1348 lines
29 KiB
C

/* intdoc.c
Copyright (C) 1997 Free Software Foundation, Inc.
Contributed by James Craig Burley.
This file is part of GNU Fortran.
GNU Fortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Fortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Fortran; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* From f/proj.h, which uses #error -- not all C compilers
support that, and we want *this* program to be compilable
by pretty much any C compiler. */
#include "hconfig.j"
#include "system.j"
#include "assert.j"
#if HAVE_STDDEF_H
#include <stddef.h>
#endif
typedef enum
{
#if !defined(false) || !defined(true)
false = 0, true = 1,
#endif
#if !defined(FALSE) || !defined(TRUE)
FALSE = 0, TRUE = 1,
#endif
Doggone_Trailing_Comma_Dont_Work = 1
} bool;
#define ARRAY_SIZE(a) (sizeof(a)/sizeof(a[0]))
/* Pull in the intrinsics info, but only the doc parts. */
#define FFEINTRIN_DOC 1
#include "intrin.h"
const char *family_name (ffeintrinFamily family);
static void dumpif (ffeintrinFamily fam);
static void dumpendif (void);
static void dumpclearif (void);
static void dumpem (void);
static void dumpgen (int menu, const char *name, const char *name_uc,
ffeintrinGen gen);
static void dumpspec (int menu, const char *name, const char *name_uc,
ffeintrinSpec spec);
static void dumpimp (int menu, const char *name, const char *name_uc, size_t genno, ffeintrinFamily family,
ffeintrinImp imp, ffeintrinSpec spec);
static const char *argument_info_ptr (ffeintrinImp imp, int argno);
static const char *argument_info_string (ffeintrinImp imp, int argno);
static const char *argument_name_ptr (ffeintrinImp imp, int argno);
static const char *argument_name_string (ffeintrinImp imp, int argno);
#if 0
static const char *elaborate_if_complex (ffeintrinImp imp, int argno);
static const char *elaborate_if_maybe_complex (ffeintrinImp imp, int argno);
static const char *elaborate_if_real (ffeintrinImp imp, int argno);
#endif
static void print_type_string (const char *c);
int
main (int argc, char **argv ATTRIBUTE_UNUSED)
{
if (argc != 1)
{
fprintf (stderr, "\
Usage: intdoc > intdoc.texi\n\
Collects and dumps documentation on g77 intrinsics\n\
to the file named intdoc.texi.\n");
exit (1);
}
dumpem ();
return 0;
}
struct _ffeintrin_name_
{
const char *name_uc;
const char *name_lc;
const char *name_ic;
ffeintrinGen generic;
ffeintrinSpec specific;
};
struct _ffeintrin_gen_
{
const char *name; /* Name as seen in program. */
ffeintrinSpec specs[2];
};
struct _ffeintrin_spec_
{
const char *name; /* Uppercase name as seen in source code,
lowercase if no source name, "none" if no
name at all (NONE case). */
bool is_actualarg; /* Ok to pass as actual arg if -pedantic. */
ffeintrinFamily family;
ffeintrinImp implementation;
};
struct _ffeintrin_imp_
{
const char *name; /* Name of implementation. */
#if 0 /* FFECOM_targetCURRENT == FFECOM_targetGCC */
ffecomGfrt gfrt; /* gfrt index in library. */
#endif /* FFECOM_targetCURRENT == FFECOM_targetGCC */
