Nathan Whitehorn 35f612b88a Kernel support for the Vector-Scalar eXtension (VSX) found on the POWER7
and POWER8. This instruction set unifies the 32 64-bit scalar floating
point registers with the 32 128-bit vector registers into a single bank
of 64 128-bit registers. Kernel support mostly amounts to saving and
restoring the wider version of the floating point registers and making
sure that both scalar FP and vector registers are enabled once a VSX
instruction is executed. get_mcontext() and friends currently cannot
see the high bits, which will require a little more work.

As the system compiler (GCC 4.2) does not support VSX, making use of this
from userland requires either newer GCC or clang.

Relnotes:	yes
Sponsored by:	FreeBSD Foundation
2015-02-22 21:40:27 +00:00

802 lines
23 KiB
C

/* $NetBSD: fpu_emu.c,v 1.14 2005/12/11 12:18:42 christos Exp $ */
/*
* Copyright 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)fpu.c 8.1 (Berkeley) 6/11/93
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/signal.h>
#include <sys/syslog.h>
#include <sys/signalvar.h>
#include <machine/fpu.h>
#include <machine/reg.h>
#include <powerpc/fpu/fpu_emu.h>
#include <powerpc/fpu/fpu_extern.h>
#include <powerpc/fpu/fpu_instr.h>
static SYSCTL_NODE(_hw, OID_AUTO, fpu_emu, CTLFLAG_RW, 0, "FPU emulator");
#define FPU_EMU_EVCNT_DECL(name) \
static u_int fpu_emu_evcnt_##name; \
SYSCTL_INT(_hw_fpu_emu, OID_AUTO, evcnt_##name, CTLFLAG_RD, \
&fpu_emu_evcnt_##name, 0, "")
#define FPU_EMU_EVCNT_INCR(name) fpu_emu_evcnt_##name++
FPU_EMU_EVCNT_DECL(stfiwx);
FPU_EMU_EVCNT_DECL(fpstore);
FPU_EMU_EVCNT_DECL(fpload);
FPU_EMU_EVCNT_DECL(fcmpu);
FPU_EMU_EVCNT_DECL(frsp);
FPU_EMU_EVCNT_DECL(fctiw);
FPU_EMU_EVCNT_DECL(fcmpo);
FPU_EMU_EVCNT_DECL(mtfsb1);
FPU_EMU_EVCNT_DECL(fnegabs);
FPU_EMU_EVCNT_DECL(mcrfs);
FPU_EMU_EVCNT_DECL(mtfsb0);
FPU_EMU_EVCNT_DECL(fmr);
FPU_EMU_EVCNT_DECL(mtfsfi);
FPU_EMU_EVCNT_DECL(fnabs);
FPU_EMU_EVCNT_DECL(fabs);
FPU_EMU_EVCNT_DECL(mffs);
FPU_EMU_EVCNT_DECL(mtfsf);
FPU_EMU_EVCNT_DECL(fctid);
FPU_EMU_EVCNT_DECL(fcfid);
FPU_EMU_EVCNT_DECL(fdiv);
FPU_EMU_EVCNT_DECL(fsub);
FPU_EMU_EVCNT_DECL(fadd);
FPU_EMU_EVCNT_DECL(fsqrt);
FPU_EMU_EVCNT_DECL(fsel);
FPU_EMU_EVCNT_DECL(fpres);
FPU_EMU_EVCNT_DECL(fmul);
FPU_EMU_EVCNT_DECL(frsqrte);
FPU_EMU_EVCNT_DECL(fmulsub);
FPU_EMU_EVCNT_DECL(fmuladd);
FPU_EMU_EVCNT_DECL(fnmsub);
FPU_EMU_EVCNT_DECL(fnmadd);
/* FPSR exception masks */
#define FPSR_EX_MSK (FPSCR_VX|FPSCR_OX|FPSCR_UX|FPSCR_ZX| \
FPSCR_XX|FPSCR_VXSNAN|FPSCR_VXISI|FPSCR_VXIDI| \
FPSCR_VXZDZ|FPSCR_VXIMZ|FPSCR_VXVC|FPSCR_VXSOFT|\
FPSCR_VXSQRT|FPSCR_VXCVI)
#define FPSR_EX (FPSCR_VE|FPSCR_OE|FPSCR_UE|FPSCR_ZE|FPSCR_XE)
#define FPSR_EXOP (FPSR_EX_MSK&(~FPSR_EX))
int fpe_debug = 0;
#ifdef DEBUG
vm_offset_t opc_disasm(vm_offset_t, int);
/*
* Dump a `fpn' structure.
