862 lines
26 KiB
C

/*******************************************************************************
*
* Module Name: hwregs - Read/write access functions for the various ACPI
* control and status registers.
* $Revision: 120 $
*
******************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999 - 2002, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#define __HWREGS_C__
#include "acpi.h"
#include "achware.h"
#include "acnamesp.h"
#define _COMPONENT ACPI_HARDWARE
ACPI_MODULE_NAME ("hwregs")
/*******************************************************************************
*
* FUNCTION: AcpiHwClearAcpiStatus
*
* PARAMETERS: none
*
* RETURN: none
*
* DESCRIPTION: Clears all fixed and general purpose status bits
*
******************************************************************************/
void
AcpiHwClearAcpiStatus (void)
{
NATIVE_UINT i;
NATIVE_UINT GpeBlock;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE ("HwClearAcpiStatus");
ACPI_DEBUG_PRINT ((ACPI_DB_IO, "About to write %04X to %04X\n",
ACPI_BITMASK_ALL_FIXED_STATUS,
(UINT16) ACPI_GET_ADDRESS (AcpiGbl_FADT->XPm1aEvtBlk.Address)));
Status = AcpiUtAcquireMutex (ACPI_MTX_HARDWARE);
if (ACPI_FAILURE (Status))
{
return_VOID;
}
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_STATUS,
ACPI_BITMASK_ALL_FIXED_STATUS);
/* Clear the fixed events */
if (ACPI_VALID_ADDRESS (AcpiGbl_FADT->XPm1bEvtBlk.Address))
{
AcpiOsWritePort ((ACPI_IO_ADDRESS)
ACPI_GET_ADDRESS (AcpiGbl_FADT->XPm1bEvtBlk.Address),
ACPI_BITMASK_ALL_FIXED_STATUS, 16);
}
/* Clear the GPE Bits */
for (GpeBlock = 0; GpeBlock < ACPI_MAX_GPE_BLOCKS; GpeBlock++)
{
for (i = 0; i < AcpiGbl_GpeBlockInfo[GpeBlock].RegisterCount; i++)
{
AcpiOsWritePort ((ACPI_IO_ADDRESS)
(AcpiGbl_GpeBlockInfo[GpeBlock].BlockAddress + i),
0xFF, 8);
}
}
(void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE);
return_VOID;
}
/*******************************************************************************
*
* FUNCTION: AcpiHwGetSleepTypeData
*
* PARAMETERS: SleepState - Numeric sleep state
* *SleepTypeA - Where SLP_TYPa is returned
* *SleepTypeB - Where SLP_TYPb is returned
*
* RETURN: Status - ACPI status
*
* DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested sleep
* state.
*
******************************************************************************/
ACPI_STATUS
AcpiHwGetSleepTypeData (
UINT8 SleepState,
UINT8 *SleepTypeA,
UINT8 *SleepTypeB)
{
ACPI_STATUS Status = AE_OK;
ACPI_OPERAND_OBJECT *ObjDesc;
ACPI_FUNCTION_TRACE ("HwGetSleepTypeData");
/*
* Validate parameters
*/
if ((SleepState > ACPI_S_STATES_MAX) ||
!SleepTypeA || !SleepTypeB)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
/*
* AcpiEvaluate the namespace object containing the values for this state
*/
Status = AcpiNsEvaluateByName ((NATIVE_CHAR *) AcpiGbl_DbSleepStates[SleepState],
NULL, &ObjDesc);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
if (!ObjDesc)
{
ACPI_REPORT_ERROR (("Missing Sleep State object\n"));
return_ACPI_STATUS (AE_NOT_EXIST);
}
/*
* We got something, now ensure it is correct. The object must
* be a package and must have at least 2 numeric values as the
* two elements
*/
/* Even though AcpiEvaluateObject resolves package references,
* NsEvaluate doesn't. So, we do it here.