const char *control;
};
static struct _ffeintrin_name_ names[] = {
#define DEFNAME(UPPER,LOWER,MIXED,GEN,SPEC) \
{ UPPER, LOWER, MIXED, FFEINTRIN_ ## GEN, FFEINTRIN_ ## SPEC },
#define DEFGEN(CODE,NAME,SPEC1,SPEC2)
#define DEFSPEC(CODE,NAME,CALLABLE,FAMILY,IMP)
#define DEFIMP(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL)
#define DEFIMPY(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL,Y2KBAD)
#include "intrin.def"
#undef DEFNAME
#undef DEFGEN
#undef DEFSPEC
#undef DEFIMP
#undef DEFIMPY
};
static struct _ffeintrin_gen_ gens[] = {
#define DEFNAME(UPPER,LOWER,MIXED,GEN,SPEC)
#define DEFGEN(CODE,NAME,SPEC1,SPEC2) \
{ NAME, { SPEC1, SPEC2, }, },
#define DEFSPEC(CODE,NAME,CALLABLE,FAMILY,IMP)
#define DEFIMP(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL)
#define DEFIMPY(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL,Y2KBAD)
#include "intrin.def"
#undef DEFNAME
#undef DEFGEN
#undef DEFSPEC
#undef DEFIMP
#undef DEFIMPY
};
static struct _ffeintrin_imp_ imps[] = {
#define DEFNAME(UPPER,LOWER,MIXED,GEN,SPEC)
#define DEFGEN(CODE,NAME,SPEC1,SPEC2)
#define DEFSPEC(CODE,NAME,CALLABLE,FAMILY,IMP)
#if 0 /* FFECOM_targetCURRENT == FFECOM_targetGCC */
#define DEFIMP(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL) \
{ NAME, FFECOM_gfrt ## GFRT, CONTROL },
#define DEFIMPY(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL,Y2KBAD) \
{ NAME, FFECOM_gfrt ## GFRT, CONTROL },
#elif 1 /* FFECOM_targetCURRENT == FFECOM_targetFFE */
#define DEFIMP(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL) \
{ NAME, CONTROL },
#define DEFIMPY(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL,Y2KBAD) \
{ NAME, CONTROL },
#else
#error
#endif
#include "intrin.def"
#undef DEFNAME
#undef DEFGEN
#undef DEFSPEC
#undef DEFIMP
#undef DEFIMPY
};
static struct _ffeintrin_spec_ specs[] = {
#define DEFNAME(UPPER,LOWER,MIXED,GEN,SPEC)
#define DEFGEN(CODE,NAME,SPEC1,SPEC2)
#define DEFSPEC(CODE,NAME,CALLABLE,FAMILY,IMP) \
{ NAME, CALLABLE, FAMILY, IMP, },
#define DEFIMP(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL)
#define DEFIMPY(CODE,NAME,GFRTDIRECT,GFRTF2C,GFRTGNU,CONTROL,Y2KBAD)
#include "intrin.def"
#undef DEFGEN
#undef DEFSPEC
#undef DEFIMP
#undef DEFIMPY
};
struct cc_pair { ffeintrinImp imp; const char *text; };
static const char *descriptions[FFEINTRIN_imp] = { 0 };
static struct cc_pair cc_descriptions[] = {
#define DEFDOC(IMP,SUMMARY,DESCRIPTION) { FFEINTRIN_imp ## IMP, DESCRIPTION },
#include "intdoc.h0"
#undef DEFDOC
};
static const char *summaries[FFEINTRIN_imp] = { 0 };
static struct cc_pair cc_summaries[] = {
#define DEFDOC(IMP,SUMMARY,DESCRIPTION) { FFEINTRIN_imp ## IMP, SUMMARY },
#include "intdoc.h0"
#undef DEFDOC
};
const char *
family_name (ffeintrinFamily family)
{
switch (family)
{
case FFEINTRIN_familyF77:
return "familyF77";
case FFEINTRIN_familyASC:
return "familyASC";
case FFEINTRIN_familyMIL:
return "familyMIL";
case FFEINTRIN_familyGNU:
return "familyGNU";
case FFEINTRIN_familyF90:
return "familyF90";
case FFEINTRIN_familyVXT:
return "familyVXT";
case FFEINTRIN_familyFVZ:
return "familyFVZ";
case FFEINTRIN_familyF2C:
return "familyF2C";
case FFEINTRIN_familyF2U:
return "familyF2U";
case FFEINTRIN_familyBADU77:
return "familyBADU77";
default:
assert ("bad family" == NULL);
return "??";
}
}
static int in_ifset = 0;
static ffeintrinFamily latest_family = FFEINTRIN_familyNONE;
static void
dumpif (ffeintrinFamily fam)
{
assert (fam != FFEINTRIN_familyNONE);
if ((in_ifset != 2)
|| (fam != latest_family))
{
if (in_ifset == 2)
printf ("@end ifset\n");
latest_family = fam;
printf ("@ifset %s\n", family_name (fam));
}
in_ifset = 1;
}
static void
dumpendif ()
{
in_ifset = 2;
}
static void
dumpclearif ()
{
if ((in_ifset == 2)
|| (latest_family != FFEINTRIN_familyNONE))
printf ("@end ifset\n");
latest_family = FFEINTRIN_familyNONE;
in_ifset = 0;
}
static void
dumpem ()
{
int i;
for (i = 0; ((size_t) i) < ARRAY_SIZE (cc_descriptions); ++i)
{
assert (descriptions[cc_descriptions[i].imp] == NULL);
descriptions[cc_descriptions[i].imp] = cc_descriptions[i].text;
}
for (i = 0; ((size_t) i) < ARRAY_SIZE (cc_summaries); ++i)
{
assert (summaries[cc_summaries[i].imp] == NULL);
summaries[cc_summaries[i].imp] = cc_summaries[i].text;
}
printf ("@c This file is automatically derived from intdoc.c, intdoc.in,\n");
printf ("@c ansify.c, intrin.def, and intrin.h. Edit those files instead.\n");
printf ("@menu\n");
for (i = 0; ((size_t) i) < ARRAY_SIZE (names); ++i)
{
if (names[i].generic != FFEINTRIN_genNONE)
dumpgen (1, names[i].name_ic, names[i].name_uc,
names[i].generic);
if (names[i].specific != FFEINTRIN_specNONE)
dumpspec (1, names[i].name_ic, names[i].name_uc,
names[i].specific);
}
dumpclearif ();
printf ("@end menu\n\n");
for (i = 0; ((size_t) i) < ARRAY_SIZE (names); ++i)
{
if (names[i].generic != FFEINTRIN_genNONE)
dumpgen (0, names[i].name_ic, names[i].name_uc,
names[i].generic);
if (names[i].specific != FFEINTRIN_specNONE)
dumpspec (0, names[i].name_ic, names[i].name_uc,
names[i].specific);
}
dumpclearif ();
}
static void
dumpgen (int menu, const char *name, const char *name_uc, ffeintrinGen gen)
{
size_t i;
int total = 0;
if (!menu)
{
for (i = 0; i < ARRAY_SIZE (gens[gen].specs); ++i)
{
if (gens[gen].specs[i] != FFEINTRIN_specNONE)
++total;
}
}
for (i = 0; i < ARRAY_SIZE (gens[gen].specs); ++i)
{
ffeintrinSpec spec;
size_t j;
if ((spec = gens[gen].specs[i]) == FFEINTRIN_specNONE)
continue;
dumpif (specs[spec].family);
dumpimp (menu, name, name_uc, i, specs[spec].family, specs[spec].implementation,
spec);
if (!menu && (total > 0))
{
if (total == 1)
{
printf ("\
For information on another intrinsic with the same name:\n");
}
else
{
printf ("\
For information on other intrinsics with the same name:\n");
}
for (j = 0; j < ARRAY_SIZE (gens[gen].specs); ++j)
{
if (j == i)
continue;
if ((spec = gens[gen].specs[j]) == FFEINTRIN_specNONE)
continue;
