_FLAGS_ALL;
}
/* set the RP address */
if (mrt_api_config & MRT_MFC_RP)
rt->mfc_rp = mfccp->mfcc_rp;
else
rt->mfc_rp.s_addr = INADDR_ANY;
}
/*
* fully initialize an mfc entry from the parameter.
*/
static void
init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
{
rt->mfc_origin = mfccp->mfcc_origin;
rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
update_mfc_params(rt, mfccp);
/* initialize pkt counters per src-grp */
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
}
/*
* Add an mfc entry
*/
static int
add_mfc(struct mfcctl2 *mfccp)
{
struct mfc *rt;
u_long hash;
struct rtdetq *rte;
u_short nstl;
VIF_LOCK();
MFC_LOCK();
rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
/* If an entry already exists, just update the fields */
if (rt) {
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
(u_long)ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent);
update_mfc_params(rt, mfccp);
MFC_UNLOCK();
VIF_UNLOCK();
return 0;
}
/*
* Find the entry for which the upcall was made and update
*/
hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
(rt->mfc_stall != NULL)) {
if (nstl++)
log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
"multiple kernel entries",
(u_long)ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent, (void *)rt->mfc_stall);
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
(u_long)ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent, (void *)rt->mfc_stall);
init_mfc_params(rt, mfccp);
rt->mfc_expire = 0; /* Don't clean this guy up */
nexpire[hash]--;
/* free packets Qed at the end of this entry */
for (rte = rt->mfc_stall; rte != NULL; ) {
struct rtdetq *n = rte->next;
ip_mdq(rte->m, rte->ifp, rt, -1);
m_freem(rte->m);
free(rte, M_MRTABLE);
rte = n;
}
rt->mfc_stall = NULL;
}
}
/*
* It is possible that an entry is being inserted without an upcall
*/
if (nstl == 0) {
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent);
for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
(rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
init_mfc_params(rt, mfccp);
if (rt->mfc_expire)
nexpire[hash]--;
rt->mfc_expire = 0;
break; /* XXX */
}
}
if (rt == NULL) { /* no upcall, so make a new entry */
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
if (rt == NULL) {
MFC_UNLOCK();
VIF_UNLOCK();
return ENOBUFS;
}
init_mfc_params(rt, mfccp);
rt->mfc_expire = 0;
rt->mfc_stall = NULL;
rt->mfc_bw_meter = NULL;
/* insert new entry at head of hash chain */
rt->mfc_next = mfctable[hash];
mfctable[hash] = rt;
}
}
MFC_UNLOCK();
VIF_UNLOCK();
return 0;
}
/*
* Delete an mfc entry
*/
static int
del_mfc(struct mfcctl2 *mfccp)
{
struct in_addr origin;
struct in_addr mcastgrp;
struct mfc *rt;
struct mfc **nptr;
u_long hash;
struct bw_meter *list;
origin = mfccp->mfcc_origin;
mcastgrp = mfccp->mfcc_mcastgrp;
if (mrtdebug & DEBUG_MFC)
log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
(u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
MFC_LOCK();
hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
if (origin.s_addr == rt->mfc_origin.s_addr &&
mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
rt->mfc_stall == NULL)
break;
if (rt == NULL) {
MFC_UNLOCK();
return EADDRNOTAVAIL;
}
*nptr = rt->mfc_next;
/*
* free the bw_meter entries
*/
list = rt->mfc_bw_meter;
rt->mfc_bw_meter = NULL;
free(rt, M_MRTABLE);
free_bw_list(list);
MFC_UNLOCK();
return 0;
}
/*
* Send a message to mrouted on the multicast routing socket
*/
static int
socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
{
if (s) {
SOCKBUF_LOCK(&s->so_rcv);
if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
NULL) != 0) {
sorwakeup_locked(s);
return 0;
}
SOCKBUF_UNLOCK(&s->so_rcv);
}
m_freem(mm);
return -1;
}
/*
* IP multicast forwarding function. This function assumes that the packet
* pointed to by "ip" has arrived on (or is about to be sent to) the interface
* pointed to by "ifp", and the packet is to be relayed to other networks
* that have members of the packet's destination IP multicast group.
*
* The packet is returned unscathed to the caller, unless it is
* erroneous, in which case a non-zero return value tells the caller to
* discard it.
*/
#define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
static int
X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
struct ip_moptions *imo)
{
struct mfc *rt;
int error;
vifi_t vifi;
if (mrtdebug & DEBUG_FORWARD)
log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
(u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
(void *)ifp);
if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
/*
* Packet arrived via a physical interface or
* an encapsulated tunnel or a register_vif.
*/
} else {
/*
* Packet arrived through a source-route tunnel.
* Source-route tunnels are no longer supported.
*/
static int last_log;
if (last_log != time_second) {
last_log = time_second;
log(LOG_ERR,
"ip_mforward: received source-routed packet from %lx\n",
(u_long)ntohl(ip->ip_src.s_addr));
}
return 1;
}
VIF_LOCK();
MFC_LOCK();
if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
if (ip->ip_ttl < 255)
ip->ip_ttl++; /* compensate for -1 in *_send routines */
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
struct vif *vifp = viftable + vifi;
printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
vifi,
(vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
vifp->v_ifp->if_xname);
}
error = ip_mdq(m, ifp, NULL, vifi);
MFC_UNLOCK();
VIF_UNLOCK();
return error;
}
if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
(long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
if (!imo)
printf("In fact, no options were specified at all\n");
}
/*
* Don't forward a packet with time-to-live of zero or one,
* or a packet destined to a local-only group.
*/
if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
MFC_UNLOCK();
VIF_UNLOCK();
return 0;
}
/*
* Determine forwarding vifs from the forwarding cache table
*/
++mrtstat.mrts_mfc_lookups;
rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
/* Entry exists, so forward if necessary */
if (rt != NULL) {
error = ip_mdq(m, ifp, rt, -1);
MFC_UNLOCK();
VIF_UNLOCK();
return error;
} else {
/*
* If we don't have a route for packet's origin,
* Make a copy of the packet & send message to routing daemon
*/
struct mbuf *mb0;
struct rtdetq *rte;
u_long hash;
int hlen = ip->ip_hl << 2;
++mrtstat.mrts_mfc_misses;
mrtstat.mrts_no_route++;
if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
(u_long)ntohl(ip->ip_src.s_addr),
(u_long)ntohl(ip->ip_dst.s_addr));
/*
* Allocate mbufs early so that we don't do extra work if we are
* just going to fail anyway. Make sure to pullup the header so
* that other people can't step on it.
*/
rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
if (rte == NULL) {
MFC_UNLOCK();
VIF_UNLOCK();
return ENOBUFS;
}
mb0 = m_copypacket(m, M_DONTWAIT);
if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
mb0 = m_pullup(mb0, hlen);
if (mb0 == NULL) {
free(rte, M_MRTABLE);
MFC_UNLOCK();
VIF_UNLOCK();
return ENOBUFS;
}
/* is there an upcall waiting for this flow ? */
hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
(ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
(rt->mfc_stall != NULL))
break;
}
if (rt == NULL) {
int i;
struct igmpmsg *im;
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
struct mbuf *mm;
/*
* Locate the vifi for the incoming interface for this packet.