*/
Status = AcpiUtResolvePackageReferences(ObjDesc);
if (ObjDesc->Package.Count < 2)
{
/* Must have at least two elements */
ACPI_REPORT_ERROR (("Sleep State package does not have at least two elements\n"));
Status = AE_AML_NO_OPERAND;
}
else if (((ObjDesc->Package.Elements[0])->Common.Type != ACPI_TYPE_INTEGER) ||
((ObjDesc->Package.Elements[1])->Common.Type != ACPI_TYPE_INTEGER))
{
/* Must have two */
ACPI_REPORT_ERROR (("Sleep State package elements are not both of type Number\n"));
Status = AE_AML_OPERAND_TYPE;
}
else
{
/*
* Valid _Sx_ package size, type, and value
*/
*SleepTypeA = (UINT8) (ObjDesc->Package.Elements[0])->Integer.Value;
*SleepTypeB = (UINT8) (ObjDesc->Package.Elements[1])->Integer.Value;
}
if (ACPI_FAILURE (Status))
{
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Bad Sleep object %p type %X\n",
ObjDesc, ObjDesc->Common.Type));
}
AcpiUtRemoveReference (ObjDesc);
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiHwGetRegisterBitMask
*
* PARAMETERS: RegisterId - index of ACPI Register to access
*
* RETURN: The bit mask to be used when accessing the register
*
* DESCRIPTION: Map RegisterId into a register bit mask.
*
******************************************************************************/
ACPI_BIT_REGISTER_INFO *
AcpiHwGetBitRegisterInfo (
UINT32 RegisterId)
{
ACPI_FUNCTION_NAME ("HwGetBitRegisterInfo");
if (RegisterId > ACPI_BITREG_MAX)
{
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Invalid BitRegister ID: %X\n", RegisterId));
return (NULL);
}
return (&AcpiGbl_BitRegisterInfo[RegisterId]);
}
/*******************************************************************************
*
* FUNCTION: AcpiHwBitRegisterRead
*
* PARAMETERS: RegisterId - index of ACPI Register to access
* UseLock - Lock the hardware
*
* RETURN: Value is read from specified Register. Value returned is
* normalized to bit0 (is shifted all the way right)
*
* DESCRIPTION: ACPI BitRegister read function.
*
******************************************************************************/
UINT32
AcpiHwBitRegisterRead (
UINT32 RegisterId,
UINT32 Flags)
{
UINT32 RegisterValue = 0;
ACPI_BIT_REGISTER_INFO *BitRegInfo;
ACPI_FUNCTION_TRACE ("HwBitRegisterRead");
if (Flags & ACPI_MTX_LOCK)
{
if (ACPI_FAILURE (AcpiUtAcquireMutex (ACPI_MTX_HARDWARE)))
{
return_VALUE (0);
}
}
/* Get the info structure corresponding to the requested ACPI Register */
BitRegInfo = AcpiHwGetBitRegisterInfo (RegisterId);
if (!BitRegInfo)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, BitRegInfo->ParentRegister);
if (Flags & ACPI_MTX_LOCK)
{
(void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE);
}
/* Normalize the value that was read */
RegisterValue = ((RegisterValue & BitRegInfo->AccessBitMask) >> BitRegInfo->BitPosition);
ACPI_DEBUG_PRINT ((ACPI_DB_IO, "ACPI RegisterRead: got %X\n", RegisterValue));
return_VALUE (RegisterValue);
}
/*******************************************************************************
*
* FUNCTION: AcpiHwBitRegisterWrite
*
* PARAMETERS: RegisterId - ID of ACPI BitRegister to access
* Value - (only used on write) value to write to the
* Register, NOT pre-normalized to the bit pos.
* Flags - Lock the hardware or not
*
* RETURN: Value written to from specified Register. This value
* is shifted all the way right.
*
* DESCRIPTION: ACPI Bit Register write function.