printf ("@xref{%s Intrinsic (%s)}.\n",
name, specs[spec].name);
}
printf ("\n");
}
dumpendif ();
}
}
static void
dumpspec (int menu, const char *name, const char *name_uc, ffeintrinSpec spec)
{
dumpif (specs[spec].family);
dumpimp (menu, name, name_uc, 0, specs[spec].family, specs[spec].implementation,
FFEINTRIN_specNONE);
dumpendif ();
}
static void
dumpimp (int menu, const char *name, const char *name_uc, size_t genno,
ffeintrinFamily family, ffeintrinImp imp, ffeintrinSpec spec)
{
const char *c;
bool subr;
const char *argc;
const char *argi;
int colon;
int argno;
assert ((imp != FFEINTRIN_impNONE) || !genno);
if (menu)
{
printf ("* %s Intrinsic",
name);
if (spec != FFEINTRIN_specNONE)
printf (" (%s)", specs[spec].name); /* See XYZZY1 below */
printf ("::");
#define INDENT_SUMMARY 24
if ((imp == FFEINTRIN_impNONE)
|| (summaries[imp] != NULL))
{
int spaces = INDENT_SUMMARY - 14 - strlen (name);
const char *c;
if (spec != FFEINTRIN_specNONE)
spaces -= (3 + strlen (specs[spec].name)); /* See XYZZY1 above */
if (spaces < 1)
spaces = 1;
while (spaces--)
fputc (' ', stdout);
if (imp == FFEINTRIN_impNONE)
{
printf ("(Reserved for future use.)\n");
return;
}
for (c = summaries[imp]; c[0] != '\0'; ++c)
{
if ((c[0] == '@')
&& (c[1] >= '0')
&& (c[1] <= '9'))
{
int argno = c[1] - '0';
c += 2;
while ((c[0] >= '0')
&& (c[0] <= '9'))
{
argno = 10 * argno + (c[0] - '0');
++c;
}
assert (c[0] == '@');
if (argno == 0)
printf ("%s", name);
else if (argno == 99)
{ /* Yeah, this is a major kludge. */
printf ("\n");
spaces = INDENT_SUMMARY + 1;
while (spaces--)
fputc (' ', stdout);
}
else
printf ("%s", argument_name_string (imp, argno - 1));
}
else
fputc (c[0], stdout);
}
}
printf ("\n");
return;
}
printf ("@node %s Intrinsic", name);
if (spec != FFEINTRIN_specNONE)
printf (" (%s)", specs[spec].name);
printf ("\n@subsubsection %s Intrinsic", name);
if (spec != FFEINTRIN_specNONE)
printf (" (%s)", specs[spec].name);
printf ("\n@cindex %s intrinsic\n@cindex intrinsics, %s\n",
name, name);
if (imp == FFEINTRIN_impNONE)
{
printf ("\n\
This intrinsic is not yet implemented.\n\
The name is, however, reserved as an intrinsic.\n\
Use @samp{EXTERNAL %s} to use this name for an\n\
external procedure.\n\
\n\
",
name);
return;
}
c = imps[imp].control;
subr = (c[0] == '-');
colon = (c[2] == ':') ? 2 : 3;
printf ("\n\
@noindent\n\
@example\n\
%s%s(",
(subr ? "CALL " : ""), name);
fflush (stdout);
for (argno = 0; ; ++argno)
{
argc = argument_name_ptr (imp, argno);
if (argc == NULL)
break;
if (argno > 0)
printf (", ");
printf ("@var{%s}", argc);
argi = argument_info_string (imp, argno);
if ((argi[0] == '*')
|| (argi[0] == 'n')
|| (argi[0] == '+')
|| (argi[0] == 'p'))
printf ("-1, @var{%s}-2, @dots{}, @var{%s}-n",
argc, argc);
}
printf (")\n\
@end example\n\
\n\
");
if (!subr)
{
int other_arg;
const char *arg_string;
const char *arg_info;
if ((c[colon + 1] >= '0')
&& (c[colon + 1] <= '9'))
{
other_arg = c[colon + 1] - '0';
arg_string = argument_name_string (imp, other_arg);
