1920a78bd9
algorithm, which is based on the 2011 v0.1 patch release and described in the paper "Revisiting TCP Congestion Control using Delay Gradients" by David Hayes and Grenville Armitage. It is implemented as a kernel module compatible with the modular congestion control framework. CDG is a hybrid congestion control algorithm which reacts to both packet loss and inferred queuing delay. It attempts to operate as a delay-based algorithm where possible, but utilises heuristics to detect loss-based TCP cross traffic and will compete effectively as required. CDG is therefore incrementally deployable and suitable for use on shared networks. In collaboration with: David Hayes <david.hayes at ieee.org> and Grenville Armitage <garmitage at swin edu au> MFC after: 4 days Sponsored by: Cisco University Research Program and FreeBSD Foundation
696 lines
23 KiB
C
696 lines
23 KiB
C
/*-
|
|
* Copyright (c) 2009-2013
|
|
* Swinburne University of Technology, Melbourne, Australia
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed at the Centre for Advanced Internet
|
|
* Architectures, Swinburne University of Technology, by David Hayes, made
|
|
* possible in part by a gift from The Cisco University Research Program Fund,
|
|
* a corporate advised fund of Silicon Valley Community Foundation. Development
|
|
* and testing were further assisted by a grant from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* CAIA Delay-Gradient (CDG) congestion control algorithm
|
|
*
|
|
* An implemention of the delay-gradient congestion control algorithm proposed
|
|
* in the following paper:
|
|
*
|
|
* D. A. Hayes and G. Armitage, "Revisiting TCP Congestion Control using Delay
|
|
* Gradients", in IFIP Networking, Valencia, Spain, 9-13 May 2011.
|
|
*
|
|
* Developed as part of the NewTCP research project at Swinburne University of
|
|
* Technology's Centre for Advanced Internet Architectures, Melbourne,
|
|
* Australia. More details are available at:
|
|
* http://caia.swin.edu.au/urp/newtcp/
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/hhook.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/khelp.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/vnet.h>
|
|
|
|
#include <netinet/cc.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
|
|
#include <netinet/cc/cc_module.h>
|
|
|
|
#include <netinet/khelp/h_ertt.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#define CDG_VERSION "0.1"
|
|
|
|
#define CAST_PTR_INT(X) (*((int*)(X)))
|
|
|
|
#ifndef VIMAGE
|
|
#define vnet_sysctl_handle_uint(oidp, arg1, arg2, req) \
|
|
sysctl_handle_int(oidp, arg1, arg2, req)
|
|
#endif
|
|
|
|
/* Private delay-gradient induced congestion control signal. */
|
|
#define CC_CDG_DELAY 0x01000000
|
|
|
|
/* NewReno window deflation factor on loss (as a percentage). */
|
|
#define RENO_BETA 50
|
|
|
|
/* Queue states. */
|
|
#define CDG_Q_EMPTY 1
|
|
#define CDG_Q_RISING 2
|
|
#define CDG_Q_FALLING 3
|
|
#define CDG_Q_FULL 4
|
|
#define CDG_Q_UNKNOWN 9999
|
|
|
|
/* Number of bit shifts used in probexp lookup table. */
|
|
#define EXP_PREC 15
|
|
|
|
/* Largest gradient represented in probexp lookup table. */
|
|
#define MAXGRAD 5
|
|
|
|
/*
|
|
* Delay Precision Enhance - number of bit shifts used for qtrend related
|
|
* integer arithmetic precision.
|
|
*/
|
|
#define D_P_E 7
|
|
|
|
struct qdiff_sample {
|
|
long qdiff;
|
|
STAILQ_ENTRY(qdiff_sample) qdiff_lnk;
|
|
};
|
|
|
|
struct cdg {
|
|
long max_qtrend;
|
|
long min_qtrend;
|
|
STAILQ_HEAD(minrtts_head, qdiff_sample) qdiffmin_q;
|
|
STAILQ_HEAD(maxrtts_head, qdiff_sample) qdiffmax_q;
|
|
long window_incr;
|
|
/* rttcount for window increase when in congestion avoidance */
|
|
long rtt_count;
|
|
/* maximum measured rtt within an rtt period */
|
|
int maxrtt_in_rtt;
|
|
/* maximum measured rtt within prev rtt period */
|
|
int maxrtt_in_prevrtt;
|
|
/* minimum measured rtt within an rtt period */
|
|
int minrtt_in_rtt;
|
|
/* minimum measured rtt within prev rtt period */
|
|
int minrtt_in_prevrtt;
|
|
/* consecutive congestion episode counter */
|
|
uint32_t consec_cong_cnt;
|
|
/* when tracking a new reno type loss window */
|
|
uint32_t shadow_w;
|
|
/* maximum number of samples in the moving average queue */
|
|
int sample_q_size;
|
|
/* number of samples in the moving average queue */
|
|
int num_samples;
|
|
/* estimate of the queue state of the path */
|
|
int queue_state;
|
|
};
|
|
|
|
/*
|
|
* Lookup table for:
|
|
* (1 - exp(-x)) << EXP_PREC, where x = [0,MAXGRAD] in 2^-7 increments
|
|
*
|
|
* Note: probexp[0] is set to 10 (not 0) as a safety for very low increase
|
|
* gradients.