* If none found, drop packet.
*/
for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
;
if (vifi >= numvifs) /* vif not found, drop packet */
goto non_fatal;
/* no upcall, so make a new entry */
rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
if (rt == NULL)
goto fail;
/* Make a copy of the header to send to the user level process */
mm = m_copy(mb0, 0, hlen);
if (mm == NULL)
goto fail1;
/*
* Send message to routing daemon to install
* a route into the kernel table
*/
im = mtod(mm, struct igmpmsg *);
im->im_msgtype = IGMPMSG_NOCACHE;
im->im_mbz = 0;
im->im_vif = vifi;
mrtstat.mrts_upcalls++;
k_igmpsrc.sin_addr = ip->ip_src;
if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
++mrtstat.mrts_upq_sockfull;
fail1:
free(rt, M_MRTABLE);
fail:
free(rte, M_MRTABLE);
m_freem(mb0);
MFC_UNLOCK();
VIF_UNLOCK();
return ENOBUFS;
}
/* insert new entry at head of hash chain */
rt->mfc_origin.s_addr = ip->ip_src.s_addr;
rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
rt->mfc_expire = UPCALL_EXPIRE;
nexpire[hash]++;
for (i = 0; i < numvifs; i++) {
rt->mfc_ttls[i] = 0;
rt->mfc_flags[i] = 0;
}
rt->mfc_parent = -1;
rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
rt->mfc_bw_meter = NULL;
/* link into table */
rt->mfc_next = mfctable[hash];
mfctable[hash] = rt;
rt->mfc_stall = rte;
} else {
/* determine if q has overflowed */
int npkts = 0;
struct rtdetq **p;
/*
* XXX ouch! we need to append to the list, but we
* only have a pointer to the front, so we have to
* scan the entire list every time.
*/
for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
npkts++;
if (npkts > MAX_UPQ) {
mrtstat.mrts_upq_ovflw++;
non_fatal:
free(rte, M_MRTABLE);
m_freem(mb0);
MFC_UNLOCK();
VIF_UNLOCK();
return 0;
}
/* Add this entry to the end of the queue */
*p = rte;
}
rte->m = mb0;
rte->ifp = ifp;
rte->next = NULL;
MFC_UNLOCK();
VIF_UNLOCK();
return 0;
}
}
/*
* Clean up the cache entry if upcall is not serviced
*/
static void
expire_upcalls(void *unused)
{
struct rtdetq *rte;
struct mfc *mfc, **nptr;
int i;
MFC_LOCK();
for (i = 0; i < MFCTBLSIZ; i++) {
if (nexpire[i] == 0)
continue;
nptr = &mfctable[i];
for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
/*
* Skip real cache entries
* Make sure it wasn't marked to not expire (shouldn't happen)
* If it expires now
*/
if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
--mfc->mfc_expire == 0) {
if (mrtdebug & DEBUG_EXPIRE)
log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
(u_long)ntohl(mfc->mfc_origin.s_addr),
(u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
/*
* drop all the packets
* free the mbuf with the pkt, if, timing info
*/
for (rte = mfc->mfc_stall; rte; ) {
struct rtdetq *n = rte->next;
m_freem(rte->m);
free(rte, M_MRTABLE);
rte = n;
}
++mrtstat.mrts_cache_cleanups;
nexpire[i]--;
/*
* free the bw_meter entries
*/
while (mfc->mfc_bw_meter != NULL) {
struct bw_meter *x = mfc->mfc_bw_meter;
mfc->mfc_bw_meter = x->bm_mfc_next;
free(x, M_BWMETER);
}
*nptr = mfc->mfc_next;
free(mfc, M_MRTABLE);
} else {
nptr = &mfc->mfc_next;
}
}
}
MFC_UNLOCK();
callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
}
/*
* Packet forwarding routine once entry in the cache is made
*/
static int
ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
{
struct ip *ip = mtod(m, struct ip *);
vifi_t vifi;
int plen = ip->ip_len;
VIF_LOCK_ASSERT();
/*
* Macro to send packet on vif. Since RSVP packets don't get counted on
* input, they shouldn't get counted on output, so statistics keeping is
* separate.
*/
#define MC_SEND(ip,vifp,m) { \
if ((vifp)->v_flags & VIFF_TUNNEL) \
encap_send((ip), (vifp), (m)); \
else \
phyint_send((ip), (vifp), (m)); \
}
/*
* If xmt_vif is not -1, send on only the requested vif.
*
* (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
*/
if (xmt_vif < numvifs) {
#ifdef PIM
if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
pim_register_send(ip, viftable + xmt_vif, m, rt);
else
#endif
MC_SEND(ip, viftable + xmt_vif, m);
return 1;
}
/*
* Don't forward if it didn't arrive from the parent vif for its origin.
*/
vifi = rt->mfc_parent;
if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
/* came in the wrong interface */
if (mrtdebug & DEBUG_FORWARD)
log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
(void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
++mrtstat.mrts_wrong_if;
++rt->mfc_wrong_if;
/*
* If we are doing PIM assert processing, send a message
* to the routing daemon.
*
* XXX: A PIM-SM router needs the WRONGVIF detection so it
* can complete the SPT switch, regardless of the type
* of the iif (broadcast media, GRE tunnel, etc).
*/
if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
struct timeval now;
u_long delta;
#ifdef PIM
if (ifp == &multicast_register_if)
pimstat.pims_rcv_registers_wrongiif++;
#endif
/* Get vifi for the incoming packet */
for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
;
if (vifi >= numvifs)
return 0; /* The iif is not found: ignore the packet. */
if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
return 0; /* WRONGVIF disabled: ignore the packet */
GET_TIME(now);
TV_DELTA(rt->mfc_last_assert, now, delta);
if (delta > ASSERT_MSG_TIME) {
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
struct igmpmsg *im;
int hlen = ip->ip_hl << 2;
struct mbuf *mm = m_copy(m, 0, hlen);
if (mm && (M_HASCL(mm) || mm->m_len < hlen))
mm = m_pullup(mm, hlen);
if (mm == NULL)
return ENOBUFS;
rt->mfc_last_assert = now;
im = mtod(mm, struct igmpmsg *);
im->im_msgtype = IGMPMSG_WRONGVIF;
im->im_mbz = 0;
im->im_vif = vifi;
mrtstat.mrts_upcalls++;
k_igmpsrc.sin_addr = im->im_src;
if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
log(LOG_WARNING,
"ip_mforward: ip_mrouter socket queue full\n");
++mrtstat.mrts_upq_sockfull;
return ENOBUFS;
}
}
}
return 0;
}
/* If I sourced this packet, it counts as output, else it was input. */
if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
viftable[vifi].v_pkt_out++;
viftable[vifi].v_bytes_out += plen;
} else {
viftable[vifi].v_pkt_in++;
viftable[vifi].v_bytes_in += plen;
}
rt->mfc_pkt_cnt++;
rt->mfc_byte_cnt += plen;
/*
* For each vif, decide if a copy of the packet should be forwarded.
