7012990a73
Pointed out by: Tatoku Ogaito <tacha@trap.fukui-med.ac.jp>
796 lines
20 KiB
C
796 lines
20 KiB
C
/*-
|
|
* Copyright (c) 1999 Seigo Tanimura
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
|
|
* cwcealdr1.zip, the sample sources by Crystal Semiconductor.
|
|
* Copyright (c) 1996-1998 Crystal Semiconductor Corp.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "pci.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/clock.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/soundcard.h>
|
|
#include <dev/sound/chip.h>
|
|
#include <dev/sound/pci/csareg.h>
|
|
#include <dev/sound/pci/csavar.h>
|
|
|
|
#if NPCI > 0
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
#endif /* NPCI > 0 */
|
|
|
|
#include <dev/sound/pci/csaimg.h>
|
|
|
|
/* Here is the parameter structure per a device. */
|
|
struct csa_softc {
|
|
device_t dev; /* device */
|
|
csa_res res; /* resources */
|
|
|
|
device_t pcm; /* pcm device */
|
|
driver_intr_t* pcmintr; /* pcm intr */
|
|
void *pcmintr_arg; /* pcm intr arg */
|
|
#if notyet
|
|
device_t midi; /* midi device */
|
|
driver_intr_t* midiintr; /* midi intr */
|
|
void *midiintr_arg; /* midi intr arg */
|
|
#endif /* notyet */
|
|
void *ih; /* cookie */
|
|
};
|
|
|
|
typedef struct csa_softc *sc_p;
|
|
|
|
#if NPCI > 0
|
|
static int csa_probe(device_t dev);
|
|
static int csa_attach(device_t dev);
|
|
#endif /* NPCI > 0 */
|
|
static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
|
|
u_long start, u_long end, u_long count, u_int flags);
|
|
static int csa_release_resource(device_t bus, device_t child, int type, int rid,
|
|
struct resource *r);
|
|
static int csa_initialize(sc_p scp);
|
|
static void csa_clearserialfifos(csa_res *resp);
|
|
static void csa_resetdsp(csa_res *resp);
|
|
static int csa_downloadimage(csa_res *resp);
|
|
static int csa_transferimage(csa_res *resp, u_long *src, u_long dest, u_long len);
|
|
|
|
static devclass_t csa_devclass;
|
|
|
|
#if NPCI > 0
|
|
static int
|
|
csa_probe(device_t dev)
|
|
{
|
|
device_t child;
|
|
char *s;
|
|
struct sndcard_func *func;
|
|
|
|
s = NULL;
|
|
switch (pci_get_devid(dev)) {
|
|
case CS4610_PCI_ID:
|
|
s = "Crystal Semiconductor CS4610/4611 Audio accelerator";
|
|
break;
|
|
case CS4614_PCI_ID:
|
|
s = "Crystal Semiconductor CS4614/4622/4624 Audio accelerator/4280 Audio controller";
|
|
break;
|
|
case CS4615_PCI_ID:
|
|
s = "Crystal Semiconductor CS4615 Audio accelerator";
|
|
break;
|
|
case CS4281_PCI_ID:
|
|
s = "Crystal Semiconductor CS4281 Audio controller";
|
|
break;
|
|
}
|
|
|
|
if (s != NULL) {
|
|
device_set_desc(dev, s);
|
|
|
|
/* PCM Audio */
|
|
func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT);
|
|
if (func == NULL)
|
|
return (ENOMEM);
|
|
bzero(func, sizeof(*func));
|
|
func->func = SCF_PCM;
|
|
child = device_add_child(dev, "pcm", -1);
|
|
device_set_ivars(child, func);
|
|
|
|
#if notyet
|
|
/* Midi Interface */
|
|
func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT);
|
|
if (func == NULL)
|
|
return (ENOMEM);
|
|
bzero(func, sizeof(*func));
|
|
func->func = SCF_MIDI;
|
|
child = device_add_child(dev, "midi", -1);
|
|
device_set_ivars(child, func);
|
|
#endif /* notyet */
|
|
|
|
return (0);
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
csa_attach(device_t dev)