|
|
*/
|
|
static const int probexp[641] = {
|
|
10,255,508,759,1008,1255,1501,1744,1985,2225,2463,2698,2932,3165,3395,3624,
|
|
3850,4075,4299,4520,4740,4958,5175,5389,5602,5814,6024,6232,6438,6643,6846,
|
|
7048,7248,7447,7644,7839,8033,8226,8417,8606,8794,8981,9166,9350,9532,9713,
|
|
9892,10070,10247,10422,10596,10769,10940,11110,11278,11445,11611,11776,11939,
|
|
12101,12262,12422,12580,12737,12893,13048,13201,13354,13505,13655,13803,13951,
|
|
14097,14243,14387,14530,14672,14813,14952,15091,15229,15365,15500,15635,15768,
|
|
15900,16032,16162,16291,16419,16547,16673,16798,16922,17046,17168,17289,17410,
|
|
17529,17648,17766,17882,17998,18113,18227,18340,18453,18564,18675,18784,18893,
|
|
19001,19108,19215,19320,19425,19529,19632,19734,19835,19936,20036,20135,20233,
|
|
20331,20427,20523,20619,20713,20807,20900,20993,21084,21175,21265,21355,21444,
|
|
21532,21619,21706,21792,21878,21962,22046,22130,22213,22295,22376,22457,22537,
|
|
22617,22696,22774,22852,22929,23006,23082,23157,23232,23306,23380,23453,23525,
|
|
23597,23669,23739,23810,23879,23949,24017,24085,24153,24220,24286,24352,24418,
|
|
24483,24547,24611,24675,24738,24800,24862,24924,24985,25045,25106,25165,25224,
|
|
25283,25341,25399,25456,25513,25570,25626,25681,25737,25791,25846,25899,25953,
|
|
26006,26059,26111,26163,26214,26265,26316,26366,26416,26465,26514,26563,26611,
|
|
26659,26707,26754,26801,26847,26893,26939,26984,27029,27074,27118,27162,27206,
|
|
27249,27292,27335,27377,27419,27460,27502,27543,27583,27624,27664,27703,27743,
|
|
27782,27821,27859,27897,27935,27973,28010,28047,28084,28121,28157,28193,28228,
|
|
28263,28299,28333,28368,28402,28436,28470,28503,28536,28569,28602,28634,28667,
|
|
28699,28730,28762,28793,28824,28854,28885,28915,28945,28975,29004,29034,29063,
|
|
29092,29120,29149,29177,29205,29232,29260,29287,29314,29341,29368,29394,29421,
|
|
29447,29472,29498,29524,29549,29574,29599,29623,29648,29672,29696,29720,29744,
|
|
29767,29791,29814,29837,29860,29882,29905,29927,29949,29971,29993,30014,30036,
|
|
30057,30078,30099,30120,30141,30161,30181,30201,30221,30241,30261,30280,30300,
|
|
30319,30338,30357,30376,30394,30413,30431,30449,30467,30485,30503,30521,30538,
|
|
30555,30573,30590,30607,30624,30640,30657,30673,30690,30706,30722,30738,30753,
|
|
30769,30785,30800,30815,30831,30846,30861,30876,30890,30905,30919,30934,30948,
|
|
30962,30976,30990,31004,31018,31031,31045,31058,31072,31085,31098,31111,31124,
|
|
31137,31149,31162,31174,31187,31199,31211,31223,31235,31247,31259,31271,31283,
|
|
31294,31306,31317,31328,31339,31351,31362,31373,31383,31394,31405,31416,31426,
|
|
31436,31447,31457,31467,31477,31487,31497,31507,31517,31527,31537,31546,31556,
|
|
31565,31574,31584,31593,31602,31611,31620,31629,31638,31647,31655,31664,31673,
|
|
31681,31690,31698,31706,31715,31723,31731,31739,31747,31755,31763,31771,31778,
|
|
31786,31794,31801,31809,31816,31824,31831,31838,31846,31853,31860,31867,31874,
|
|
31881,31888,31895,31902,31908,31915,31922,31928,31935,31941,31948,31954,31960,
|
|