* Forward if:
* - the ttl exceeds the vif's threshold
* - there are group members downstream on interface
*/
for (vifi = 0; vifi < numvifs; vifi++)
if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
viftable[vifi].v_pkt_out++;
viftable[vifi].v_bytes_out += plen;
#ifdef PIM
if (viftable[vifi].v_flags & VIFF_REGISTER)
pim_register_send(ip, viftable + vifi, m, rt);
else
#endif
MC_SEND(ip, viftable+vifi, m);
}
/*
* Perform upcall-related bw measuring.
*/
if (rt->mfc_bw_meter != NULL) {
struct bw_meter *x;
struct timeval now;
GET_TIME(now);
MFC_LOCK_ASSERT();
for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
bw_meter_receive_packet(x, plen, &now);
}
return 0;
}
/*
* check if a vif number is legal/ok. This is used by ip_output.
*/
static int
X_legal_vif_num(int vif)
{
/* XXX unlocked, matter? */
return (vif >= 0 && vif < numvifs);
}
/*
* Return the local address used by this vif
*/
static u_long
X_ip_mcast_src(int vifi)
{
/* XXX unlocked, matter? */
if (vifi >= 0 && vifi < numvifs)
return viftable[vifi].v_lcl_addr.s_addr;
else
return INADDR_ANY;
}
static void
phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
{
struct mbuf *mb_copy;
int hlen = ip->ip_hl << 2;
VIF_LOCK_ASSERT();
/*
* Make a new reference to the packet; make sure that
* the IP header is actually copied, not just referenced,
* so that ip_output() only scribbles on the copy.
*/
mb_copy = m_copypacket(m, M_DONTWAIT);
if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
mb_copy = m_pullup(mb_copy, hlen);
if (mb_copy == NULL)
return;
if (vifp->v_rate_limit == 0)
tbf_send_packet(vifp, mb_copy);
else
tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
}
static void
encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
{
struct mbuf *mb_copy;
struct ip *ip_copy;
int i, len = ip->ip_len;
VIF_LOCK_ASSERT();
/* Take care of delayed checksums */
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
}
/*
* copy the old packet & pullup its IP header into the
* new mbuf so we can modify it. Try to fill the new
* mbuf since if we don't the ethernet driver will.
*/
MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
if (mb_copy == NULL)
return;
#ifdef MAC
mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
#endif
mb_copy->m_data += max_linkhdr;
mb_copy->m_len = sizeof(multicast_encap_iphdr);
if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
m_freem(mb_copy);
return;
}
i = MHLEN - M_LEADINGSPACE(mb_copy);
if (i > len)
i = len;
mb_copy = m_pullup(mb_copy, i);
if (mb_copy == NULL)
return;
mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
/*
* fill in the encapsulating IP header.
*/
ip_copy = mtod(mb_copy, struct ip *);
*ip_copy = multicast_encap_iphdr;
ip_copy->ip_id = ip_newid();
ip_copy->ip_len += len;
ip_copy->ip_src = vifp->v_lcl_addr;
ip_copy->ip_dst = vifp->v_rmt_addr;
/*
* turn the encapsulated IP header back into a valid one.
*/
ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
--ip->ip_ttl;
ip->ip_len = htons(ip->ip_len);
ip->ip_off = htons(ip->ip_off);
ip->ip_sum = 0;
mb_copy->m_data += sizeof(multicast_encap_iphdr);
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
mb_copy->m_data -= sizeof(multicast_encap_iphdr);
if (vifp->v_rate_limit == 0)
tbf_send_packet(vifp, mb_copy);
else
tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
}
/*
* Token bucket filter module
*/
static void
tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
{
struct tbf *t = vifp->v_tbf;
VIF_LOCK_ASSERT();
if (p_len > MAX_BKT_SIZE) { /* drop if packet is too large */
mrtstat.mrts_pkt2large++;
m_freem(m);
return;
}
tbf_update_tokens(vifp);
if (t->tbf_q_len == 0) { /* queue empty... */
if (p_len <= t->tbf_n_tok) { /* send packet if enough tokens */
t->tbf_n_tok -= p_len;
tbf_send_packet(vifp, m);
} else { /* no, queue packet and try later */
tbf_queue(vifp, m);
callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
tbf_reprocess_q, vifp);
}
} else if (t->tbf_q_len < t->tbf_max_q_len) {
/* finite queue length, so queue pkts and process queue */
tbf_queue(vifp, m);
tbf_process_q(vifp);
} else {
/* queue full, try to dq and queue and process */
if (!tbf_dq_sel(vifp, ip)) {
mrtstat.mrts_q_overflow++;
m_freem(m);
} else {
tbf_queue(vifp, m);
tbf_process_q(vifp);
}
}
}
/*
* adds a packet to the queue at the interface
*/
static void
tbf_queue(struct vif *vifp, struct mbuf *m)
{
struct tbf *t = vifp->v_tbf;
VIF_LOCK_ASSERT();
if (t->tbf_t == NULL) /* Queue was empty */
t->tbf_q = m;
else /* Insert at tail */
t->tbf_t->m_act = m;
t->tbf_t = m; /* Set new tail pointer */
#ifdef DIAGNOSTIC
/* Make sure we didn't get fed a bogus mbuf */
if (m->m_act)
panic("tbf_queue: m_act");
#endif
m->m_act = NULL;
t->tbf_q_len++;
}
/*
* processes the queue at the interface
*/
static void
tbf_process_q(struct vif *vifp)
{
struct tbf *t = vifp->v_tbf;
VIF_LOCK_ASSERT();
/* loop through the queue at the interface and send as many packets
* as possible
*/
while (t->tbf_q_len > 0) {
struct mbuf *m = t->tbf_q;
int len = mtod(m, struct ip *)->ip_len;
/* determine if the packet can be sent */
if (len > t->tbf_n_tok) /* not enough tokens, we are done */
break;
/* ok, reduce no of tokens, dequeue and send the packet. */
t->tbf_n_tok -= len;
t->tbf_q = m->m_act;
if (--t->tbf_q_len == 0)
t->tbf_t = NULL;
m->m_act = NULL;
tbf_send_packet(vifp, m);
}
}
static void
tbf_reprocess_q(void *xvifp)
{
struct vif *vifp = xvifp;
if (ip_mrouter == NULL)
return;
VIF_LOCK();
tbf_update_tokens(vifp);
tbf_process_q(vifp);
if (vifp->v_tbf->tbf_q_len)
callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
VIF_UNLOCK();
}
/* function that will selectively discard a member of the queue
* based on the precedence value and the priority
*/
static int
tbf_dq_sel(struct vif *vifp, struct ip *ip)
{
u_int p;
struct mbuf *m, *last;
struct mbuf **np;
struct tbf *t = vifp->v_tbf;
VIF_LOCK_ASSERT();
p = priority(vifp, ip);
np = &t->tbf_q;
last = NULL;
while ((m = *np) != NULL) {
if (p > priority(vifp, mtod(m, struct ip *))) {
*np = m->m_act;
/* If we're removing the last packet, fix the tail pointer */
if (m == t->tbf_t)
t->tbf_t = last;
m_freem(m);
/* It's impossible for the queue to be empty, but check anyways. */
if (--t->tbf_q_len == 0)
t->tbf_t = NULL;
mrtstat.mrts_drop_sel++;
return 1;
}
np = &m->m_act;
last = m;
}
return 0;
}
static void
tbf_send_packet(struct vif *vifp, struct mbuf *m)
{
VIF_LOCK_ASSERT();
if (vifp->v_flags & VIFF_TUNNEL) /* If tunnel options */
ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
else {
struct ip_moptions imo;
int error;
static struct route ro; /* XXX check this */
imo.imo_multicast_ifp = vifp->v_ifp;
imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
imo.imo_multicast_loop = 1;
imo.imo_multicast_vif = -1;
/*
* Re-entrancy should not be a problem here, because
* the packets that we send out and are looped back at us
* should get rejected because they appear to come from
* the loopback interface, thus preventing looping.