|
|
{
|
|
u_int32_t stcmd;
|
|
sc_p scp;
|
|
csa_res *resp;
|
|
|
|
scp = device_get_softc(dev);
|
|
|
|
/* Fill in the softc. */
|
|
bzero(scp, sizeof(*scp));
|
|
scp->dev = dev;
|
|
|
|
/* Wake up the device. */
|
|
stcmd = pci_read_config(dev, PCIR_COMMAND, 4);
|
|
if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
|
|
stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
|
|
pci_write_config(dev, PCIR_COMMAND, 4, stcmd);
|
|
}
|
|
stcmd = pci_read_config(dev, PCIR_LATTIMER, 4);
|
|
if (stcmd < 32)
|
|
stcmd = 32;
|
|
pci_write_config(dev, PCIR_LATTIMER, 4, stcmd);
|
|
|
|
/* Allocate the resources. */
|
|
resp = &scp->res;
|
|
resp->io_rid = CS461x_IO_OFFSET;
|
|
resp->io = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->io_rid, 0, ~0, CS461x_IO_SIZE, RF_ACTIVE);
|
|
if (resp->io == NULL)
|
|
return (ENXIO);
|
|
resp->mem_rid = CS461x_MEM_OFFSET;
|
|
resp->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &resp->mem_rid, 0, ~0, CS461x_MEM_SIZE, RF_ACTIVE);
|
|
if (resp->mem == NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
|
|
return (ENXIO);
|
|
}
|
|
resp->irq_rid = 0;
|
|
resp->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &resp->irq_rid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
|
|
if (resp->irq == NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Initialize the chip. */
|
|
if (csa_initialize(scp)) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
|
|
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Reset the Processor. */
|
|
csa_resetdsp(resp);
|
|
|
|
/* Download the Processor Image to the processor. */
|
|
if (csa_downloadimage(resp)) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
|
|
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
|
|
return (ENXIO);
|
|
}
|
|
|
|
bus_generic_attach(dev);
|
|
|
|
return (0);
|
|
}
|
|
#endif /* NPCI > 0 */
|
|
|
|
static struct resource *
|
|
csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
|
|
u_long start, u_long end, u_long count, u_int flags)
|
|
{
|
|
sc_p scp;
|
|
csa_res *resp;
|
|
struct resource *res;
|
|
|
|
scp = device_get_softc(bus);
|
|
resp = &scp->res;
|
|
switch (type) {
|
|
case SYS_RES_IRQ:
|
|
if (*rid != 0)
|
|
return (NULL);
|
|
res = resp->irq;
|
|
break;
|
|
case SYS_RES_MEMORY:
|
|
switch (*rid) {
|
|
case CS461x_IO_OFFSET:
|
|
res = resp->io;
|
|
break;
|
|
case CS461x_MEM_OFFSET:
|
|
res = resp->mem;
|
|
break;
|
|
default:
|
|
return (NULL);
|
|
}
|
|
break;
|
|
default:
|
|
return (NULL);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
csa_release_resource(device_t bus, device_t child, int type, int rid,
|
|
struct resource *r)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
csa_initialize(sc_p scp)
|
|
{
|
|
int i;
|
|
u_int32_t acsts, acisv;
|
|
csa_res *resp;
|
|
|
|
resp = &scp->res;
|
|
|
|
/*
|
|
* First, blast the clock control register to zero so that the PLL starts
|
|
* out in a known state, and blast the master serial port control register
|
|
* to zero so that the serial ports also start out in a known state.
|
|
*/
|
|
csa_writeio(resp, BA0_CLKCR1, 0);
|
|
csa_writeio(resp, BA0_SERMC1, 0);
|
|
|
|
/*
|
|
* If we are in AC97 mode, then we must set the part to a host controlled
|
|
* AC-link. Otherwise, we won't be able to bring up the link.