*/
void
fpu_dumpfpn(struct fpn *fp)
{
static const char *class[] = {
"SNAN", "QNAN", "ZERO", "NUM", "INF"
};
printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
fp->fp_sign ? '-' : ' ',
fp->fp_mant[0], fp->fp_mant[1],
fp->fp_mant[2], fp->fp_mant[3],
fp->fp_exp);
}
#endif
/*
* fpu_execute returns the following error numbers (0 = no error):
*/
#define FPE 1 /* take a floating point exception */
#define NOTFPU 2 /* not an FPU instruction */
#define FAULT 3
/*
* Emulate a floating-point instruction.
* Return zero for success, else signal number.
* (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
*/
int
fpu_emulate(struct trapframe *frame, struct fpreg *fpf)
{
static union instr insn;
static struct fpemu fe;
static int lastill = 0;
int sig;
/* initialize insn.is_datasize to tell it is *not* initialized */
fe.fe_fpstate = fpf;
fe.fe_cx = 0;
/* always set this (to avoid a warning) */
if (copyin((void *) (frame->srr0), &insn.i_int, sizeof (insn.i_int))) {
#ifdef DEBUG
printf("fpu_emulate: fault reading opcode\n");
#endif
return SIGSEGV;
}
DPRINTF(FPE_EX, ("fpu_emulate: emulating insn %x at %p\n",
insn.i_int, (void *)frame->srr0));
if ((insn.i_any.i_opcd == OPC_TWI) ||
((insn.i_any.i_opcd == OPC_integer_31) &&
(insn.i_x.i_xo == OPC31_TW))) {
/* Check for the two trap insns. */
DPRINTF(FPE_EX, ("fpu_emulate: SIGTRAP\n"));
return (SIGTRAP);
}
sig = 0;
switch (fpu_execute(frame, &fe, &insn)) {
case 0:
DPRINTF(FPE_EX, ("fpu_emulate: success\n"));
frame->srr0 += 4;
break;
case FPE:
DPRINTF(FPE_EX, ("fpu_emulate: SIGFPE\n"));
sig = SIGFPE;
break;
case FAULT:
DPRINTF(FPE_EX, ("fpu_emulate: SIGSEGV\n"));
sig = SIGSEGV;
break;
case NOTFPU:
default:
DPRINTF(FPE_EX, ("fpu_emulate: SIGILL\n"));
#ifdef DEBUG
if (fpe_debug & FPE_EX) {
printf("fpu_emulate: illegal insn %x at %p:",
insn.i_int, (void *) (frame->srr0));
opc_disasm(frame->srr0, insn.i_int);
}
#endif
/*
* XXXX retry an illegal insn once due to cache issues.
*/
if (lastill == frame->srr0) {
sig = SIGILL;
#ifdef DEBUG
if (fpe_debug & FPE_EX)
kdb_enter(KDB_WHY_UNSET, "illegal instruction");
#endif
}
lastill = frame->srr0;
break;
}
return (sig);
}
/*
* Execute an FPU instruction (one that runs entirely in the FPU; not
* FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
* modified to reflect the setting the hardware would have left.
*
* Note that we do not catch all illegal opcodes, so you can, for instance,
* multiply two integers this way.