*/
error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
if (mrtdebug & DEBUG_XMIT)
log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
(int)(vifp - viftable), error);
}
}
/* determine the current time and then
* the elapsed time (between the last time and time now)
* in milliseconds & update the no. of tokens in the bucket
*/
static void
tbf_update_tokens(struct vif *vifp)
{
struct timeval tp;
u_long tm;
struct tbf *t = vifp->v_tbf;
VIF_LOCK_ASSERT();
GET_TIME(tp);
TV_DELTA(tp, t->tbf_last_pkt_t, tm);
/*
* This formula is actually
* "time in seconds" * "bytes/second".
*
* (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
*
* The (1000/1024) was introduced in add_vif to optimize
* this divide into a shift.
*/
t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
t->tbf_last_pkt_t = tp;
if (t->tbf_n_tok > MAX_BKT_SIZE)
t->tbf_n_tok = MAX_BKT_SIZE;
}
static int
priority(struct vif *vifp, struct ip *ip)
{
int prio = 50; /* the lowest priority -- default case */
/* temporary hack; may add general packet classifier some day */
/*
* The UDP port space is divided up into four priority ranges:
* [0, 16384) : unclassified - lowest priority
* [16384, 32768) : audio - highest priority
* [32768, 49152) : whiteboard - medium priority
* [49152, 65536) : video - low priority
*
* Everything else gets lowest priority.
*/
if (ip->ip_p == IPPROTO_UDP) {
struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
switch (ntohs(udp->uh_dport) & 0xc000) {
case 0x4000:
prio = 70;
break;
case 0x8000:
prio = 60;
break;
case 0xc000:
prio = 55;
break;
}
}
return prio;
}
/*
* End of token bucket filter modifications
*/
static int
X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
{
int error, vifi;
if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
return EOPNOTSUPP;
error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
if (error)
return error;
VIF_LOCK();
if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */
VIF_UNLOCK();
return EADDRNOTAVAIL;
}
if (sopt->sopt_name == IP_RSVP_VIF_ON) {
/* Check if socket is available. */
if (viftable[vifi].v_rsvpd != NULL) {
VIF_UNLOCK();
return EADDRINUSE;
}
viftable[vifi].v_rsvpd = so;
/* This may seem silly, but we need to be sure we don't over-increment
* the RSVP counter, in case something slips up.
*/
if (!viftable[vifi].v_rsvp_on) {
viftable[vifi].v_rsvp_on = 1;
rsvp_on++;
}
} else { /* must be VIF_OFF */
/*
* XXX as an additional consistency check, one could make sure
* that viftable[vifi].v_rsvpd == so, otherwise passing so as
* first parameter is pretty useless.
*/
viftable[vifi].v_rsvpd = NULL;
/*
* This may seem silly, but we need to be sure we don't over-decrement
* the RSVP counter, in case something slips up.
*/
if (viftable[vifi].v_rsvp_on) {
viftable[vifi].v_rsvp_on = 0;
rsvp_on--;
}
}
VIF_UNLOCK();
return 0;
}
static void
X_ip_rsvp_force_done(struct socket *so)
{
int vifi;
/* Don't bother if it is not the right type of socket. */
if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
return;
VIF_LOCK();
/* The socket may be attached to more than one vif...this
* is perfectly legal.
*/
for (vifi = 0; vifi < numvifs; vifi++) {
if (viftable[vifi].v_rsvpd == so) {
viftable[vifi].v_rsvpd = NULL;
/* This may seem silly, but we need to be sure we don't
* over-decrement the RSVP counter, in case something slips up.
*/
if (viftable[vifi].v_rsvp_on) {
viftable[vifi].v_rsvp_on = 0;
rsvp_on--;
}
}
}
VIF_UNLOCK();
}
static void
X_rsvp_input(struct mbuf *m, int off)
{
int vifi;
struct ip *ip = mtod(m, struct ip *);
struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
struct ifnet *ifp;
if (rsvpdebug)
printf("rsvp_input: rsvp_on %d\n",rsvp_on);
/* Can still get packets with rsvp_on = 0 if there is a local member
* of the group to which the RSVP packet is addressed. But in this
* case we want to throw the packet away.
*/
if (!rsvp_on) {
m_freem(m);
return;
}
if (rsvpdebug)
printf("rsvp_input: check vifs\n");
#ifdef DIAGNOSTIC
M_ASSERTPKTHDR(m);
#endif
ifp = m->m_pkthdr.rcvif;
VIF_LOCK();
/* Find which vif the packet arrived on. */
for (vifi = 0; vifi < numvifs; vifi++)
if (viftable[vifi].v_ifp == ifp)
break;
if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
/*
* Drop the lock here to avoid holding it across rip_input.
* This could make rsvpdebug printfs wrong. If you care,
* record the state of stuff before dropping the lock.
*/
VIF_UNLOCK();
/*
* If the old-style non-vif-associated socket is set,
* then use it. Otherwise, drop packet since there
* is no specific socket for this vif.
