freebsd-skq/sys/kern/subr_smp.c
jhb 7028e129fd Fix an issue with critical sections and SMP rendezvous handlers.
Specifically, a critical_exit() call that drops the nesting level to zero
has a brief window where the pending preemption flag is set and the
nesting level is set to zero.  This is done purposefully to avoid races
where a preemption scheduled by an interrupt could be lost otherwise (see
revision 144777).  However, this does mean that if an interrupt fires
during this window and enters and exits a critical section, it may preempt
from the interrupt context.  This is generally fine as the interrupt code
is careful to arrange critical sections so that they are not exited until
it is safe to preempt (e.g. interrupts EOI'd and masked if necessary).

However, the SMP rendezvous IPI handler does not quite follow this rule,
and in general a rendezvous can never be preempted.  Rendezvous handlers
are also not permitted to schedule threads to execute, so they will not
typically trigger preemptions.  SMP rendezvous handlers may use
spinlocks (carefully) such as the rm_cleanIPI() handler used in rmlocks,
but using a spinlock also enters and exits a critical section.  If the
interrupted top-half code is in the brief window of critical_exit() where
the nesting level is zero but a preemption is pending, then releasing the
spinlock can trigger a preemption.  Because we know that SMP rendezvous
handlers can never schedule a thread, we know that a critical_exit() in
an SMP rendezvous handler will only preempt in this edge case.  We also
know that the top-half thread will happily handle the deferred preemption
once the SMP rendezvous has completed, so the preemption will not be lost.

This makes it safe to employ a workaround where we use a nested critical
section in the SMP rendezvous code itself around rendezvous action
routines to prevent any preemptions during an SMP rendezvous.  The
workaround intentionally avoids checking for a deferred preemption
when leaving the critical section on the assumption that if there is a
pending preemption it will be handled by the interrupted top-half code.

Submitted by:	mlaier (variation specific to rm_cleanIPI())
Obtained from:	Isilon
MFC after:	1 week
2011-05-24 13:36:41 +00:00

710 lines
18 KiB
C

/*-
* Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This module holds the global variables and machine independent functions
* used for the kernel SMP support.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/proc.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <machine/cpu.h>
#include <machine/smp.h>
#include "opt_sched.h"
#ifdef SMP
volatile cpumask_t stopped_cpus;
volatile cpumask_t started_cpus;
cpumask_t hlt_cpus_mask;
cpumask_t logical_cpus_mask;
void (*cpustop_restartfunc)(void);
#endif
/* This is used in modules that need to work in both SMP and UP. */
cpumask_t all_cpus;
int mp_ncpus;
/* export this for libkvm consumers. */
int mp_maxcpus = MAXCPU;
volatile int smp_started;
u_int mp_maxid;
SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP");
SYSCTL_UINT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD, &mp_maxid, 0,
"Max CPU ID.");
SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD, &mp_maxcpus, 0,
"Max number of CPUs that the system was compiled for.");
int smp_active = 0; /* are the APs allowed to run? */
SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
"Number of Auxillary Processors (APs) that were successfully started");
int smp_disabled = 0; /* has smp been disabled? */
SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN, &smp_disabled, 0,
"SMP has been disabled from the loader");
TUNABLE_INT("kern.smp.disabled", &smp_disabled);
int smp_cpus = 1; /* how many cpu's running */
SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0,
"Number of CPUs online");
int smp_topology = 0; /* Which topology we're using. */
SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
"Topology override setting; 0 is default provided by hardware.");
TUNABLE_INT("kern.smp.topology", &smp_topology);
#ifdef SMP
/* Enable forwarding of a signal to a process running on a different CPU */
static int forward_signal_enabled = 1;
SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
&forward_signal_enabled, 0,
"Forwarding of a signal to a process on a different CPU");
/* Variables needed for SMP rendezvous. */
static volatile int smp_rv_ncpus;
static void (*volatile smp_rv_setup_func)(void *arg);
static void (*volatile smp_rv_action_func)(void *arg);
static void (*volatile smp_rv_teardown_func)(void *arg);
static void *volatile smp_rv_func_arg;
static volatile int smp_rv_waiters[3];
static volatile int smp_rv_generation;
/*
* Shared mutex to restrict busywaits between smp_rendezvous() and
* smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these
* functions trigger at once and cause multiple CPUs to busywait with
* interrupts disabled.
*/
struct mtx smp_ipi_mtx;
/*
* Let the MD SMP code initialize mp_maxid very early if it can.
*/
static void
mp_setmaxid(void *dummy)
{
cpu_mp_setmaxid();
}
SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
/*
* Call the MD SMP initialization code.