*/
int
fpu_execute(struct trapframe *tf, struct fpemu *fe, union instr *insn)
{
struct fpn *fp;
union instr instr = *insn;
int *a;
vm_offset_t addr;
int ra, rb, rc, rt, type, mask, fsr, cx, bf, setcr;
unsigned int cond;
struct fpreg *fs;
/* Setup work. */
fp = NULL;
fs = fe->fe_fpstate;
fe->fe_fpscr = ((int *)&fs->fpscr)[1];
/*
* On PowerPC all floating point values are stored in registers
* as doubles, even when used for single precision operations.
*/
type = FTYPE_DBL;
cond = instr.i_any.i_rc;
setcr = 0;
bf = 0; /* XXX gcc */
#if defined(DDB) && defined(DEBUG)
if (fpe_debug & FPE_EX) {
vm_offset_t loc = tf->srr0;
printf("Trying to emulate: %p ", (void *)loc);
opc_disasm(loc, instr.i_int);
}
#endif
/*
* `Decode' and execute instruction.
*/
if ((instr.i_any.i_opcd >= OPC_LFS && instr.i_any.i_opcd <= OPC_STFDU) ||
instr.i_any.i_opcd == OPC_integer_31) {
/*
* Handle load/store insns:
*
* Convert to/from single if needed, calculate addr,
* and update index reg if needed.
*/
double buf;
size_t size = sizeof(float);
int store, update;
cond = 0; /* ld/st never set condition codes */
if (instr.i_any.i_opcd == OPC_integer_31) {
if (instr.i_x.i_xo == OPC31_STFIWX) {
FPU_EMU_EVCNT_INCR(stfiwx);
/* Store as integer */
ra = instr.i_x.i_ra;
rb = instr.i_x.i_rb;
DPRINTF(FPE_INSN,
("reg %d has %jx reg %d has %jx\n",
ra, (uintmax_t)tf->fixreg[ra], rb,
(uintmax_t)tf->fixreg[rb]));
addr = tf->fixreg[rb];
if (ra != 0)
addr += tf->fixreg[ra];
rt = instr.i_x.i_rt;
a = (int *)&fs->fpreg[rt].fpr;
DPRINTF(FPE_INSN,
("fpu_execute: Store INT %x at %p\n",
a[1], (void *)addr));
if (copyout(&a[1], (void *)addr, sizeof(int)))
return (FAULT);
return (0);
}
if ((instr.i_x.i_xo & OPC31_FPMASK) != OPC31_FPOP)
/* Not an indexed FP load/store op */
return (NOTFPU);
store = (instr.i_x.i_xo & 0x80);
if (instr.i_x.i_xo & 0x40)
size = sizeof(double);
else
type = FTYPE_SNG;
update = (instr.i_x.i_xo & 0x20);
/* calculate EA of load/store */
ra = instr.i_x.i_ra;
rb = instr.i_x.i_rb;
DPRINTF(FPE_INSN, ("reg %d has %jx reg %d has %jx\n",
ra, (uintmax_t)tf->fixreg[ra], rb,
(uintmax_t)tf->fixreg[rb]));
addr = tf->fixreg[rb];
if (ra != 0)
addr += tf->fixreg[ra];
rt = instr.i_x.i_rt;
} else {
store = instr.i_d.i_opcd & 0x4;
if (instr.i_d.i_opcd & 0x2)
size = sizeof(double);
else
type = FTYPE_SNG;
update = instr.i_d.i_opcd & 0x1;
/* calculate EA of load/store */
ra = instr.i_d.i_ra;
addr = instr.i_d.i_d;
DPRINTF(FPE_INSN, ("reg %d has %jx displ %jx\n",
ra, (uintmax_t)tf->fixreg[ra],
(uintmax_t)addr));
if (ra != 0)
addr += tf->fixreg[ra];
rt = instr.i_d.i_rt;
}
if (update && ra == 0)
return (NOTFPU);
if (store) {