*/
if (ip_rsvpd != NULL) {
if (rsvpdebug)
printf("rsvp_input: Sending packet up old-style socket\n");
rip_input(m, off); /* xxx */
} else {
if (rsvpdebug && vifi == numvifs)
printf("rsvp_input: Can't find vif for packet.\n");
else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
printf("rsvp_input: No socket defined for vif %d\n",vifi);
m_freem(m);
}
return;
}
rsvp_src.sin_addr = ip->ip_src;
if (rsvpdebug && m)
printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
if (rsvpdebug)
printf("rsvp_input: Failed to append to socket\n");
} else {
if (rsvpdebug)
printf("rsvp_input: send packet up\n");
}
VIF_UNLOCK();
}
/*
* Code for bandwidth monitors
*/
/*
* Define common interface for timeval-related methods
*/
#define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
#define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
#define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
static uint32_t
compute_bw_meter_flags(struct bw_upcall *req)
{
uint32_t flags = 0;
if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
flags |= BW_METER_UNIT_PACKETS;
if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
flags |= BW_METER_UNIT_BYTES;
if (req->bu_flags & BW_UPCALL_GEQ)
flags |= BW_METER_GEQ;
if (req->bu_flags & BW_UPCALL_LEQ)
flags |= BW_METER_LEQ;
return flags;
}
/*
* Add a bw_meter entry
*/
static int
add_bw_upcall(struct bw_upcall *req)
{
struct mfc *mfc;
struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
struct timeval now;
struct bw_meter *x;
uint32_t flags;
if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
return EOPNOTSUPP;
/* Test if the flags are valid */
if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
return EINVAL;
if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
return EINVAL;
if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
== (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
return EINVAL;
/* Test if the threshold time interval is valid */
if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
return EINVAL;
flags = compute_bw_meter_flags(req);
/*
* Find if we have already same bw_meter entry
*/
MFC_LOCK();
mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
if (mfc == NULL) {
MFC_UNLOCK();
return EADDRNOTAVAIL;
}
for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
&req->bu_threshold.b_time, ==)) &&
(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
(x->bm_flags & BW_METER_USER_FLAGS) == flags) {
MFC_UNLOCK();
return 0; /* XXX Already installed */
}
}
/* Allocate the new bw_meter entry */
x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
if (x == NULL) {
MFC_UNLOCK();
return ENOBUFS;
}
/* Set the new bw_meter entry */
x->bm_threshold.b_time = req->bu_threshold.b_time;
GET_TIME(now);
x->bm_start_time = now;
x->bm_threshold.b_packets = req->bu_threshold.b_packets;
x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags = flags;
x->bm_time_next = NULL;
x->bm_time_hash = BW_METER_BUCKETS;
/* Add the new bw_meter entry to the front of entries for this MFC */
x->bm_mfc = mfc;
x->bm_mfc_next = mfc->mfc_bw_meter;
mfc->mfc_bw_meter = x;
schedule_bw_meter(x, &now);
MFC_UNLOCK();
return 0;
}
static void
free_bw_list(struct bw_meter *list)
{
while (list != NULL) {
struct bw_meter *x = list;
list = list->bm_mfc_next;
unschedule_bw_meter(x);
free(x, M_BWMETER);
}
}
/*
* Delete one or multiple bw_meter entries
*/
static int
del_bw_upcall(struct bw_upcall *req)
{
struct mfc *mfc;
struct bw_meter *x;
if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
return EOPNOTSUPP;
MFC_LOCK();
/* Find the corresponding MFC entry */
mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
if (mfc == NULL) {
MFC_UNLOCK();
return EADDRNOTAVAIL;
} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
/*
* Delete all bw_meter entries for this mfc
*/
struct bw_meter *list;
list = mfc->mfc_bw_meter;
mfc->mfc_bw_meter = NULL;
free_bw_list(list);
MFC_UNLOCK();
return 0;
} else { /* Delete a single bw_meter entry */
struct bw_meter *prev;
uint32_t flags = 0;
flags = compute_bw_meter_flags(req);
/* Find the bw_meter entry to delete */
for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
prev = x, x = x->bm_mfc_next) {
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
&req->bu_threshold.b_time, ==)) &&
(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
(x->bm_flags & BW_METER_USER_FLAGS) == flags)
break;
}
if (x != NULL) { /* Delete entry from the list for this MFC */
if (prev != NULL)
prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
else
x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
unschedule_bw_meter(x);
MFC_UNLOCK();
/* Free the bw_meter entry */
free(x, M_BWMETER);
return 0;
} else {
MFC_UNLOCK();
return EINVAL;
}
}
/* NOTREACHED */
}
/*
* Perform bandwidth measurement processing that may result in an upcall
*/
static void
bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
{
struct timeval delta;
MFC_LOCK_ASSERT();
delta = *nowp;
BW_TIMEVALDECR(&delta, &x->bm_start_time);
if (x->bm_flags & BW_METER_GEQ) {
/*
* Processing for ">=" type of bw_meter entry
*/
if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
/* Reset the bw_meter entry */
x->bm_start_time = *nowp;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
}
/* Record that a packet is received */
x->bm_measured.b_packets++;
x->bm_measured.b_bytes += plen;
/*
* Test if we should deliver an upcall
*/
if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
(x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
((x->bm_flags & BW_METER_UNIT_BYTES) &&
(x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
/* Prepare an upcall for delivery */
bw_meter_prepare_upcall(x, nowp);
x->bm_flags |= BW_METER_UPCALL_DELIVERED;
}
}
} else if (x->bm_flags & BW_METER_LEQ) {
/*
* Processing for "<=" type of bw_meter entry
*/
if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
/*
* We are behind time with the multicast forwarding table
* scanning for "<=" type of bw_meter entries, so test now
* if we should deliver an upcall.
*/
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
(x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
((x->bm_flags & BW_METER_UNIT_BYTES) &&
(x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
/* Prepare an upcall for delivery */
bw_meter_prepare_upcall(x, nowp);
}
/* Reschedule the bw_meter entry */
unschedule_bw_meter(x);
schedule_bw_meter(x, nowp);
}
/* Record that a packet is received */
x->bm_measured.b_packets++;
x->bm_measured.b_bytes += plen;
/*
* Test if we should restart the measuring interval
*/
if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
(x->bm_flags & BW_METER_UNIT_BYTES &&
x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
/* Don't restart the measuring interval */
} else {
/* Do restart the measuring interval */
/*
* XXX: note that we don't unschedule and schedule, because this
* might be too much overhead per packet. Instead, when we process
* all entries for a given timer hash bin, we check whether it is
* really a timeout. If not, we reschedule at that time.
*/
x->bm_start_time = *nowp;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
}
}
}
/*
* Prepare a bandwidth-related upcall
*/
static void
bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
{
struct timeval delta;
struct bw_upcall *u;
MFC_LOCK_ASSERT();
/*
* Compute the measured time interval
*/
delta = *nowp;
BW_TIMEVALDECR(&delta, &x->bm_start_time);
/*
* If there are too many pending upcalls, deliver them now
*/
if (bw_upcalls_n >= BW_UPCALLS_MAX)
bw_upcalls_send();
/*
* Set the bw_upcall entry
*/
u = &bw_upcalls[bw_upcalls_n++];
u->bu_src = x->bm_mfc->mfc_origin;
u->bu_dst = x->bm_mfc->mfc_mcastgrp;
u->bu_threshold.b_time = x->bm_threshold.b_time;
u->bu_threshold.b_packets = x->bm_threshold.b_packets;
u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
u->bu_measured.b_time = delta;
u->bu_measured.b_packets = x->bm_measured.b_packets;
u->bu_measured.b_bytes = x->bm_measured.b_bytes;
u->bu_flags = 0;
if (x->bm_flags & BW_METER_UNIT_PACKETS)
u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
if (x->bm_flags & BW_METER_UNIT_BYTES)
u->bu_flags |= BW_UPCALL_UNIT_BYTES;
if (x->bm_flags & BW_METER_GEQ)
u->bu_flags |= BW_UPCALL_GEQ;
if (x->bm_flags & BW_METER_LEQ)
u->bu_flags |= BW_UPCALL_LEQ;
}
/*
* Send the pending bandwidth-related upcalls
*/
static void
bw_upcalls_send(void)
{
struct mbuf *m;
int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
static struct igmpmsg igmpmsg = { 0, /* unused1 */
0, /* unused2 */
IGMPMSG_BW_UPCALL,/* im_msgtype */
0, /* im_mbz */
0, /* im_vif */
0, /* unused3 */
{ 0 }, /* im_src */
{ 0 } }; /* im_dst */
MFC_LOCK_ASSERT();
if (bw_upcalls_n == 0)
return; /* No pending upcalls */
bw_upcalls_n = 0;
/*
* Allocate a new mbuf, initialize it with the header and
* the payload for the pending calls.