|
|
*/
|
|
#if 1
|
|
csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
|
|
#else
|
|
csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
|
|
#endif /* 1 */
|
|
|
|
/*
|
|
* Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
|
|
* spec) and then drive it high. This is done for non AC97 modes since
|
|
* there might be logic external to the CS461x that uses the ARST# line
|
|
* for a reset.
|
|
*/
|
|
csa_writeio(resp, BA0_ACCTL, 0);
|
|
DELAY(250);
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
|
|
|
|
/*
|
|
* The first thing we do here is to enable sync generation. As soon
|
|
* as we start receiving bit clock, we'll start producing the SYNC
|
|
* signal.
|
|
*/
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
|
|
|
|
/*
|
|
* Now wait for a short while to allow the AC97 part to start
|
|
* generating bit clock (so we don't try to start the PLL without an
|
|
* input clock).
|
|
*/
|
|
DELAY(50000);
|
|
|
|
/*
|
|
* Set the serial port timing configuration, so that
|
|
* the clock control circuit gets its clock from the correct place.
|
|
*/
|
|
csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
|
|
|
|
/*
|
|
* Write the selected clock control setup to the hardware. Do not turn on
|
|
* SWCE yet (if requested), so that the devices clocked by the output of
|
|
* PLL are not clocked until the PLL is stable.
|
|
*/
|
|
csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
|
|
csa_writeio(resp, BA0_PLLM, 0x3a);
|
|
csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
|
|
|
|
/*
|
|
* Power up the PLL.
|
|
*/
|
|
csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
|
|
|
|
/*
|
|
* Wait until the PLL has stabilized.
|
|
*/
|
|
DELAY(50000);
|
|
|
|
/*
|
|
* Turn on clocking of the core so that we can setup the serial ports.
|
|
*/
|
|
csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
|
|
|
|
/*
|
|
* Fill the serial port FIFOs with silence.
|
|
*/
|
|
csa_clearserialfifos(resp);
|
|
|
|
/*
|
|
* Set the serial port FIFO pointer to the first sample in the FIFO.
|
|
*/
|
|
#if notdef
|
|
csa_writeio(resp, BA0_SERBSP, 0);
|
|
#endif /* notdef */
|
|
|
|
/*
|
|
* Write the serial port configuration to the part. The master
|
|
* enable bit is not set until all other values have been written.
|
|
*/
|
|
csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
|
|
csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
|
|
csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
|
|
|
|
/*
|
|
* Wait for the codec ready signal from the AC97 codec.
|
|
*/
|
|
acsts = 0;
|
|
for (i = 0 ; i < 1000 ; i++) {
|
|
/*
|
|
* First, lets wait a short while to let things settle out a bit,
|
|
* and to prevent retrying the read too quickly.
|
|
*/
|
|
DELAY(250);
|
|
|
|
/*
|
|
* Read the AC97 status register to see if we've seen a CODEC READY
|
|
* signal from the AC97 codec.
|
|
*/
|
|
acsts = csa_readio(resp, BA0_ACSTS);
|
|
if ((acsts & ACSTS_CRDY) != 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure we sampled CODEC READY.
|
|
*/
|
|
if ((acsts & ACSTS_CRDY) == 0)
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Assert the vaid frame signal so that we can start sending commands
|
|
* to the AC97 codec.
|
|
*/
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
|
|
|
|
/*
|
|
* Wait until we've sampled input slots 3 and 4 as valid, meaning that
|
|
* the codec is pumping ADC data across the AC-link.
|
|
*/
|
|
acisv = 0;
|
|
for (i = 0 ; i < 1000 ; i++) {
|
|
/*
|
|
* First, lets wait a short while to let things settle out a bit,
|
|
* and to prevent retrying the read too quickly.
|
|
*/
|
|
#if notdef
|
|
DELAY(10000000L); /* clw */
|
|
#else
|
|
DELAY(2500);
|
|
#endif /* notdef */
|
|
/*
|
|
* Read the input slot valid register and see if input slots 3 and
|
|
* 4 are valid yet.