/* Store */
FPU_EMU_EVCNT_INCR(fpstore);
if (type != FTYPE_DBL) {
DPRINTF(FPE_INSN,
("fpu_execute: Store SNG at %p\n",
(void *)addr));
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rt);
fpu_implode(fe, fp, type, (void *)&buf);
if (copyout(&buf, (void *)addr, size))
return (FAULT);
} else {
DPRINTF(FPE_INSN,
("fpu_execute: Store DBL at %p\n",
(void *)addr));
if (copyout(&fs->fpreg[rt].fpr, (void *)addr,
size))
return (FAULT);
}
} else {
/* Load */
FPU_EMU_EVCNT_INCR(fpload);
DPRINTF(FPE_INSN, ("fpu_execute: Load from %p\n",
(void *)addr));
if (copyin((const void *)addr, &fs->fpreg[rt].fpr,
size))
return (FAULT);
if (type != FTYPE_DBL) {
fpu_explode(fe, fp = &fe->fe_f1, type, rt);
fpu_implode(fe, fp, FTYPE_DBL,
(u_int *)&fs->fpreg[rt].fpr);
}
}
if (update)
tf->fixreg[ra] = addr;
/* Complete. */
return (0);
#ifdef notyet
} else if (instr.i_any.i_opcd == OPC_load_st_62) {
/* These are 64-bit extensions */
return (NOTFPU);
#endif
} else if (instr.i_any.i_opcd == OPC_sp_fp_59 ||
instr.i_any.i_opcd == OPC_dp_fp_63) {
if (instr.i_any.i_opcd == OPC_dp_fp_63 &&
!(instr.i_a.i_xo & OPC63M_MASK)) {
/* Format X */
rt = instr.i_x.i_rt;
ra = instr.i_x.i_ra;
rb = instr.i_x.i_rb;
/* One of the special opcodes.... */
switch (instr.i_x.i_xo) {
case OPC63_FCMPU:
FPU_EMU_EVCNT_INCR(fcmpu);
DPRINTF(FPE_INSN, ("fpu_execute: FCMPU\n"));
rt >>= 2;
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fpu_compare(fe, 0);
/* Make sure we do the condition regs. */
cond = 0;
/* N.B.: i_rs is already left shifted by two. */
bf = instr.i_x.i_rs & 0xfc;
setcr = 1;
break;
case OPC63_FRSP:
/*
* Convert to single:
*
* PowerPC uses this to round a double
* precision value to single precision,
* but values in registers are always
* stored in double precision format.
*/
FPU_EMU_EVCNT_INCR(frsp);
DPRINTF(FPE_INSN, ("fpu_execute: FRSP\n"));
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rb);
fpu_implode(fe, fp, FTYPE_SNG,
(u_int *)&fs->fpreg[rt].fpr);
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG, rt);
type = FTYPE_DBL;
break;
case OPC63_FCTIW:
case OPC63_FCTIWZ:
FPU_EMU_EVCNT_INCR(fctiw);
DPRINTF(FPE_INSN, ("fpu_execute: FCTIW\n"));
fpu_explode(fe, fp = &fe->fe_f1, type, rb);
type = FTYPE_INT;
break;
case OPC63_FCMPO:
FPU_EMU_EVCNT_INCR(fcmpo);
DPRINTF(FPE_INSN, ("fpu_execute: FCMPO\n"));
rt >>= 2;
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fpu_compare(fe, 1);
/* Make sure we do the condition regs. */
cond = 0;
/* N.B.: i_rs is already left shifted by two. */
bf = instr.i_x.i_rs & 0xfc;
setcr = 1;
break;
case OPC63_MTFSB1:
FPU_EMU_EVCNT_INCR(mtfsb1);