31967,31973,31979,31985,31991,31997,32003,32009,32015,32021,32027,32033,32038,
|
|
32044,32050,32055,32061,32066,32072,32077,32083,32088,32093,32098,32104,32109,
|
|
32114,32119,32124,32129,32134,32139,32144,32149,32154,32158,32163,32168,32173,
|
|
32177,32182,32186,32191,32195,32200,32204,32209,32213,32217,32222,32226,32230,
|
|
32234,32238,32242,32247,32251,32255,32259,32263,32267,32270,32274,32278,32282,
|
|
32286,32290,32293,32297,32301,32304,32308,32311,32315,32318,32322,32325,32329,
|
|
32332,32336,32339,32342,32346,32349,32352,32356,32359,32362,32365,32368,32371,
|
|
32374,32377,32381,32384,32387,32389,32392,32395,32398,32401,32404,32407,32410,
|
|
32412,32415,32418,32421,32423,32426,32429,32431,32434,32437,32439,32442,32444,
|
|
32447,32449,32452,32454,32457,32459,32461,32464,32466,32469,32471,32473,32476,
|
|
32478,32480,32482,32485,32487,32489,32491,32493,32495,32497,32500,32502,32504,
|
|
32506,32508,32510,32512,32514,32516,32518,32520,32522,32524,32526,32527,32529,
|
|
32531,32533,32535,32537,32538,32540,32542,32544,32545,32547};
|
|
|
|
static uma_zone_t qdiffsample_zone;
|
|
|
|
static MALLOC_DEFINE(M_CDG, "cdg data",
|
|
"Per connection data required for the CDG congestion control algorithm");
|
|
|
|
static int ertt_id;
|
|
|
|
static VNET_DEFINE(uint32_t, cdg_alpha_inc);
|
|
static VNET_DEFINE(uint32_t, cdg_beta_delay);
|
|
static VNET_DEFINE(uint32_t, cdg_beta_loss);
|
|
static VNET_DEFINE(uint32_t, cdg_smoothing_factor);
|
|
static VNET_DEFINE(uint32_t, cdg_exp_backoff_scale);
|
|
static VNET_DEFINE(uint32_t, cdg_consec_cong);
|
|
static VNET_DEFINE(uint32_t, cdg_hold_backoff);
|
|
#define V_cdg_alpha_inc VNET(cdg_alpha_inc)
|
|
#define V_cdg_beta_delay VNET(cdg_beta_delay)
|
|
#define V_cdg_beta_loss VNET(cdg_beta_loss)
|
|
#define V_cdg_smoothing_factor VNET(cdg_smoothing_factor)
|
|
#define V_cdg_exp_backoff_scale VNET(cdg_exp_backoff_scale)
|
|
#define V_cdg_consec_cong VNET(cdg_consec_cong)
|
|
#define V_cdg_hold_backoff VNET(cdg_hold_backoff)
|
|
|
|
/* Function prototypes. */
|
|
static int cdg_mod_init(void);
|
|
static void cdg_conn_init(struct cc_var *ccv);
|
|
static int cdg_cb_init(struct cc_var *ccv);
|
|
static void cdg_cb_destroy(struct cc_var *ccv);
|
|
static void cdg_cong_signal(struct cc_var *ccv, uint32_t signal_type);
|
|
static void cdg_ack_received(struct cc_var *ccv, uint16_t ack_type);
|
|
|
|
struct cc_algo cdg_cc_algo = {
|
|
.name = "cdg",
|
|
.mod_init = cdg_mod_init,
|
|
.ack_received = cdg_ack_received,
|
|
.cb_destroy = cdg_cb_destroy,
|
|
.cb_init = cdg_cb_init,
|
|
.conn_init = cdg_conn_init,
|
|
.cong_signal = cdg_cong_signal
|
|
};
|
|
|
|
/* Vnet created and being initialised. */
|
|
static void
|
|
cdg_init_vnet(const void *unused __unused)
|
|
{
|
|
|
|
V_cdg_alpha_inc = 0;
|
|
V_cdg_beta_delay = 70;
|
|
V_cdg_beta_loss = 50;
|
|
V_cdg_smoothing_factor = 8;
|
|
V_cdg_exp_backoff_scale = 3;
|
|
V_cdg_consec_cong = 5;
|
|
V_cdg_hold_backoff = 5;
|
|
}
|
|
|
|
static int
|
|
cdg_mod_init(void)
|
|
{
|
|
VNET_ITERATOR_DECL(v);
|
|
|
|