|
|
*/
|
|
acisv = csa_readio(resp, BA0_ACISV);
|
|
if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
|
|
break;
|
|
}
|
|
/*
|
|
* Make sure we sampled valid input slots 3 and 4. If not, then return
|
|
* an error.
|
|
*/
|
|
if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Now, assert valid frame and the slot 3 and 4 valid bits. This will
|
|
* commense the transfer of digital audio data to the AC97 codec.
|
|
*/
|
|
csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
|
|
|
|
/*
|
|
* Power down the DAC and ADC. We will power them up (if) when we need
|
|
* them.
|
|
*/
|
|
#if notdef
|
|
csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
|
|
#endif /* notdef */
|
|
|
|
/*
|
|
* Turn off the Processor by turning off the software clock enable flag in
|
|
* the clock control register.
|
|
*/
|
|
#if notdef
|
|
clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
|
|
csa_writeio(resp, BA0_CLKCR1, clkcr1);
|
|
#endif /* notdef */
|
|
|
|
/*
|
|
* Enable interrupts on the part.
|
|
*/
|
|
#if notdef
|
|
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
|
|
#endif /* notdef */
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
csa_clearserialfifos(csa_res *resp)
|
|
{
|
|
int i, j, pwr;
|
|
u_int8_t clkcr1, serbst;
|
|
|
|
/*
|
|
* See if the devices are powered down. If so, we must power them up first
|
|
* or they will not respond.
|
|
*/
|
|
pwr = 1;
|
|
clkcr1 = csa_readio(resp, BA0_CLKCR1);
|
|
if ((clkcr1 & CLKCR1_SWCE) == 0) {
|
|
csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
|
|
pwr = 0;
|
|
}
|
|
|
|
/*
|
|
* We want to clear out the serial port FIFOs so we don't end up playing
|
|
* whatever random garbage happens to be in them. We fill the sample FIFOs
|
|
* with zero (silence).
|
|
*/
|
|
csa_writeio(resp, BA0_SERBWP, 0);
|
|
|
|
/* Fill all 256 sample FIFO locations. */
|
|
serbst = 0;
|
|
for (i = 0 ; i < 256 ; i++) {
|
|
/* Make sure the previous FIFO write operation has completed. */
|
|
for (j = 0 ; j < 5 ; j++) {
|
|
DELAY(250);
|
|
serbst = csa_readio(resp, BA0_SERBST);
|
|
if ((serbst & SERBST_WBSY) == 0)
|
|
break;
|
|
}
|
|
if ((serbst & SERBST_WBSY) != 0) {
|
|
if (!pwr)
|
|
csa_writeio(resp, BA0_CLKCR1, clkcr1);
|
|
}
|
|
/* Write the serial port FIFO index. */
|
|
csa_writeio(resp, BA0_SERBAD, i);
|
|
/* Tell the serial port to load the new value into the FIFO location. */
|
|
csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
|
|
}
|
|
/*
|
|
* Now, if we powered up the devices, then power them back down again.
|
|
* This is kinda ugly, but should never happen.
|
|
*/
|
|
if (!pwr)
|
|
csa_writeio(resp, BA0_CLKCR1, clkcr1);
|
|
}
|
|
|
|
static void
|
|
csa_resetdsp(csa_res *resp)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Write the reset bit of the SP control register.
|
|
*/
|
|
csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
|
|
|
|
/*
|
|
* Write the control register.
|
|
*/
|
|
csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
|
|
|
|
/*
|
|
* Clear the trap registers.
|
|
*/
|
|
for (i = 0 ; i < 8 ; i++) {
|
|
csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
|
|
csa_writemem(resp, BA1_TWPR, 0xffff);
|
|
}
|
|
csa_writemem(resp, BA1_DREG, 0);
|
|
|
|
/*
|
|
* Set the frame timer to reflect the number of cycles per frame.