arg_info = argument_info_string (imp, other_arg);
}
else
{
other_arg = -1;
arg_string = NULL;
arg_info = NULL;
}
printf ("\
@noindent\n\
%s: ", name);
print_type_string (c);
printf (" function");
if ((c[0] == 'R')
&& (c[1] == 'C'))
{
assert (other_arg >= 0);
if ((arg_info[0] == '?') || (arg_info[0] == '!') || (arg_info[0] == '+')
|| (arg_info[0] == '*') || (arg_info[0] == 'n') || (arg_info[0] == 'p'))
++arg_info;
if ((arg_info[0] == 'F') || (arg_info[0] == 'N'))
printf (".\n\
The exact type is @samp{REAL(KIND=1)} when argument @var{%s} is\n\
any type other than @code{COMPLEX}, or when it is @code{COMPLEX(KIND=1)}.\n\
When @var{%s} is any @code{COMPLEX} type other than @code{COMPLEX(KIND=1)},\n\
this intrinsic is valid only when used as the argument to\n\
@code{REAL()}, as explained below.\n\n",
arg_string,
arg_string);
else
printf (".\n\
This intrinsic is valid when argument @var{%s} is\n\
@code{COMPLEX(KIND=1)}.\n\
When @var{%s} is any other @code{COMPLEX} type,\n\
this intrinsic is valid only when used as the argument to\n\
@code{REAL()}, as explained below.\n\n",
arg_string,
arg_string);
}
#if 0
else if ((c[0] == 'I')
&& (c[1] == '7'))
printf (", the exact type being wide enough to hold a pointer\n\
on the target system (typically @code{INTEGER(KIND=1)} or @code{INTEGER(KIND=4)}).\n\n");
#endif
else if ((c[1] == '=')
&& (c[colon + 1] >= '0')
&& (c[colon + 1] <= '9'))
{
assert (other_arg >= 0);
if ((arg_info[0] == '?') || (arg_info[0] == '!') || (arg_info[0] == '+')
|| (arg_info[0] == '*') || (arg_info[0] == 'n') || (arg_info[0] == 'p'))
++arg_info;
if (((c[0] == arg_info[0])
&& ((c[0] == 'A') || (c[0] == 'C') || (c[0] == 'I')
|| (c[0] == 'L') || (c[0] == 'R')))
|| ((c[0] == 'R')
&& (arg_info[0] == 'C'))
|| ((c[0] == 'C')
&& (arg_info[0] == 'R')))
printf (", the @samp{KIND=} value of the type being that of argument @var{%s}.\n\n",
arg_string);
else if ((c[0] == 'S')
&& ((arg_info[0] == 'C')
|| (arg_info[0] == 'F')
|| (arg_info[0] == 'N')))
printf (".\n\
The exact type depends on that of argument @var{%s}---if @var{%s} is\n\
@code{COMPLEX}, this function's type is @code{REAL}\n\
with the same @samp{KIND=} value as the type of @var{%s}.\n\
Otherwise, this function's type is the same as that of @var{%s}.\n\n",
arg_string, arg_string, arg_string, arg_string);
else
printf (", the exact type being that of argument @var{%s}.\n\n",
arg_string);
}
else if ((c[1] == '=')
&& (c[colon + 1] == '*'))
printf (", the exact type being the result of cross-promoting the\n\
types of all the arguments.\n\n");
else if (c[1] == '=')
assert ("?0:?:" == NULL);
else
printf (".\n\n");
}
for (argno = 0, argc = &c[colon + 3]; *argc != '\0'; ++argno)
{
char optionality = '\0';
char extra = '\0';
char basic;
char kind;
int length;
int elements;
printf ("\
@noindent\n\
@var{");
for (; ; ++argc)
{
if (argc[0] == '=')
break;
printf ("%c", *argc);
}
printf ("}: ");
++argc;
if ((*argc == '?')
|| (*argc == '!')