ertt_id = khelp_get_id("ertt");
|
|
if (ertt_id <= 0)
|
|
return (EINVAL);
|
|
|
|
qdiffsample_zone = uma_zcreate("cdg_qdiffsample",
|
|
sizeof(struct qdiff_sample), NULL, NULL, NULL, NULL, 0, 0);
|
|
|
|
VNET_LIST_RLOCK();
|
|
VNET_FOREACH(v) {
|
|
CURVNET_SET(v);
|
|
cdg_init_vnet(NULL);
|
|
CURVNET_RESTORE();
|
|
}
|
|
VNET_LIST_RUNLOCK();
|
|
|
|
cdg_cc_algo.post_recovery = newreno_cc_algo.post_recovery;
|
|
cdg_cc_algo.after_idle = newreno_cc_algo.after_idle;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cdg_cb_init(struct cc_var *ccv)
|
|
{
|
|
struct cdg *cdg_data;
|
|
|
|
cdg_data = malloc(sizeof(struct cdg), M_CDG, M_NOWAIT);
|
|
if (cdg_data == NULL)
|
|
return (ENOMEM);
|
|
|
|
cdg_data->shadow_w = 0;
|
|
cdg_data->max_qtrend = 0;
|
|
cdg_data->min_qtrend = 0;
|
|
cdg_data->queue_state = CDG_Q_UNKNOWN;
|
|
cdg_data->maxrtt_in_rtt = 0;
|
|
cdg_data->maxrtt_in_prevrtt = 0;
|
|
cdg_data->minrtt_in_rtt = INT_MAX;
|
|
cdg_data->minrtt_in_prevrtt = 0;
|
|
cdg_data->window_incr = 0;
|
|
cdg_data->rtt_count = 0;
|
|
cdg_data->consec_cong_cnt = 0;
|
|
cdg_data->sample_q_size = V_cdg_smoothing_factor;
|
|
cdg_data->num_samples = 0;
|
|
STAILQ_INIT(&cdg_data->qdiffmin_q);
|
|
STAILQ_INIT(&cdg_data->qdiffmax_q);
|
|
|
|
ccv->cc_data = cdg_data;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cdg_conn_init(struct cc_var *ccv)
|
|
{
|
|
struct cdg *cdg_data = ccv->cc_data;
|
|
|
|
/*
|
|
* Initialise the shadow_cwnd in case we are competing with loss based
|
|
* flows from the start
|
|
*/
|
|
cdg_data->shadow_w = CCV(ccv, snd_cwnd);
|
|
}
|
|
|
|
static void
|
|
cdg_cb_destroy(struct cc_var *ccv)
|
|
{
|
|
struct cdg *cdg_data;
|
|
struct qdiff_sample *qds, *qds_n;
|
|
|
|
cdg_data = ccv->cc_data;
|
|
|
|
qds = STAILQ_FIRST(&cdg_data->qdiffmin_q);
|
|
while (qds != NULL) {
|
|
qds_n = STAILQ_NEXT(qds, qdiff_lnk);
|
|
uma_zfree(qdiffsample_zone,qds);
|
|
qds = qds_n;
|
|
}
|
|
|
|
qds = STAILQ_FIRST(&cdg_data->qdiffmax_q);
|
|
while (qds != NULL) {
|
|
qds_n = STAILQ_NEXT(qds, qdiff_lnk);
|
|
uma_zfree(qdiffsample_zone,qds);
|
|
qds = qds_n;
|
|
}
|
|
|
|
free(ccv->cc_data, M_CDG);
|
|
}
|
|
|
|
static int
|
|
cdg_beta_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
if (req->newptr != NULL &&
|
|
(CAST_PTR_INT(req->newptr) == 0 || CAST_PTR_INT(req->newptr) > 100))
|
|
return (EINVAL);
|
|
|
|
return (vnet_sysctl_handle_uint(oidp, arg1, arg2, req));
|
|
}
|
|
|
|
static int
|
|
cdg_exp_backoff_scale_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
if (req->newptr != NULL && CAST_PTR_INT(req->newptr) < 1)
|
|
return (EINVAL);
|
|
|
|
return (vnet_sysctl_handle_uint(oidp, arg1, arg2, req));
|
|
}
|
|
|
|
static inline unsigned long
|
|
cdg_window_decrease(struct cc_var *ccv, unsigned long owin, unsigned int beta)
|
|
{
|
|
|
|
return ((ulmin(CCV(ccv, snd_wnd), owin) * beta) / 100);
|
|
}
|
|
|
|
/*
|
|
* Window increase function
|
|
* This window increase function is independent of the initial window size
|
|
* to ensure small window flows are not discriminated against (i.e. fairness).