*
******************************************************************************/
UINT32
AcpiHwBitRegisterWrite (
UINT32 RegisterId,
UINT32 Value,
UINT32 Flags)
{
UINT32 RegisterValue = 0;
ACPI_BIT_REGISTER_INFO *BitRegInfo;
ACPI_FUNCTION_TRACE_U32 ("HwBitRegisterWrite", RegisterId);
if (Flags & ACPI_MTX_LOCK)
{
if (ACPI_FAILURE (AcpiUtAcquireMutex (ACPI_MTX_HARDWARE)))
{
return_VALUE (0);
}
}
/* Get the info structure corresponding to the requested ACPI Register */
BitRegInfo = AcpiHwGetBitRegisterInfo (RegisterId);
if (!BitRegInfo)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
/* Always do a register read first so we can insert the new bits */
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, BitRegInfo->ParentRegister);
/*
* Decode the Register ID
* Register id = Register block id | bit id
*
* Check bit id to fine locate Register offset.
* Check Mask to determine Register offset, and then read-write.
*/
switch (BitRegInfo->ParentRegister)
{
case ACPI_REGISTER_PM1_STATUS:
/*
* Status Registers are different from the rest. Clear by
* writing 1, writing 0 has no effect. So, the only relevent
* information is the single bit we're interested in, all others should
* be written as 0 so they will be left unchanged
*/
Value = ACPI_REGISTER_PREPARE_BITS (Value, BitRegInfo->BitPosition, BitRegInfo->AccessBitMask);
if (Value)
{
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_STATUS,
(UINT16) Value);
RegisterValue = 0;
}
break;
case ACPI_REGISTER_PM1_ENABLE:
ACPI_REGISTER_INSERT_VALUE (RegisterValue, BitRegInfo->BitPosition, BitRegInfo->AccessBitMask, Value);
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_ENABLE, (UINT16) RegisterValue);
break;
case ACPI_REGISTER_PM1_CONTROL:
/*
* Read the PM1 Control register.
* Note that at this level, the fact that there are actually TWO
* registers (A and B - and that B may not exist) is abstracted.
*/
ACPI_DEBUG_PRINT ((ACPI_DB_IO, "PM1 control: Read %X\n", RegisterValue));
ACPI_REGISTER_INSERT_VALUE (RegisterValue, BitRegInfo->BitPosition, BitRegInfo->AccessBitMask, Value);
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, RegisterId,
(UINT16) RegisterValue);
break;
case ACPI_REGISTER_PM2_CONTROL:
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM2_CONTROL);
ACPI_DEBUG_PRINT ((ACPI_DB_IO, "PM2 control: Read %X from %8.8X%8.8X\n",
RegisterValue, ACPI_HIDWORD (AcpiGbl_FADT->XPm2CntBlk.Address),
ACPI_LODWORD (AcpiGbl_FADT->XPm2CntBlk.Address)));
ACPI_REGISTER_INSERT_VALUE (RegisterValue, BitRegInfo->BitPosition, BitRegInfo->AccessBitMask, Value);
ACPI_DEBUG_PRINT ((ACPI_DB_IO, "About to write %04X to %8.8X%8.8X\n",
RegisterValue,
ACPI_HIDWORD (AcpiGbl_FADT->XPm2CntBlk.Address),
ACPI_LODWORD (AcpiGbl_FADT->XPm2CntBlk.Address)));
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK,
ACPI_REGISTER_PM2_CONTROL, (UINT8) (RegisterValue));
break;
default:
break;
}
if (Flags & ACPI_MTX_LOCK)
{
(void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE);
}
/* Normalize the value that was read */
RegisterValue = ((RegisterValue & BitRegInfo->AccessBitMask) >> BitRegInfo->BitPosition);
ACPI_DEBUG_PRINT ((ACPI_DB_IO, "ACPI RegisterWrite actual %X\n", RegisterValue));
return_VALUE (RegisterValue);
}
/******************************************************************************
*
* FUNCTION: AcpiHwRegisterRead
*
* PARAMETERS: UseLock - Mutex hw access.
* RegisterId - RegisterID + Offset.
*
* RETURN: Value read or written.
*
* DESCRIPTION: Acpi register read function. Registers are read at the
* given offset.