|| (*argc == '*')
|| (*argc == '+')
|| (*argc == 'n')
|| (*argc == 'p'))
optionality = *(argc++);
basic = *(argc++);
kind = *(argc++);
if (*argc == '[')
{
length = *++argc - '0';
if (*++argc != ']')
length = 10 * length + (*(argc++) - '0');
++argc;
}
else
length = -1;
if (*argc == '(')
{
elements = *++argc - '0';
if (*++argc != ')')
elements = 10 * elements + (*(argc++) - '0');
++argc;
}
else if (*argc == '&')
{
elements = -1;
++argc;
}
else
elements = 0;
if ((*argc == '&')
|| (*argc == 'i')
|| (*argc == 'w')
|| (*argc == 'x'))
extra = *(argc++);
if (*argc == ',')
++argc;
switch (basic)
{
case '-':
switch (kind)
{
case '*':
printf ("Any type");
break;
default:
assert ("kind arg" == NULL);
break;
}
break;
case 'A':
assert ((kind == '1') || (kind == '*'));
printf ("@code{CHARACTER");
if (length != -1)
printf ("*%d", length);
printf ("}");
break;
case 'C':
switch (kind)
{
case '*':
printf ("@code{COMPLEX}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{COMPLEX(KIND=%d)}", (kind - '0'));
break;
case 'A':
printf ("Same @samp{KIND=} value as for @var{%s}",
argument_name_string (imp, 0));
break;
default:
assert ("Ca" == NULL);
break;
}
break;
case 'I':
switch (kind)
{
case '*':
printf ("@code{INTEGER}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{INTEGER(KIND=%d)}", (kind - '0'));
break;
case 'A':
printf ("@code{INTEGER} with same @samp{KIND=} value as for @var{%s}",
argument_name_string (imp, 0));
break;
default:
assert ("Ia" == NULL);
break;
}
break;
case 'L':
switch (kind)
{
case '*':
printf ("@code{LOGICAL}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{LOGICAL(KIND=%d)}", (kind - '0'));
break;
case 'A':
printf ("@code{LOGICAL} with same @samp{KIND=} value as for @var{%s}",
argument_name_string (imp, 0));
break;
default:
assert ("La" == NULL);
break;
}
break;
case 'R':
switch (kind)
{
case '*':
printf ("@code{REAL}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{REAL(KIND=%d)}", (kind - '0'));
break;
case 'A':
printf ("@code{REAL} with same @samp{KIND=} value as for @var{%s}",
argument_name_string (imp, 0));
break;
default:
assert ("Ra" == NULL);
break;
}
break;
case 'B':
switch (kind)
{
case '*':
printf ("@code{INTEGER} or @code{LOGICAL}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{INTEGER(KIND=%d)} or @code{LOGICAL(KIND=%d)}",
(kind - '0'), (kind - '0'));
break;
case 'A':
printf ("Same type and @samp{KIND=} value as for @var{%s}",
argument_name_string (imp, 0));
break;
default:
assert ("Ba" == NULL);
break;
}
break;
case 'F':
switch (kind)
{
case '*':
printf ("@code{REAL} or @code{COMPLEX}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{REAL(KIND=%d)} or @code{COMPLEX(KIND=%d)}",
(kind - '0'), (kind - '0'));
break;
case 'A':
printf ("Same type as @var{%s}",
argument_name_string (imp, 0));
break;
default:
assert ("Fa" == NULL);
break;
}
break;
case 'N':
switch (kind)
{
case '*':
printf ("@code{INTEGER}, @code{REAL}, or @code{COMPLEX}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{INTEGER(KIND=%d)}, @code{REAL(KIND=%d)}, or @code{COMPLEX(KIND=%d)}",
(kind - '0'), (kind - '0'), (kind - '0'));
break;
default:
assert ("N1" == NULL);
break;
}
break;
case 'S':
switch (kind)
{
case '*':