|
|
* It increases at 1pkt/rtt like Reno for alpha_inc rtts, and then 2pkts/rtt for
|
|
* the next alpha_inc rtts, etc.
|
|
*/
|
|
static void
|
|
cdg_window_increase(struct cc_var *ccv, int new_measurement)
|
|
{
|
|
struct cdg *cdg_data;
|
|
int incr, s_w_incr;
|
|
|
|
cdg_data = ccv->cc_data;
|
|
incr = s_w_incr = 0;
|
|
|
|
if (CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh)) {
|
|
/* Slow start. */
|
|
incr = CCV(ccv, t_maxseg);
|
|
s_w_incr = incr;
|
|
cdg_data->window_incr = cdg_data->rtt_count = 0;
|
|
} else {
|
|
/* Congestion avoidance. */
|
|
if (new_measurement) {
|
|
s_w_incr = CCV(ccv, t_maxseg);
|
|
if (V_cdg_alpha_inc == 0) {
|
|
incr = CCV(ccv, t_maxseg);
|
|
} else {
|
|
if (++cdg_data->rtt_count >= V_cdg_alpha_inc) {
|
|
cdg_data->window_incr++;
|
|
cdg_data->rtt_count = 0;
|
|
}
|
|
incr = CCV(ccv, t_maxseg) *
|
|
cdg_data->window_incr;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cdg_data->shadow_w > 0)
|
|
cdg_data->shadow_w = ulmin(cdg_data->shadow_w + s_w_incr,
|
|
TCP_MAXWIN << CCV(ccv, snd_scale));
|
|
|
|
CCV(ccv, snd_cwnd) = ulmin(CCV(ccv, snd_cwnd) + incr,
|
|
TCP_MAXWIN << CCV(ccv, snd_scale));
|
|
}
|
|
|
|
static void
|
|
cdg_cong_signal(struct cc_var *ccv, uint32_t signal_type)
|
|
{
|
|
struct cdg *cdg_data = ccv->cc_data;
|
|
|
|
switch(signal_type) {
|
|
case CC_CDG_DELAY:
|
|
CCV(ccv, snd_ssthresh) = cdg_window_decrease(ccv,
|
|
CCV(ccv, snd_cwnd), V_cdg_beta_delay);
|
|
CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
|
|
CCV(ccv, snd_recover) = CCV(ccv, snd_max);
|
|
cdg_data->window_incr = cdg_data->rtt_count = 0;
|
|
ENTER_CONGRECOVERY(CCV(ccv, t_flags));
|
|
break;
|
|
case CC_NDUPACK:
|
|
/*
|
|
* If already responding to congestion OR we have guessed no
|
|
* queue in the path is full.
|
|
*/
|
|
if (IN_CONGRECOVERY(CCV(ccv, t_flags)) ||
|
|
cdg_data->queue_state < CDG_Q_FULL) {
|
|
CCV(ccv, snd_ssthresh) = CCV(ccv, snd_cwnd);
|
|
CCV(ccv, snd_recover) = CCV(ccv, snd_max);
|
|
} else {
|
|
/*
|
|
* Loss is likely to be congestion related. We have
|
|
* inferred a queue full state, so have shadow window
|
|
* react to loss as NewReno would.