*/
MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m == NULL) {
log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
return;
}
m->m_len = m->m_pkthdr.len = 0;
m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
/*
* Send the upcalls
* XXX do we need to set the address in k_igmpsrc ?
*/
mrtstat.mrts_upcalls++;
if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
++mrtstat.mrts_upq_sockfull;
}
}
/*
* Compute the timeout hash value for the bw_meter entries
*/
#define BW_METER_TIMEHASH(bw_meter, hash) \
do { \
struct timeval next_timeval = (bw_meter)->bm_start_time; \
\
BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
(hash) = next_timeval.tv_sec; \
if (next_timeval.tv_usec) \
(hash)++; /* XXX: make sure we don't timeout early */ \
(hash) %= BW_METER_BUCKETS; \
} while (0)
/*
* Schedule a timer to process periodically bw_meter entry of type "<="
* by linking the entry in the proper hash bucket.
*/
static void
schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
{
int time_hash;
MFC_LOCK_ASSERT();
if (!(x->bm_flags & BW_METER_LEQ))
return; /* XXX: we schedule timers only for "<=" entries */
/*
* Reset the bw_meter entry
*/
x->bm_start_time = *nowp;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
/*
* Compute the timeout hash value and insert the entry
*/
BW_METER_TIMEHASH(x, time_hash);
x->bm_time_next = bw_meter_timers[time_hash];
bw_meter_timers[time_hash] = x;
x->bm_time_hash = time_hash;
}
/*
* Unschedule the periodic timer that processes bw_meter entry of type "<="
* by removing the entry from the proper hash bucket.
*/
static void
unschedule_bw_meter(struct bw_meter *x)
{
int time_hash;
struct bw_meter *prev, *tmp;
MFC_LOCK_ASSERT();
if (!(x->bm_flags & BW_METER_LEQ))
return; /* XXX: we schedule timers only for "<=" entries */
/*
* Compute the timeout hash value and delete the entry
*/
time_hash = x->bm_time_hash;
if (time_hash >= BW_METER_BUCKETS)
return; /* Entry was not scheduled */
for (prev = NULL, tmp = bw_meter_timers[time_hash];
tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
if (tmp == x)
break;
if (tmp == NULL)
panic("unschedule_bw_meter: bw_meter entry not found");
if (prev != NULL)
prev->bm_time_next = x->bm_time_next;
else
bw_meter_timers[time_hash] = x->bm_time_next;
x->bm_time_next = NULL;
x->bm_time_hash = BW_METER_BUCKETS;
}
/*
* Process all "<=" type of bw_meter that should be processed now,
* and for each entry prepare an upcall if necessary. Each processed
* entry is rescheduled again for the (periodic) processing.
*
* This is run periodically (once per second normally). On each round,
* all the potentially matching entries are in the hash slot that we are
* looking at.
*/
static void
bw_meter_process()
{
static uint32_t last_tv_sec; /* last time we processed this */
uint32_t loops;
int i;
struct timeval now, process_endtime;
GET_TIME(now);
if (last_tv_sec == now.tv_sec)
return; /* nothing to do */
loops = now.tv_sec - last_tv_sec;
last_tv_sec = now.tv_sec;
if (loops > BW_METER_BUCKETS)
loops = BW_METER_BUCKETS;
MFC_LOCK();
/*
* Process all bins of bw_meter entries from the one after the last
* processed to the current one. On entry, i points to the last bucket
* visited, so we need to increment i at the beginning of the loop.
*/
for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
struct bw_meter *x, *tmp_list;
if (++i >= BW_METER_BUCKETS)
i = 0;
/* Disconnect the list of bw_meter entries from the bin */
tmp_list = bw_meter_timers[i];
bw_meter_timers[i] = NULL;
/* Process the list of bw_meter entries */
while (tmp_list != NULL) {
x = tmp_list;
tmp_list = tmp_list->bm_time_next;
/* Test if the time interval is over */
process_endtime = x->bm_start_time;
BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
/* Not yet: reschedule, but don't reset */
int time_hash;
BW_METER_TIMEHASH(x, time_hash);
if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
/*
* XXX: somehow the bin processing is a bit ahead of time.
* Put the entry in the next bin.
*/
if (++time_hash >= BW_METER_BUCKETS)
time_hash = 0;
}
x->bm_time_next = bw_meter_timers[time_hash];
bw_meter_timers[time_hash] = x;
x->bm_time_hash = time_hash;
continue;
}
/*
* Test if we should deliver an upcall
*/
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
(x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
((x->bm_flags & BW_METER_UNIT_BYTES) &&
(x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
/* Prepare an upcall for delivery */
bw_meter_prepare_upcall(x, &now);
}
/*
* Reschedule for next processing
*/
schedule_bw_meter(x, &now);
}
}
/* Send all upcalls that are pending delivery */
bw_upcalls_send();
MFC_UNLOCK();
}
/*
* A periodic function for sending all upcalls that are pending delivery
*/
static void
expire_bw_upcalls_send(void *unused)
{
MFC_LOCK();
bw_upcalls_send();
MFC_UNLOCK();
callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
expire_bw_upcalls_send, NULL);
}
/*
* A periodic function for periodic scanning of the multicast forwarding
* table for processing all "<=" bw_meter entries.
*/
static void
expire_bw_meter_process(void *unused)
{
if (mrt_api_config & MRT_MFC_BW_UPCALL)
bw_meter_process();
callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
}
/*
* End of bandwidth monitoring code
*/
#ifdef PIM
/*
* Send the packet up to the user daemon, or eventually do kernel encapsulation
*
*/
static int
pim_register_send(struct ip *ip, struct vif *vifp,
struct mbuf *m, struct mfc *rt)
{
struct mbuf *mb_copy, *mm;
if (mrtdebug & DEBUG_PIM)
log(LOG_DEBUG, "pim_register_send: ");
mb_copy = pim_register_prepare(ip, m);
if (mb_copy == NULL)
return ENOBUFS;
/*
* Send all the fragments. Note that the mbuf for each fragment
* is freed by the sending machinery.