printf ("@code{INTEGER} or @code{REAL}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{INTEGER(KIND=%d)} or @code{REAL(KIND=%d)}",
(kind - '0'), (kind - '0'));
break;
case 'A':
printf ("@code{INTEGER} or @code{REAL} with same @samp{KIND=} value as for @var{%s}",
argument_name_string (imp, 0));
break;
default:
assert ("Sa" == NULL);
break;
}
break;
case 'g':
printf ("@samp{*@var{label}}, where @var{label} is the label\n\
of an executable statement");
break;
case 's':
printf ("Signal handler (@code{INTEGER FUNCTION} or @code{SUBROUTINE})\n\
or dummy/global @code{INTEGER(KIND=1)} scalar");
break;
default:
assert ("arg type?" == NULL);
break;
}
switch (optionality)
{
case '\0':
break;
case '!':
printf ("; OPTIONAL (must be omitted if @var{%s} is @code{COMPLEX})",
argument_name_string (imp, argno-1));
break;
case '?':
printf ("; OPTIONAL");
break;
case '*':
printf ("; OPTIONAL");
break;
case 'n':
case '+':
break;
case 'p':
printf ("; at least two such arguments must be provided");
break;
default:
assert ("optionality!" == NULL);
break;
}
switch (elements)
{
case -1:
break;
case 0:
if ((basic != 'g')
&& (basic != 's'))
printf ("; scalar");
break;
default:
assert (extra != '\0');
printf ("; DIMENSION(%d)", elements);
break;
}
switch (extra)
{
case '\0':
if ((basic != 'g')
&& (basic != 's'))
printf ("; INTENT(IN)");
break;
case 'i':
break;
case '&':
printf ("; cannot be a constant or expression");
break;
case 'w':
printf ("; INTENT(OUT)");
break;
case 'x':
printf ("; INTENT(INOUT)");
break;
}
printf (".\n\n");
}
printf ("\
@noindent\n\
Intrinsic groups: ");
switch (family)
{
case FFEINTRIN_familyF77:
printf ("(standard FORTRAN 77).");
break;
case FFEINTRIN_familyGNU:
printf ("@code{gnu}.");
break;
case FFEINTRIN_familyASC:
printf ("@code{f2c}, @code{f90}.");
break;
case FFEINTRIN_familyMIL:
printf ("@code{mil}, @code{f90}, @code{vxt}.");
break;
case FFEINTRIN_familyF90:
printf ("@code{f90}.");
break;
case FFEINTRIN_familyVXT:
printf ("@code{vxt}.");
break;
case FFEINTRIN_familyFVZ:
printf ("@code{f2c}, @code{vxt}.");
break;
case FFEINTRIN_familyF2C:
printf ("@code{f2c}.");
break;
case FFEINTRIN_familyF2U:
printf ("@code{unix}.");
break;
case FFEINTRIN_familyBADU77:
printf ("@code{badu77}.");
break;
default:
assert ("bad family" == NULL);
printf ("@code{???}.");
break;
}
printf ("\n\n");
if (descriptions[imp] != NULL)
{
const char *c = descriptions[imp];
printf ("\
@noindent\n\
Description:\n\
\n");
while (c[0] != '\0')
{
if ((c[0] == '@')
&& (c[1] >= '0')
&& (c[1] <= '9'))
{
int argno = c[1] - '0';
c += 2;
while ((c[0] >= '0')
&& (c[0] <= '9'))
{
argno = 10 * argno + (c[0] - '0');
++c;
}
assert (c[0] == '@');
if (argno == 0)
printf ("%s", name_uc);
else
printf ("%s", argument_name_string (imp, argno - 1));
}
else
fputc (c[0], stdout);
++c;
}
printf ("\n");
}
}
static const char *
argument_info_ptr (ffeintrinImp imp, int argno)
{
const char *c = imps[imp].control;
static char arginfos[8][32];
static int argx = 0;
int i;
if (c[2] == ':')
c += 5;
else
c += 6;
while (argno--)
{
while ((c[0] != ',') && (c[0] != '\0'))
++c;
if (c[0] != ',')
break;
++c;
}
if (c[0] == '\0')
return NULL;
for (; (c[0] != '=') && (c[0] != '\0'); ++c)
;
assert (c[0] == '=');
for (i = 0, ++c; (c[0] != ',') && (c[0] != '\0'); ++c, ++i)
arginfos[argx][i] = c[0];
arginfos[argx][i] = '\0';