*
******************************************************************************/
UINT32
AcpiHwRegisterRead (
BOOLEAN UseLock,
UINT32 RegisterId)
{
UINT32 Value = 0;
UINT32 BankOffset;
ACPI_FUNCTION_TRACE ("HwRegisterRead");
if (ACPI_MTX_LOCK == UseLock)
{
if (ACPI_FAILURE (AcpiUtAcquireMutex (ACPI_MTX_HARDWARE)))
{
return_VALUE (0);
}
}
switch (RegisterId)
{
case ACPI_REGISTER_PM1_STATUS: /* 16-bit access */
Value = AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1aEvtBlk, 0);
Value |= AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1bEvtBlk, 0);
break;
case ACPI_REGISTER_PM1_ENABLE: /* 16-bit access*/
BankOffset = ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen);
Value = AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1aEvtBlk, BankOffset);
Value |= AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1bEvtBlk, BankOffset);
break;
case ACPI_REGISTER_PM1_CONTROL: /* 16-bit access */
Value = AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1aCntBlk, 0);
Value |= AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1bCntBlk, 0);
break;
case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */
Value = AcpiHwLowLevelRead (8, &AcpiGbl_FADT->XPm2CntBlk, 0);
break;
case ACPI_REGISTER_PM_TIMER: /* 32-bit access */
Value = AcpiHwLowLevelRead (32, &AcpiGbl_FADT->XPmTmrBlk, 0);
break;
case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */
AcpiOsReadPort (AcpiGbl_FADT->SmiCmd, &Value, 8);
break;
default:
/* Value will be returned as 0 */
break;
}
if (ACPI_MTX_LOCK == UseLock)
{
(void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE);
}
return_VALUE (Value);
}
/******************************************************************************
*
* FUNCTION: AcpiHwRegisterWrite
*
* PARAMETERS: UseLock - Mutex hw access.
* RegisterId - RegisterID + Offset.
*
* RETURN: Value read or written.
*
* DESCRIPTION: Acpi register Write function. Registers are written at the
* given offset.
*
******************************************************************************/
void
AcpiHwRegisterWrite (
BOOLEAN UseLock,
UINT32 RegisterId,
UINT32 Value)
{
UINT32 BankOffset;
ACPI_FUNCTION_TRACE ("HwRegisterWrite");
if (ACPI_MTX_LOCK == UseLock)
{
if (ACPI_FAILURE (AcpiUtAcquireMutex (ACPI_MTX_HARDWARE)))
{
return_VOID;
}
}
switch (RegisterId)
{
case ACPI_REGISTER_PM1_STATUS: /* 16-bit access */
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aEvtBlk, 0);
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bEvtBlk, 0);
break;
case ACPI_REGISTER_PM1_ENABLE: /* 16-bit access*/
BankOffset = ACPI_DIV_2 (AcpiGbl_FADT->Pm1EvtLen);
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aEvtBlk, BankOffset);
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bEvtBlk, BankOffset);
break;
case ACPI_REGISTER_PM1_CONTROL: /* 16-bit access */
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aCntBlk, 0);
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bCntBlk, 0);
break;
case ACPI_REGISTER_PM1A_CONTROL: /* 16-bit access */
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aCntBlk, 0);
break;
case ACPI_REGISTER_PM1B_CONTROL: /* 16-bit access */
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bCntBlk, 0);
break;
case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */
AcpiHwLowLevelWrite (8, Value, &AcpiGbl_FADT->XPm2CntBlk, 0);
break;
case ACPI_REGISTER_PM_TIMER: /* 32-bit access */
AcpiHwLowLevelWrite (32, Value, &AcpiGbl_FADT->XPmTmrBlk, 0);
break;
case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */
/* SMI_CMD is currently always in IO space */
AcpiOsWritePort (AcpiGbl_FADT->SmiCmd, Value, 8);
break;
default:
Value = 0;
break;
}
if (ACPI_MTX_LOCK == UseLock)
{
(void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE);
}
return_VOID;
}
/******************************************************************************
*
* FUNCTION: AcpiHwLowLevelRead
*
* PARAMETERS: Register - GAS register structure
* Offset - Offset from the base address in the GAS
* Width - 8, 16, or 32
*
* RETURN: Value read
*
* DESCRIPTION: Read from either memory, IO, or PCI config space.