|
|
*/
|
|
csa_writemem(resp, BA1_FRMT, 0xadf);
|
|
}
|
|
|
|
static int
|
|
csa_downloadimage(csa_res *resp)
|
|
{
|
|
int ret;
|
|
u_long ul, offset;
|
|
|
|
for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
|
|
/*
|
|
* DMA this block from host memory to the appropriate
|
|
* memory on the CSDevice.
|
|
*/
|
|
ret = csa_transferimage(
|
|
resp,
|
|
BA1Struct.BA1Array + offset,
|
|
BA1Struct.MemoryStat[ul].ulDestByteOffset,
|
|
BA1Struct.MemoryStat[ul].ulSourceByteSize);
|
|
if (ret)
|
|
return (ret);
|
|
offset += BA1Struct.MemoryStat[ul].ulSourceByteSize >> 2;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
csa_transferimage(csa_res *resp, u_long *src, u_long dest, u_long len)
|
|
{
|
|
u_long ul;
|
|
|
|
/*
|
|
* We do not allow DMAs from host memory to host memory (although the DMA
|
|
* can do it) and we do not allow DMAs which are not a multiple of 4 bytes
|
|
* in size (because that DMA can not do that). Return an error if either
|
|
* of these conditions exist.
|
|
*/
|
|
if ((len & 0x3) != 0)
|
|
return (EINVAL);
|
|
|
|
/* Check the destination address that it is a multiple of 4 */
|
|
if ((dest & 0x3) != 0)
|
|
return (EINVAL);
|
|
|
|
/* Write the buffer out. */
|
|
for (ul = 0 ; ul < len ; ul += 4)
|
|
csa_writemem(resp, dest + ul, src[ul >> 2]);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
|
|
{
|
|
int i;
|
|
u_int32_t acsda, acctl, acsts;
|
|
|
|
/*
|
|
* Make sure that there is not data sitting around from a previous
|
|
* uncompleted access. ACSDA = Status Data Register = 47Ch
|
|
*/
|
|
acsda = csa_readio(resp, BA0_ACSDA);
|
|
|
|
/*
|
|
* Setup the AC97 control registers on the CS461x to send the
|
|
* appropriate command to the AC97 to perform the read.
|
|
* ACCAD = Command Address Register = 46Ch
|
|
* ACCDA = Command Data Register = 470h
|
|
* ACCTL = Control Register = 460h
|
|
* set DCV - will clear when process completed
|
|
* set CRW - Read command
|
|
* set VFRM - valid frame enabled
|
|
* set ESYN - ASYNC generation enabled
|
|
* set RSTN - ARST# inactive, AC97 codec not reset
|
|
*/
|
|
|
|
/*
|
|
* Get the actual AC97 register from the offset
|
|
*/
|
|
csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
|
|
csa_writeio(resp, BA0_ACCDA, 0);
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
|
|
|
|
/*
|
|
* Wait for the read to occur.
|
|
*/
|
|
acctl = 0;
|
|
for (i = 0 ; i < 10 ; i++) {
|
|
/*
|
|
* First, we want to wait for a short time.
|
|
*/
|
|
DELAY(25);
|
|
|
|
/*
|
|
* Now, check to see if the read has completed.
|
|
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
|
|
*/
|
|
acctl = csa_readio(resp, BA0_ACCTL);
|
|
if ((acctl & ACCTL_DCV) == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure the read completed.
|
|
*/
|
|
if ((acctl & ACCTL_DCV) != 0)
|
|
return (EAGAIN);
|
|
|
|
/*
|
|
* Wait for the valid status bit to go active.
|
|
*/
|
|
acsts = 0;
|
|
for (i = 0 ; i < 10 ; i++) {
|
|
/*
|
|
* Read the AC97 status register.
|
|
* ACSTS = Status Register = 464h
|
|
*/
|
|
acsts = csa_readio(resp, BA0_ACSTS);
|
|
/*
|
|
* See if we have valid status.