*/
for (mm = mb_copy; mm; mm = mb_copy) {
mb_copy = mm->m_nextpkt;
mm->m_nextpkt = 0;
mm = m_pullup(mm, sizeof(struct ip));
if (mm != NULL) {
ip = mtod(mm, struct ip *);
if ((mrt_api_config & MRT_MFC_RP) &&
(rt->mfc_rp.s_addr != INADDR_ANY)) {
pim_register_send_rp(ip, vifp, mm, rt);
} else {
pim_register_send_upcall(ip, vifp, mm, rt);
}
}
}
return 0;
}
/*
* Return a copy of the data packet that is ready for PIM Register
* encapsulation.
* XXX: Note that in the returned copy the IP header is a valid one.
*/
static struct mbuf *
pim_register_prepare(struct ip *ip, struct mbuf *m)
{
struct mbuf *mb_copy = NULL;
int mtu;
/* Take care of delayed checksums */
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
}
/*
* Copy the old packet & pullup its IP header into the
* new mbuf so we can modify it.
*/
mb_copy = m_copypacket(m, M_DONTWAIT);
if (mb_copy == NULL)
return NULL;
mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
if (mb_copy == NULL)
return NULL;
/* take care of the TTL */
ip = mtod(mb_copy, struct ip *);
--ip->ip_ttl;
/* Compute the MTU after the PIM Register encapsulation */
mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
if (ip->ip_len <= mtu) {
/* Turn the IP header into a valid one */
ip->ip_len = htons(ip->ip_len);
ip->ip_off = htons(ip->ip_off);
ip->ip_sum = 0;
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
} else {
/* Fragment the packet */
if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
m_freem(mb_copy);
return NULL;
}
}
return mb_copy;
}
/*
* Send an upcall with the data packet to the user-level process.
*/
static int
pim_register_send_upcall(struct ip *ip, struct vif *vifp,
struct mbuf *mb_copy, struct mfc *rt)
{
struct mbuf *mb_first;
int len = ntohs(ip->ip_len);
struct igmpmsg *im;
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
VIF_LOCK_ASSERT();
/*
* Add a new mbuf with an upcall header
*/
MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
if (mb_first == NULL) {
m_freem(mb_copy);
return ENOBUFS;
}
mb_first->m_data += max_linkhdr;
mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
mb_first->m_len = sizeof(struct igmpmsg);
mb_first->m_next = mb_copy;
/* Send message to routing daemon */
im = mtod(mb_first, struct igmpmsg *);
im->im_msgtype = IGMPMSG_WHOLEPKT;
im->im_mbz = 0;
im->im_vif = vifp - viftable;
im->im_src = ip->ip_src;
im->im_dst = ip->ip_dst;
k_igmpsrc.sin_addr = ip->ip_src;
mrtstat.mrts_upcalls++;
if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
if (mrtdebug & DEBUG_PIM)
log(LOG_WARNING,
"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
++mrtstat.mrts_upq_sockfull;
return ENOBUFS;
}
/* Keep statistics */
pimstat.pims_snd_registers_msgs++;
pimstat.pims_snd_registers_bytes += len;
return 0;
}
/*
* Encapsulate the data packet in PIM Register message and send it to the RP.
*/
static int
pim_register_send_rp(struct ip *ip, struct vif *vifp,
struct mbuf *mb_copy, struct mfc *rt)
{
struct mbuf *mb_first;
struct ip *ip_outer;
struct pim_encap_pimhdr *pimhdr;
int len = ntohs(ip->ip_len);
vifi_t vifi = rt->mfc_parent;
VIF_LOCK_ASSERT();
if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
m_freem(mb_copy);
return EADDRNOTAVAIL; /* The iif vif is invalid */
}
/*
* Add a new mbuf with the encapsulating header
*/
MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
if (mb_first == NULL) {
m_freem(mb_copy);
return ENOBUFS;
}
mb_first->m_data += max_linkhdr;
mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
mb_first->m_next = mb_copy;
mb_first->m_pkthdr.len = len + mb_first->m_len;
/*
* Fill in the encapsulating IP and PIM header
*/
ip_outer = mtod(mb_first, struct ip *);
*ip_outer = pim_encap_iphdr;
ip_outer->ip_id = ip_newid();
ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
ip_outer->ip_src = viftable[vifi].v_lcl_addr;
ip_outer->ip_dst = rt->mfc_rp;
/*
* Copy the inner header TOS to the outer header, and take care of the
* IP_DF bit.
*/
ip_outer->ip_tos = ip->ip_tos;
if (ntohs(ip->ip_off) & IP_DF)
ip_outer->ip_off |= IP_DF;
pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
+ sizeof(pim_encap_iphdr));
*pimhdr = pim_encap_pimhdr;
/* If the iif crosses a border, set the Border-bit */
if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
mb_first->m_data += sizeof(pim_encap_iphdr);
pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
mb_first->m_data -= sizeof(pim_encap_iphdr);
if (vifp->v_rate_limit == 0)
tbf_send_packet(vifp, mb_first);
else
tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
/* Keep statistics */
pimstat.pims_snd_registers_msgs++;
pimstat.pims_snd_registers_bytes += len;
return 0;
}
/*
* PIM-SMv2 and PIM-DM messages processing.
* Receives and verifies the PIM control messages, and passes them
* up to the listening socket, using rip_input().
* The only message with special processing is the PIM_REGISTER message
* (used by PIM-SM): the PIM header is stripped off, and the inner packet
* is passed to if_simloop().
*/
void
pim_input(struct mbuf *m, int off)
{
struct ip *ip = mtod(m, struct ip *);
struct pim *pim;
int minlen;
int datalen = ip->ip_len;
int ip_tos;
int iphlen = off;
/* Keep statistics */
pimstat.pims_rcv_total_msgs++;
pimstat.pims_rcv_total_bytes += datalen;
/*
* Validate lengths
*/
if (datalen < PIM_MINLEN) {
pimstat.pims_rcv_tooshort++;
log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
datalen, (u_long)ip->ip_src.s_addr);
m_freem(m);
return;
}
/*
* If the packet is at least as big as a REGISTER, go agead
* and grab the PIM REGISTER header size, to avoid another
* possible m_pullup() later.
*
* PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
* PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
*/
minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
/*
* Get the IP and PIM headers in contiguous memory, and
* possibly the PIM REGISTER header.
*/
if ((m->m_flags & M_EXT || m->m_len < minlen) &&
(m = m_pullup(m, minlen)) == 0) {
log(LOG_ERR, "pim_input: m_pullup failure\n");
return;
}
/* m_pullup() may have given us a new mbuf so reset ip. */
ip = mtod(m, struct ip *);
ip_tos = ip->ip_tos;
/* adjust mbuf to point to the PIM header */
m->m_data += iphlen;
m->m_len -= iphlen;
pim = mtod(m, struct pim *);
/*
* Validate checksum. If PIM REGISTER, exclude the data packet.
*
* XXX: some older PIMv2 implementations don't make this distinction,
* so for compatibility reason perform the checksum over part of the
* message, and if error, then over the whole message.