*/
static void
mp_start(void *dummy)
{
mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
/* Probe for MP hardware. */
if (smp_disabled != 0 || cpu_mp_probe() == 0) {
mp_ncpus = 1;
all_cpus = PCPU_GET(cpumask);
return;
}
cpu_mp_start();
printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
mp_ncpus);
cpu_mp_announce();
}
SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
void
forward_signal(struct thread *td)
{
int id;
/*
* signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
* this thread, so all we need to do is poke it if it is currently
* executing so that it executes ast().
*/
THREAD_LOCK_ASSERT(td, MA_OWNED);
KASSERT(TD_IS_RUNNING(td),
("forward_signal: thread is not TDS_RUNNING"));
CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
if (!smp_started || cold || panicstr)
return;
if (!forward_signal_enabled)
return;
/* No need to IPI ourself. */
if (td == curthread)
return;
id = td->td_oncpu;
if (id == NOCPU)
return;
ipi_cpu(id, IPI_AST);
}
/*
* When called the executing CPU will send an IPI to all other CPUs
* requesting that they halt execution.
*
* Usually (but not necessarily) called with 'other_cpus' as its arg.
*
* - Signals all CPUs in map to stop.
* - Waits for each to stop.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*
*/
static int
generic_stop_cpus(cpumask_t map, u_int type)
{
static volatile u_int stopping_cpu = NOCPU;
int i;
KASSERT(
#if defined(__amd64__)
type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
#else
type == IPI_STOP || type == IPI_STOP_HARD,
#endif
("%s: invalid stop type", __func__));
if (!smp_started)
return (0);
CTR2(KTR_SMP, "stop_cpus(%x) with %u type", map, type);
if (stopping_cpu != PCPU_GET(cpuid))
while (atomic_cmpset_int(&stopping_cpu, NOCPU,
PCPU_GET(cpuid)) == 0)
while (stopping_cpu != NOCPU)
cpu_spinwait(); /* spin */
/* send the stop IPI to all CPUs in map */
ipi_selected(map, type);
i = 0;
while ((stopped_cpus & map) != map) {
/* spin */
cpu_spinwait();
i++;
#ifdef DIAGNOSTIC
if (i == 100000) {
printf("timeout stopping cpus\n");
break;
}
#endif
}
stopping_cpu = NOCPU;
return (1);
}
int
stop_cpus(cpumask_t map)
{
return (generic_stop_cpus(map, IPI_STOP));
}
int
stop_cpus_hard(cpumask_t map)
{
return (generic_stop_cpus(map, IPI_STOP_HARD));
}
#if defined(__amd64__)
int
suspend_cpus(cpumask_t map)
{
return (generic_stop_cpus(map, IPI_SUSPEND));
}
#endif
/*
* Called by a CPU to restart stopped CPUs.
*
* Usually (but not necessarily) called with 'stopped_cpus' as its arg.
*
* - Signals all CPUs in map to restart.
* - Waits for each to restart.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*/
int
restart_cpus(cpumask_t map)
{
if (!smp_started)
return 0;
CTR1(KTR_SMP, "restart_cpus(%x)", map);
/* signal other cpus to restart */
atomic_store_rel_int(&started_cpus, map);
/* wait for each to clear its bit */
while ((stopped_cpus & map) != 0)
cpu_spinwait();
return 1;
}
/*
* All-CPU rendezvous. CPUs are signalled, all execute the setup function
* (if specified), rendezvous, execute the action function (if specified),
* rendezvous again, execute the teardown function (if specified), and then
* resume.
*
* Note that the supplied external functions _must_ be reentrant and aware
* that they are running in parallel and in an unknown lock context.
*/
void
smp_rendezvous_action(void)
{
struct thread *td;
void *local_func_arg;
void (*local_setup_func)(void*);
void (*local_action_func)(void*);
void (*local_teardown_func)(void*);
int generation;
#ifdef INVARIANTS
int owepreempt;
#endif
/* Ensure we have up-to-date values. */
atomic_add_acq_int(&smp_rv_waiters[0], 1);
while (smp_rv_waiters[0] < smp_rv_ncpus)
cpu_spinwait();
/* Fetch rendezvous parameters after acquire barrier. */
local_func_arg = smp_rv_func_arg;
local_setup_func = smp_rv_setup_func;
local_action_func = smp_rv_action_func;
local_teardown_func = smp_rv_teardown_func;
generation = smp_rv_generation;
/*
* Use a nested critical section to prevent any preemptions
* from occurring during a rendezvous action routine.
* Specifically, if a rendezvous handler is invoked via an IPI
* and the interrupted thread was in the critical_exit()
* function after setting td_critnest to 0 but before
* performing a deferred preemption, this routine can be
* invoked with td_critnest set to 0 and td_owepreempt true.