|
|
* VSTS - Valid Status
|
|
*/
|
|
if ((acsts & ACSTS_VSTS) != 0)
|
|
break;
|
|
/*
|
|
* Wait for a short while.
|
|
*/
|
|
DELAY(25);
|
|
}
|
|
|
|
/*
|
|
* Make sure we got valid status.
|
|
*/
|
|
if ((acsts & ACSTS_VSTS) == 0)
|
|
return (EAGAIN);
|
|
|
|
/*
|
|
* Read the data returned from the AC97 register.
|
|
* ACSDA = Status Data Register = 474h
|
|
*/
|
|
*data = csa_readio(resp, BA0_ACSDA);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
|
|
{
|
|
int i;
|
|
u_int32_t acctl;
|
|
|
|
/*
|
|
* Setup the AC97 control registers on the CS461x to send the
|
|
* appropriate command to the AC97 to perform the write.
|
|
* ACCAD = Command Address Register = 46Ch
|
|
* ACCDA = Command Data Register = 470h
|
|
* ACCTL = Control Register = 460h
|
|
* set DCV - will clear when process completed
|
|
* set VFRM - valid frame enabled
|
|
* set ESYN - ASYNC generation enabled
|
|
* set RSTN - ARST# inactive, AC97 codec not reset
|
|
*/
|
|
|
|
/*
|
|
* Get the actual AC97 register from the offset
|
|
*/
|
|
csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
|
|
csa_writeio(resp, BA0_ACCDA, data);
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
|
|
|
|
/*
|
|
* Wait for the write to occur.
|
|
*/
|
|
acctl = 0;
|
|
for (i = 0 ; i < 10 ; i++) {
|
|
/*
|
|
* First, we want to wait for a short time.
|
|
*/
|
|
DELAY(25);
|
|
|
|
/*
|
|
* Now, check to see if the read has completed.
|
|
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
|
|
*/
|
|
acctl = csa_readio(resp, BA0_ACCTL);
|
|
if ((acctl & ACCTL_DCV) == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure the write completed.
|
|
*/
|
|
if ((acctl & ACCTL_DCV) != 0)
|
|
return (EAGAIN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
u_int32_t
|
|
csa_readio(csa_res *resp, u_long offset)
|
|
{
|
|
u_int32_t ul;
|
|
|
|
if (offset < BA0_AC97_RESET)
|
|
return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
|
|
else {
|
|
if (csa_readcodec(resp, offset, &ul))
|
|
ul = 0;
|
|
return (ul);
|
|
}
|
|
}
|
|
|
|
void
|
|
csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
|
|
{
|
|
if (offset < BA0_AC97_RESET)
|
|
bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
|
|
else
|
|
csa_writecodec(resp, offset, data);
|
|
}
|
|
|
|
u_int32_t
|
|
csa_readmem(csa_res *resp, u_long offset)
|
|
{
|
|
return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset) & 0xffffffff;
|
|
}
|
|
|
|
void
|
|
csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
|
|
{
|
|
bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
|
|
}
|
|
|
|
#if NPCI > 0
|
|
static device_method_t csa_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, csa_probe),
|
|
DEVMETHOD(device_attach, csa_attach),
|
|
DEVMETHOD(device_detach, bus_generic_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
DEVMETHOD(device_suspend, bus_generic_suspend),
|
|
DEVMETHOD(device_resume, bus_generic_resume),
|
|
|
|
/* Bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_alloc_resource, csa_alloc_resource),
|
|
DEVMETHOD(bus_release_resource, csa_release_resource),
|
|
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
|
|
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
|
|
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
|
|
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t csa_driver = {
|
|
"csa",
|
|
csa_methods,
|
|
sizeof(struct csa_softc),
|
|
};
|
|
|
|
/*
|
|
* csa can be attached to a pci bus.
|
|
*/
|
|
DRIVER_MODULE(csa, pci, csa_driver, csa_devclass, 0, 0);
|
|
#endif /* NPCI > 0 */
|