|
|
*/
|
|
if (cdg_data->shadow_w > 0)
|
|
cdg_data->shadow_w = cdg_window_decrease(ccv,
|
|
cdg_data->shadow_w, RENO_BETA);
|
|
|
|
CCV(ccv, snd_ssthresh) = ulmax(cdg_data->shadow_w,
|
|
cdg_window_decrease(ccv, CCV(ccv, snd_cwnd),
|
|
V_cdg_beta_loss));
|
|
|
|
cdg_data->window_incr = cdg_data->rtt_count = 0;
|
|
}
|
|
ENTER_RECOVERY(CCV(ccv, t_flags));
|
|
break;
|
|
default:
|
|
newreno_cc_algo.cong_signal(ccv, signal_type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Using a negative exponential probabilistic backoff so that sources with
|
|
* varying RTTs which share the same link will, on average, have the same
|
|
* probability of backoff over time.
|
|
*
|
|
* Prob_backoff = 1 - exp(-qtrend / V_cdg_exp_backoff_scale), where
|
|
* V_cdg_exp_backoff_scale is the average qtrend for the exponential backoff.
|
|
*/
|
|
static inline int
|
|
prob_backoff(long qtrend)
|
|
{
|
|
int backoff, idx, p;
|
|
|
|
backoff = (qtrend > ((MAXGRAD * V_cdg_exp_backoff_scale) << D_P_E));
|
|
|
|
if (!backoff) {
|
|
if (V_cdg_exp_backoff_scale > 1)
|
|
idx = (qtrend + V_cdg_exp_backoff_scale / 2) /
|
|
V_cdg_exp_backoff_scale;
|
|
else
|
|
idx = qtrend;
|
|
|
|
/* Backoff probability proportional to rate of queue growth. */
|
|
p = (INT_MAX / (1 << EXP_PREC)) * probexp[idx];
|
|
backoff = (random() < p);
|
|
}
|
|
|
|
return (backoff);
|
|
}
|
|
|
|
static inline void
|
|
calc_moving_average(struct cdg *cdg_data, long qdiff_max, long qdiff_min)
|
|
{
|
|
struct qdiff_sample *qds;
|
|
|
|
++cdg_data->num_samples;
|
|
if (cdg_data->num_samples > cdg_data->sample_q_size) {
|
|
/* Minimum RTT. */
|
|
qds = STAILQ_FIRST(&cdg_data->qdiffmin_q);
|
|
cdg_data->min_qtrend = cdg_data->min_qtrend +
|
|
(qdiff_min - qds->qdiff) / cdg_data->sample_q_size;
|
|
STAILQ_REMOVE_HEAD(&cdg_data->qdiffmin_q, qdiff_lnk);
|
|
qds->qdiff = qdiff_min;
|
|
STAILQ_INSERT_TAIL(&cdg_data->qdiffmin_q, qds, qdiff_lnk);
|
|
|
|
/* Maximum RTT. */
|
|
qds = STAILQ_FIRST(&cdg_data->qdiffmax_q);
|
|
cdg_data->max_qtrend = cdg_data->max_qtrend +
|
|
(qdiff_max - qds->qdiff) / cdg_data->sample_q_size;
|
|
STAILQ_REMOVE_HEAD(&cdg_data->qdiffmax_q, qdiff_lnk);
|
|
qds->qdiff = qdiff_max;
|
|
STAILQ_INSERT_TAIL(&cdg_data->qdiffmax_q, qds, qdiff_lnk);
|
|
--cdg_data->num_samples;
|
|
} else {
|
|
qds = uma_zalloc(qdiffsample_zone, M_NOWAIT);
|
|
if (qds != NULL) {
|
|
cdg_data->min_qtrend = cdg_data->min_qtrend +
|
|
qdiff_min / cdg_data->sample_q_size;
|
|
qds->qdiff = qdiff_min;
|
|
STAILQ_INSERT_TAIL(&cdg_data->qdiffmin_q, qds,
|
|
qdiff_lnk);
|
|
}
|
|
|
|
qds = uma_zalloc(qdiffsample_zone, M_NOWAIT);
|
|
if (qds) {
|
|
cdg_data->max_qtrend = cdg_data->max_qtrend +
|
|
qdiff_max / cdg_data->sample_q_size;
|
|
qds->qdiff = qdiff_max;
|
|
STAILQ_INSERT_TAIL(&cdg_data->qdiffmax_q, qds,
|
|
qdiff_lnk);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
cdg_ack_received(struct cc_var *ccv, uint16_t ack_type)
|
|
{
|
|
struct cdg *cdg_data;
|
|
struct ertt *e_t;
|
|
long qdiff_max, qdiff_min;
|
|
int congestion, new_measurement, slowstart;
|
|
|
|
cdg_data = ccv->cc_data;
|
|
e_t = (struct ertt *)khelp_get_osd(CCV(ccv, osd), ertt_id);
|
|
new_measurement = e_t->flags & ERTT_NEW_MEASUREMENT;
|
|
congestion = 0;
|
|
cdg_data->maxrtt_in_rtt = imax(e_t->rtt, cdg_data->maxrtt_in_rtt);
|
|
cdg_data->minrtt_in_rtt = imin(e_t->rtt, cdg_data->minrtt_in_rtt);
|
|
|
|
if (new_measurement) {
|
|
slowstart = (CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh));
|
|
/*
|
|
* Update smoothed gradient measurements. Since we are only
|
|
* using one measurement per RTT, use max or min rtt_in_rtt.