* In that case, a critical_exit() during the rendezvous
* action would trigger a preemption which is not permitted in
* a rendezvous action. To fix this, wrap all of the
* rendezvous action handlers in a critical section. We
* cannot use a regular critical section however as having
* critical_exit() preempt from this routine would also be
* problematic (the preemption must not occur before the IPI
* has been acknowleged via an EOI). Instead, we
* intentionally ignore td_owepreempt when leaving the
* critical setion. This should be harmless because we do not
* permit rendezvous action routines to schedule threads, and
* thus td_owepreempt should never transition from 0 to 1
* during this routine.
*/
td = curthread;
td->td_critnest++;
#ifdef INVARIANTS
owepreempt = td->td_owepreempt;
#endif
/*
* If requested, run a setup function before the main action
* function. Ensure all CPUs have completed the setup
* function before moving on to the action function.
*/
if (local_setup_func != smp_no_rendevous_barrier) {
if (smp_rv_setup_func != NULL)
smp_rv_setup_func(smp_rv_func_arg);
atomic_add_int(&smp_rv_waiters[1], 1);
while (smp_rv_waiters[1] < smp_rv_ncpus)
cpu_spinwait();
}
if (local_action_func != NULL)
local_action_func(local_func_arg);
/*
* Signal that the main action has been completed. If a
* full exit rendezvous is requested, then all CPUs will
* wait here until all CPUs have finished the main action.
*
* Note that the write by the last CPU to finish the action
* may become visible to different CPUs at different times.
* As a result, the CPU that initiated the rendezvous may
* exit the rendezvous and drop the lock allowing another
* rendezvous to be initiated on the same CPU or a different
* CPU. In that case the exit sentinel may be cleared before
* all CPUs have noticed causing those CPUs to hang forever.
* Workaround this by using a generation count to notice when
* this race occurs and to exit the rendezvous in that case.
*/
MPASS(generation == smp_rv_generation);
atomic_add_int(&smp_rv_waiters[2], 1);
if (local_teardown_func != smp_no_rendevous_barrier) {
while (smp_rv_waiters[2] < smp_rv_ncpus &&
generation == smp_rv_generation)
cpu_spinwait();
if (local_teardown_func != NULL)
local_teardown_func(local_func_arg);
}
td->td_critnest--;
KASSERT(owepreempt == td->td_owepreempt,
("rendezvous action changed td_owepreempt"));
}
void
smp_rendezvous_cpus(cpumask_t map,
void (* setup_func)(void *),
void (* action_func)(void *),
void (* teardown_func)(void *),
void *arg)
{
int i, ncpus = 0;
if (!smp_started) {
if (setup_func != NULL)
setup_func(arg);
if (action_func != NULL)
action_func(arg);
if (teardown_func != NULL)
teardown_func(arg);
return;
}
CPU_FOREACH(i) {
if (((1 << i) & map) != 0)
ncpus++;
}
if (ncpus == 0)
panic("ncpus is 0 with map=0x%x", map);
mtx_lock_spin(&smp_ipi_mtx);
atomic_add_acq_int(&smp_rv_generation, 1);
/* Pass rendezvous parameters via global variables. */
smp_rv_ncpus = ncpus;
smp_rv_setup_func = setup_func;
smp_rv_action_func = action_func;
smp_rv_teardown_func = teardown_func;
smp_rv_func_arg = arg;
smp_rv_waiters[1] = 0;
smp_rv_waiters[2] = 0;
atomic_store_rel_int(&smp_rv_waiters[0], 0);
/*
* Signal other processors, which will enter the IPI with
* interrupts off.
*/
ipi_selected(map & ~(1 << curcpu), IPI_RENDEZVOUS);
/* Check if the current CPU is in the map */
if ((map & (1 << curcpu)) != 0)
smp_rendezvous_action();
/*
* If the caller did not request an exit barrier to be enforced
* on each CPU, ensure that this CPU waits for all the other
* CPUs to finish the rendezvous.
*/
if (teardown_func == smp_no_rendevous_barrier)
while (atomic_load_acq_int(&smp_rv_waiters[2]) < ncpus)
cpu_spinwait();
mtx_unlock_spin(&smp_ipi_mtx);
}
void
smp_rendezvous(void (* setup_func)(void *),
void (* action_func)(void *),
void (* teardown_func)(void *),
void *arg)
{
smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
}
static struct cpu_group group[MAXCPU];
struct cpu_group *
smp_topo(void)
{
struct cpu_group *top;
/*
* Check for a fake topology request for debugging purposes.