*
******************************************************************************/
UINT32
AcpiHwLowLevelRead (
UINT32 Width,
ACPI_GENERIC_ADDRESS *Reg,
UINT32 Offset)
{
UINT32 Value = 0;
ACPI_PHYSICAL_ADDRESS MemAddress;
ACPI_IO_ADDRESS IoAddress;
ACPI_PCI_ID PciId;
UINT16 PciRegister;
ACPI_FUNCTION_ENTRY ();
/*
* Must have a valid pointer to a GAS structure, and
* a non-zero address within
*/
if ((!Reg) ||
(!ACPI_VALID_ADDRESS (Reg->Address)))
{
return 0;
}
/*
* Three address spaces supported:
* Memory, Io, or PCI config.
*/
switch (Reg->AddressSpaceId)
{
case ACPI_ADR_SPACE_SYSTEM_MEMORY:
MemAddress = (ACPI_PHYSICAL_ADDRESS) (ACPI_GET_ADDRESS (Reg->Address) + Offset);
AcpiOsReadMemory (MemAddress, &Value, Width);
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
IoAddress = (ACPI_IO_ADDRESS) (ACPI_GET_ADDRESS (Reg->Address) + Offset);
AcpiOsReadPort (IoAddress, &Value, Width);
break;
case ACPI_ADR_SPACE_PCI_CONFIG:
PciId.Segment = 0;
PciId.Bus = 0;
PciId.Device = ACPI_PCI_DEVICE (ACPI_GET_ADDRESS (Reg->Address));
PciId.Function = ACPI_PCI_FUNCTION (ACPI_GET_ADDRESS (Reg->Address));
PciRegister = (UINT16) (ACPI_PCI_REGISTER (ACPI_GET_ADDRESS (Reg->Address)) + Offset);
AcpiOsReadPciConfiguration (&PciId, PciRegister, &Value, Width);
break;
}
return Value;
}
/******************************************************************************
*
* FUNCTION: AcpiHwLowLevelWrite
*
* PARAMETERS: Width - 8, 16, or 32
* Value - To be written
* Register - GAS register structure
* Offset - Offset from the base address in the GAS
*
*
* RETURN: Value read
*
* DESCRIPTION: Read from either memory, IO, or PCI config space.
*
******************************************************************************/
void
AcpiHwLowLevelWrite (
UINT32 Width,
UINT32 Value,
ACPI_GENERIC_ADDRESS *Reg,
UINT32 Offset)
{
ACPI_PHYSICAL_ADDRESS MemAddress;
ACPI_IO_ADDRESS IoAddress;
ACPI_PCI_ID PciId;
UINT16 PciRegister;
ACPI_FUNCTION_ENTRY ();
/*
* Must have a valid pointer to a GAS structure, and
* a non-zero address within
*/
if ((!Reg) ||
(!ACPI_VALID_ADDRESS (Reg->Address)))
{
return;
}
/*
* Three address spaces supported:
* Memory, Io, or PCI config.
*/
switch (Reg->AddressSpaceId)
{
case ACPI_ADR_SPACE_SYSTEM_MEMORY:
MemAddress = (ACPI_PHYSICAL_ADDRESS) (ACPI_GET_ADDRESS (Reg->Address) + Offset);
AcpiOsWriteMemory (MemAddress, Value, Width);
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
IoAddress = (ACPI_IO_ADDRESS) (ACPI_GET_ADDRESS (Reg->Address) + Offset);
AcpiOsWritePort (IoAddress, Value, Width);
break;
case ACPI_ADR_SPACE_PCI_CONFIG:
PciId.Segment = 0;
PciId.Bus = 0;
PciId.Device = ACPI_PCI_DEVICE (ACPI_GET_ADDRESS (Reg->Address));
PciId.Function = ACPI_PCI_FUNCTION (ACPI_GET_ADDRESS (Reg->Address));
PciRegister = (UINT16) (ACPI_PCI_REGISTER (ACPI_GET_ADDRESS (Reg->Address)) + Offset);
AcpiOsWritePciConfiguration (&PciId, PciRegister, Value, Width);
break;
}
}