|
|
* This is also less noisy than a sample RTT measurement. Max
|
|
* RTT measurements can have trouble due to OS issues.
|
|
*/
|
|
if (cdg_data->maxrtt_in_prevrtt) {
|
|
qdiff_max = ((long)(cdg_data->maxrtt_in_rtt -
|
|
cdg_data->maxrtt_in_prevrtt) << D_P_E );
|
|
qdiff_min = ((long)(cdg_data->minrtt_in_rtt -
|
|
cdg_data->minrtt_in_prevrtt) << D_P_E );
|
|
|
|
calc_moving_average(cdg_data, qdiff_max, qdiff_min);
|
|
|
|
/* Probabilistic backoff with respect to gradient. */
|
|
if (slowstart && qdiff_min > 0)
|
|
congestion = prob_backoff(qdiff_min);
|
|
else if (cdg_data->min_qtrend > 0)
|
|
congestion = prob_backoff(cdg_data->min_qtrend);
|
|
else if (slowstart && qdiff_max > 0)
|
|
congestion = prob_backoff(qdiff_max);
|
|
else if (cdg_data->max_qtrend > 0)
|
|
congestion = prob_backoff(cdg_data->max_qtrend);
|
|
|
|
/* Update estimate of queue state. */
|
|
if (cdg_data->min_qtrend > 0 &&
|
|
cdg_data->max_qtrend <= 0) {
|
|
cdg_data->queue_state = CDG_Q_FULL;
|
|
} else if (cdg_data->min_qtrend >= 0 &&
|
|
cdg_data->max_qtrend < 0) {
|
|
cdg_data->queue_state = CDG_Q_EMPTY;
|
|
cdg_data->shadow_w = 0;
|
|
} else if (cdg_data->min_qtrend > 0 &&
|
|
cdg_data->max_qtrend > 0) {
|
|
cdg_data->queue_state = CDG_Q_RISING;
|
|
} else if (cdg_data->min_qtrend < 0 &&
|
|
cdg_data->max_qtrend < 0) {
|
|
cdg_data->queue_state = CDG_Q_FALLING;
|
|
}
|
|
|
|
if (cdg_data->min_qtrend < 0 ||
|
|
cdg_data->max_qtrend < 0)
|
|
cdg_data->consec_cong_cnt = 0;
|
|
}
|
|
|
|
cdg_data->minrtt_in_prevrtt = cdg_data->minrtt_in_rtt;
|
|
cdg_data->minrtt_in_rtt = INT_MAX;
|
|
cdg_data->maxrtt_in_prevrtt = cdg_data->maxrtt_in_rtt;
|
|
cdg_data->maxrtt_in_rtt = 0;
|
|
e_t->flags &= ~ERTT_NEW_MEASUREMENT;
|
|
}
|
|
|
|
if (congestion) {
|
|
cdg_data->consec_cong_cnt++;
|
|
if (!IN_RECOVERY(CCV(ccv, t_flags))) {
|
|
if (cdg_data->consec_cong_cnt <= V_cdg_consec_cong)
|
|
cdg_cong_signal(ccv, CC_CDG_DELAY);
|
|
else
|
|
/*
|
|
* We have been backing off but the queue is not
|
|
* falling. Assume we are competing with
|
|
* loss-based flows and don't back off for the
|
|
* next V_cdg_hold_backoff RTT periods.