*/
switch (smp_topology) {
case 1:
/* Dual core with no sharing. */
top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
break;
case 2:
/* No topology, all cpus are equal. */
top = smp_topo_none();
break;
case 3:
/* Dual core with shared L2. */
top = smp_topo_1level(CG_SHARE_L2, 2, 0);
break;
case 4:
/* quad core, shared l3 among each package, private l2. */
top = smp_topo_1level(CG_SHARE_L3, 4, 0);
break;
case 5:
/* quad core, 2 dualcore parts on each package share l2. */
top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
break;
case 6:
/* Single-core 2xHTT */
top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
break;
case 7:
/* quad core with a shared l3, 8 threads sharing L2. */
top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
CG_FLAG_SMT);
break;
default:
/* Default, ask the system what it wants. */
top = cpu_topo();
break;
}
/*
* Verify the returned topology.
*/
if (top->cg_count != mp_ncpus)
panic("Built bad topology at %p. CPU count %d != %d",
top, top->cg_count, mp_ncpus);
if (top->cg_mask != all_cpus)
panic("Built bad topology at %p. CPU mask 0x%X != 0x%X",
top, top->cg_mask, all_cpus);
return (top);
}
struct cpu_group *
smp_topo_none(void)
{
struct cpu_group *top;
top = &group[0];
top->cg_parent = NULL;
top->cg_child = NULL;
top->cg_mask = all_cpus;
top->cg_count = mp_ncpus;
top->cg_children = 0;
top->cg_level = CG_SHARE_NONE;
top->cg_flags = 0;
return (top);
}
static int
smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
int count, int flags, int start)
{
cpumask_t mask;
int i;
for (mask = 0, i = 0; i < count; i++, start++)
mask |= (1 << start);
child->cg_parent = parent;
child->cg_child = NULL;
child->cg_children = 0;
child->cg_level = share;
child->cg_count = count;
child->cg_flags = flags;
child->cg_mask = mask;
parent->cg_children++;
for (; parent != NULL; parent = parent->cg_parent) {
if ((parent->cg_mask & child->cg_mask) != 0)
panic("Duplicate children in %p. mask 0x%X child 0x%X",
parent, parent->cg_mask, child->cg_mask);
parent->cg_mask |= child->cg_mask;
parent->cg_count += child->cg_count;
}
return (start);
}
struct cpu_group *
smp_topo_1level(int share, int count, int flags)
{
struct cpu_group *child;
struct cpu_group *top;
int packages;
int cpu;
int i;
cpu = 0;
top = &group[0];
packages = mp_ncpus / count;
top->cg_child = child = &group[1];
top->cg_level = CG_SHARE_NONE;
for (i = 0; i < packages; i++, child++)
cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
return (top);
}
struct cpu_group *
smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
int l1flags)
{
struct cpu_group *top;
struct cpu_group *l1g;
struct cpu_group *l2g;
int cpu;
int i;
int j;
cpu = 0;
top = &group[0];
l2g = &group[1];
top->cg_child = l2g;
top->cg_level = CG_SHARE_NONE;
top->cg_children = mp_ncpus / (l2count * l1count);
l1g = l2g + top->cg_children;
for (i = 0; i < top->cg_children; i++, l2g++) {
l2g->cg_parent = top;
l2g->cg_child = l1g;
l2g->cg_level = l2share;
for (j = 0; j < l2count; j++, l1g++)
cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
l1flags, cpu);
}
return (top);
}
struct cpu_group *
smp_topo_find(struct cpu_group *top, int cpu)
{
struct cpu_group *cg;
cpumask_t mask;
int children;
int i;
mask = (1 << cpu);
cg = top;
for (;;) {
if ((cg->cg_mask & mask) == 0)
return (NULL);
if (cg->cg_children == 0)
return (cg);
children = cg->cg_children;
for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
if ((cg->cg_mask & mask) != 0)
break;
}
return (NULL);
}
#else /* !SMP */
void
smp_rendezvous_cpus(cpumask_t map,
void (*setup_func)(void *),
void (*action_func)(void *),
void (*teardown_func)(void *),
void *arg)
{
if (setup_func != NULL)
setup_func(arg);
if (action_func != NULL)
action_func(arg);
if (teardown_func != NULL)
teardown_func(arg);
}
void
smp_rendezvous(void (*setup_func)(void *),
void (*action_func)(void *),
void (*teardown_func)(void *),
void *arg)
{
if (setup_func != NULL)
setup_func(arg);
if (action_func != NULL)
action_func(arg);
if (teardown_func != NULL)
teardown_func(arg);
}
/*
* Provide dummy SMP support for UP kernels. Modules that need to use SMP
* APIs will still work using this dummy support.
*/
static void
mp_setvariables_for_up(void *dummy)
{
mp_ncpus = 1;
mp_maxid = PCPU_GET(cpuid);
all_cpus = PCPU_GET(cpumask);
KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
}
SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
mp_setvariables_for_up, NULL);
#endif /* SMP */
void
smp_no_rendevous_barrier(void *dummy)
{
#ifdef SMP
KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
#endif
}