*/
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
/* do nothing, checksum okay */
} else if (in_cksum(m, datalen)) {
pimstat.pims_rcv_badsum++;
if (mrtdebug & DEBUG_PIM)
log(LOG_DEBUG, "pim_input: invalid checksum");
m_freem(m);
return;
}
/* PIM version check */
if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
pimstat.pims_rcv_badversion++;
log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
PIM_VT_V(pim->pim_vt), PIM_VERSION);
m_freem(m);
return;
}
/* restore mbuf back to the outer IP */
m->m_data -= iphlen;
m->m_len += iphlen;
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
/*
* Since this is a REGISTER, we'll make a copy of the register
* headers ip + pim + u_int32 + encap_ip, to be passed up to the
* routing daemon.
*/
struct sockaddr_in dst = { sizeof(dst), AF_INET };
struct mbuf *mcp;
struct ip *encap_ip;
u_int32_t *reghdr;
struct ifnet *vifp;
VIF_LOCK();
if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
VIF_UNLOCK();
if (mrtdebug & DEBUG_PIM)
log(LOG_DEBUG,
"pim_input: register vif not set: %d\n", reg_vif_num);
m_freem(m);
return;
}
/* XXX need refcnt? */
vifp = viftable[reg_vif_num].v_ifp;
VIF_UNLOCK();
/*
* Validate length
*/
if (datalen < PIM_REG_MINLEN) {
pimstat.pims_rcv_tooshort++;
pimstat.pims_rcv_badregisters++;
log(LOG_ERR,
"pim_input: register packet size too small %d from %lx\n",
datalen, (u_long)ip->ip_src.s_addr);
m_freem(m);
return;
}
reghdr = (u_int32_t *)(pim + 1);
encap_ip = (struct ip *)(reghdr + 1);
if (mrtdebug & DEBUG_PIM) {
log(LOG_DEBUG,
"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
(u_long)ntohl(encap_ip->ip_src.s_addr),
(u_long)ntohl(encap_ip->ip_dst.s_addr),
ntohs(encap_ip->ip_len));
}
/* verify the version number of the inner packet */
if (encap_ip->ip_v != IPVERSION) {
pimstat.pims_rcv_badregisters++;
if (mrtdebug & DEBUG_PIM) {
log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
"of the inner packet\n", encap_ip->ip_v);
}
m_freem(m);
return;
}
/* verify the inner packet is destined to a mcast group */
if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
pimstat.pims_rcv_badregisters++;
if (mrtdebug & DEBUG_PIM)
log(LOG_DEBUG,
"pim_input: inner packet of register is not "
"multicast %lx\n",
(u_long)ntohl(encap_ip->ip_dst.s_addr));
m_freem(m);
return;
}
/* If a NULL_REGISTER, pass it to the daemon */
if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
goto pim_input_to_daemon;
/*
* Copy the TOS from the outer IP header to the inner IP header.
*/
if (encap_ip->ip_tos != ip_tos) {
/* Outer TOS -> inner TOS */
encap_ip->ip_tos = ip_tos;
/* Recompute the inner header checksum. Sigh... */
/* adjust mbuf to point to the inner IP header */
m->m_data += (iphlen + PIM_MINLEN);
m->m_len -= (iphlen + PIM_MINLEN);
encap_ip->ip_sum = 0;
encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
/* restore mbuf to point back to the outer IP header */
m->m_data -= (iphlen + PIM_MINLEN);
m->m_len += (iphlen + PIM_MINLEN);
}
/*
* Decapsulate the inner IP packet and loopback to forward it
* as a normal multicast packet. Also, make a copy of the
* outer_iphdr + pimhdr + reghdr + encap_iphdr
* to pass to the daemon later, so it can take the appropriate
* actions (e.g., send back PIM_REGISTER_STOP).
* XXX: here m->m_data points to the outer IP header.
*/
mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
if (mcp == NULL) {
log(LOG_ERR,
"pim_input: pim register: could not copy register head\n");
m_freem(m);
return;
}
/* Keep statistics */
/* XXX: registers_bytes include only the encap. mcast pkt */
pimstat.pims_rcv_registers_msgs++;
pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
/*
* forward the inner ip packet; point m_data at the inner ip.
*/
m_adj(m, iphlen + PIM_MINLEN);
if (mrtdebug & DEBUG_PIM) {
log(LOG_DEBUG,
"pim_input: forwarding decapsulated register: "
"src %lx, dst %lx, vif %d\n",
(u_long)ntohl(encap_ip->ip_src.s_addr),
(u_long)ntohl(encap_ip->ip_dst.s_addr),
reg_vif_num);
}
/* NB: vifp was collected above; can it change on us? */
if_simloop(vifp, m, dst.sin_family, 0);
/* prepare the register head to send to the mrouting daemon */
m = mcp;
}
pim_input_to_daemon:
/*
* Pass the PIM message up to the daemon; if it is a Register message,
* pass the 'head' only up to the daemon. This includes the
* outer IP header, PIM header, PIM-Register header and the
* inner IP header.
* XXX: the outer IP header pkt size of a Register is not adjust to
* reflect the fact that the inner multicast data is truncated.
*/
rip_input(m, iphlen);
return;
}
#endif /* PIM */
static int
ip_mroute_modevent(module_t mod, int type, void *unused)
{
switch (type) {
case MOD_LOAD:
mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
MFC_LOCK_INIT();
VIF_LOCK_INIT();
ip_mrouter_reset();
ip_mcast_src = X_ip_mcast_src;
ip_mforward = X_ip_mforward;
ip_mrouter_done = X_ip_mrouter_done;
ip_mrouter_get = X_ip_mrouter_get;
ip_mrouter_set = X_ip_mrouter_set;
ip_rsvp_force_done = X_ip_rsvp_force_done;
ip_rsvp_vif = X_ip_rsvp_vif;
legal_vif_num = X_legal_vif_num;
mrt_ioctl = X_mrt_ioctl;
rsvp_input_p = X_rsvp_input;
break;
case MOD_UNLOAD:
/*
* Typically module unload happens after the user-level
* process has shutdown the kernel services (the check
* below insures someone can't just yank the module out
* from under a running process). But if the module is
* just loaded and then unloaded w/o starting up a user
* process we still need to cleanup.
*/
if (ip_mrouter)
return EINVAL;
X_ip_mrouter_done();
ip_mcast_src = NULL;
ip_mforward = NULL;
ip_mrouter_done = NULL;
ip_mrouter_get = NULL;
ip_mrouter_set = NULL;
ip_rsvp_force_done = NULL;
ip_rsvp_vif = NULL;
legal_vif_num = NULL;
mrt_ioctl = NULL;
rsvp_input_p = NULL;
VIF_LOCK_DESTROY();
MFC_LOCK_DESTROY();
mtx_destroy(&mrouter_mtx);
break;
default:
return EOPNOTSUPP;
}
return 0;
}
static moduledata_t ip_mroutemod = {
"ip_mroute",
ip_mroute_modevent,
0
};
DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);