|
|
*/
|
|
if (cdg_data->consec_cong_cnt >=
|
|
V_cdg_consec_cong + V_cdg_hold_backoff)
|
|
cdg_data->consec_cong_cnt = 0;
|
|
|
|
/* Won't see effect until 2nd RTT. */
|
|
cdg_data->maxrtt_in_prevrtt = 0;
|
|
/*
|
|
* Resync shadow window in case we are competing with a
|
|
* loss based flow
|
|
*/
|
|
cdg_data->shadow_w = ulmax(CCV(ccv, snd_cwnd),
|
|
cdg_data->shadow_w);
|
|
}
|
|
} else if (ack_type == CC_ACK)
|
|
cdg_window_increase(ccv, new_measurement);
|
|
}
|
|
|
|
/* When a vnet is created and being initialised, init the per-stack CDG vars. */
|
|
VNET_SYSINIT(cdg_init_vnet, SI_SUB_PROTO_BEGIN, SI_ORDER_FIRST,
|
|
cdg_init_vnet, NULL);
|
|
|
|
SYSCTL_DECL(_net_inet_tcp_cc_cdg);
|
|
SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, cdg, CTLFLAG_RW, NULL,
|
|
"CAIA delay-gradient congestion control related settings");
|
|
|
|
SYSCTL_STRING(_net_inet_tcp_cc_cdg, OID_AUTO, version,
|
|
CTLFLAG_RD, CDG_VERSION, sizeof(CDG_VERSION) - 1,
|
|
"Current algorithm/implementation version number");
|
|
|
|
SYSCTL_VNET_UINT(_net_inet_tcp_cc_cdg, OID_AUTO, alpha_inc,
|
|
CTLFLAG_RW, &VNET_NAME(cdg_alpha_inc), 0,
|
|
"Increment the window increase factor alpha by 1 MSS segment every "
|
|
"alpha_inc RTTs during congestion avoidance mode.");
|
|
|
|
SYSCTL_VNET_PROC(_net_inet_tcp_cc_cdg, OID_AUTO, beta_delay,
|
|
CTLTYPE_UINT|CTLFLAG_RW, &VNET_NAME(cdg_beta_delay), 70,
|
|
&cdg_beta_handler, "IU",
|
|
"Delay-based window decrease factor as a percentage "
|
|
"(on delay-based backoff, w = w * beta_delay / 100)");
|
|
|
|
SYSCTL_VNET_PROC(_net_inet_tcp_cc_cdg, OID_AUTO, beta_loss,
|
|
CTLTYPE_UINT|CTLFLAG_RW, &VNET_NAME(cdg_beta_loss), 50,
|
|
&cdg_beta_handler, "IU",
|
|
"Loss-based window decrease factor as a percentage "
|
|
"(on loss-based backoff, w = w * beta_loss / 100)");
|
|
|
|
SYSCTL_VNET_PROC(_net_inet_tcp_cc_cdg, OID_AUTO, exp_backoff_scale,
|
|
CTLTYPE_UINT|CTLFLAG_RW, &VNET_NAME(cdg_exp_backoff_scale), 2,
|
|
&cdg_exp_backoff_scale_handler, "IU",
|
|
"Scaling parameter for the probabilistic exponential backoff");
|
|
|
|
SYSCTL_VNET_UINT(_net_inet_tcp_cc_cdg, OID_AUTO, smoothing_factor,
|
|
CTLFLAG_RW, &VNET_NAME(cdg_smoothing_factor), 8,
|
|
"Number of samples used for moving average smoothing (0 = no smoothing)");
|
|
|
|
SYSCTL_VNET_UINT(_net_inet_tcp_cc_cdg, OID_AUTO, loss_compete_consec_cong,
|
|
CTLFLAG_RW, &VNET_NAME(cdg_consec_cong), 5,
|
|
"Number of consecutive delay-gradient based congestion episodes which will "
|
|
"trigger loss based CC compatibility");
|
|
|
|
SYSCTL_VNET_UINT(_net_inet_tcp_cc_cdg, OID_AUTO, loss_compete_hold_backoff,
|
|
CTLFLAG_RW, &VNET_NAME(cdg_hold_backoff), 5,
|
|
"Number of consecutive delay-gradient based congestion episodes to hold "
|
|
"the window backoff for loss based CC compatibility");
|
|
|
|
DECLARE_CC_MODULE(cdg, &cdg_cc_algo);
|
|
|
|
MODULE_DEPEND(cdg, ertt, 1, 1, 1);
|