c = &arginfos[argx][0];
++argx;
if (((size_t) argx) >= ARRAY_SIZE (arginfos))
argx = 0;
return c;
}
static const char *
argument_info_string (ffeintrinImp imp, int argno)
{
const char *p;
p = argument_info_ptr (imp, argno);
assert (p != NULL);
return p;
}
static const char *
argument_name_ptr (ffeintrinImp imp, int argno)
{
const char *c = imps[imp].control;
static char argnames[8][32];
static int argx = 0;
int i;
if (c[2] == ':')
c += 5;
else
c += 6;
while (argno--)
{
while ((c[0] != ',') && (c[0] != '\0'))
++c;
if (c[0] != ',')
break;
++c;
}
if (c[0] == '\0')
return NULL;
for (i = 0; (c[0] != '=') && (c[0] != '\0'); ++c, ++i)
argnames[argx][i] = c[0];
assert (c[0] == '=');
argnames[argx][i] = '\0';
c = &argnames[argx][0];
++argx;
if (((size_t) argx) >= ARRAY_SIZE (argnames))
argx = 0;
return c;
}
static const char *
argument_name_string (ffeintrinImp imp, int argno)
{
const char *p;
p = argument_name_ptr (imp, argno);
assert (p != NULL);
return p;
}
static void
print_type_string (const char *c)
{
char basic = c[0];
char kind = c[1];
switch (basic)
{
case 'A':
assert ((kind == '1') || (kind == '='));
if (c[2] == ':')
printf ("@code{CHARACTER*1}");
else
{
assert (c[2] == '*');
printf ("@code{CHARACTER*(*)}");
}
break;
case 'C':
switch (kind)
{
case '=':
printf ("@code{COMPLEX}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{COMPLEX(KIND=%d)}", (kind - '0'));
break;
default:
assert ("Ca" == NULL);
break;
}
break;
case 'I':
switch (kind)
{
case '=':
printf ("@code{INTEGER}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{INTEGER(KIND=%d)}", (kind - '0'));
break;
default:
assert ("Ia" == NULL);
break;
}
break;
case 'L':
switch (kind)
{
case '=':
printf ("@code{LOGICAL}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{LOGICAL(KIND=%d)}", (kind - '0'));
break;
default:
assert ("La" == NULL);
break;
}
break;
case 'R':
switch (kind)
{
case '=':
printf ("@code{REAL}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{REAL(KIND=%d)}", (kind - '0'));
break;
case 'C':
printf ("@code{REAL}");
break;
default:
assert ("Ra" == NULL);
break;
}
break;
case 'B':
switch (kind)
{
case '=':
printf ("@code{INTEGER} or @code{LOGICAL}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{INTEGER(KIND=%d)} or @code{LOGICAL(KIND=%d)}",
(kind - '0'), (kind - '0'));
break;
default:
assert ("Ba" == NULL);
break;
}
break;
case 'F':
switch (kind)
{
case '=':
printf ("@code{REAL} or @code{COMPLEX}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{REAL(KIND=%d)} or @code{COMPLEX(KIND=%d)}",
(kind - '0'), (kind - '0'));
break;
default:
assert ("Fa" == NULL);
break;
}
break;
case 'N':
switch (kind)
{
case '=':
printf ("@code{INTEGER}, @code{REAL}, or @code{COMPLEX}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{INTEGER(KIND=%d)}, @code{REAL(KIND=%d)}, or @code{COMPLEX(KIND=%d)}",
(kind - '0'), (kind - '0'), (kind - '0'));
break;
default:
assert ("N1" == NULL);
break;
}
break;
case 'S':
switch (kind)
{
case '=':
printf ("@code{INTEGER} or @code{REAL}");
break;
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
printf ("@code{INTEGER(KIND=%d)} or @code{REAL(KIND=%d)}",
(kind - '0'), (kind - '0'));
break;
default:
assert ("Sa" == NULL);
break;
}
break;
default:
assert ("type?" == NULL);
break;
}
}