DPRINTF(FPE_INSN, ("fpu_execute: MTFSB1\n"));
fe->fe_fpscr |=
(~(FPSCR_VX|FPSR_EX) & (1<<(31-rt)));
break;
case OPC63_FNEG:
FPU_EMU_EVCNT_INCR(fnegabs);
DPRINTF(FPE_INSN, ("fpu_execute: FNEGABS\n"));
memcpy(&fs->fpreg[rt].fpr, &fs->fpreg[rb].fpr,
sizeof(double));
a = (int *)&fs->fpreg[rt].fpr;
*a ^= (1U << 31);
break;
case OPC63_MCRFS:
FPU_EMU_EVCNT_INCR(mcrfs);
DPRINTF(FPE_INSN, ("fpu_execute: MCRFS\n"));
cond = 0;
rt &= 0x1c;
ra &= 0x1c;
/* Extract the bits we want */
mask = (fe->fe_fpscr >> (28 - ra)) & 0xf;
/* Clear the bits we copied. */
fe->fe_cx =
(FPSR_EX_MSK | (0xf << (28 - ra)));
fe->fe_fpscr &= fe->fe_cx;
/* Now shove them in the right part of cr */
tf->cr &= ~(0xf << (28 - rt));
tf->cr |= (mask << (28 - rt));
break;
case OPC63_MTFSB0:
FPU_EMU_EVCNT_INCR(mtfsb0);
DPRINTF(FPE_INSN, ("fpu_execute: MTFSB0\n"));
fe->fe_fpscr &=
((FPSCR_VX|FPSR_EX) & ~(1<<(31-rt)));
break;
case OPC63_FMR:
FPU_EMU_EVCNT_INCR(fmr);
DPRINTF(FPE_INSN, ("fpu_execute: FMR\n"));
memcpy(&fs->fpreg[rt].fpr, &fs->fpreg[rb].fpr,
sizeof(double));
break;
case OPC63_MTFSFI:
FPU_EMU_EVCNT_INCR(mtfsfi);
DPRINTF(FPE_INSN, ("fpu_execute: MTFSFI\n"));
rb >>= 1;
rt &= 0x1c; /* Already left-shifted 4 */
fe->fe_cx = rb << (28 - rt);
mask = 0xf<<(28 - rt);
fe->fe_fpscr = (fe->fe_fpscr & ~mask) |
fe->fe_cx;
/* XXX weird stuff about OX, FX, FEX, and VX should be handled */
break;
case OPC63_FNABS:
FPU_EMU_EVCNT_INCR(fnabs);
DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
memcpy(&fs->fpreg[rt].fpr, &fs->fpreg[rb].fpr,
sizeof(double));
a = (int *)&fs->fpreg[rt].fpr;
*a |= (1U << 31);
break;
case OPC63_FABS:
FPU_EMU_EVCNT_INCR(fabs);
DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
memcpy(&fs->fpreg[rt].fpr, &fs->fpreg[rb].fpr,
sizeof(double));
a = (int *)&fs->fpreg[rt].fpr;
*a &= ~(1U << 31);
break;
case OPC63_MFFS:
FPU_EMU_EVCNT_INCR(mffs);
DPRINTF(FPE_INSN, ("fpu_execute: MFFS\n"));
memcpy(&fs->fpreg[rt].fpr, &fs->fpscr,
sizeof(fs->fpscr));
break;
case OPC63_MTFSF:
FPU_EMU_EVCNT_INCR(mtfsf);
DPRINTF(FPE_INSN, ("fpu_execute: MTFSF\n"));
if ((rt = instr.i_xfl.i_flm) == -1)
mask = -1;
else {
mask = 0;
/* Convert 1 bit -> 4 bits */
for (ra = 0; ra < 8; ra ++)
if (rt & (1<<ra))
mask |= (0xf<<(4*ra));
}
a = (int *)&fs->fpreg[rt].fpr;
fe->fe_cx = mask & a[1];
fe->fe_fpscr = (fe->fe_fpscr&~mask) |
(fe->fe_cx);
/* XXX weird stuff about OX, FX, FEX, and VX should be handled */
break;
case OPC63_FCTID:
case OPC63_FCTIDZ:
FPU_EMU_EVCNT_INCR(fctid);
DPRINTF(FPE_INSN, ("fpu_execute: FCTID\n"));
fpu_explode(fe, fp = &fe->fe_f1, type, rb);
type = FTYPE_LNG;
break;
case OPC63_FCFID:
FPU_EMU_EVCNT_INCR(fcfid);
DPRINTF(FPE_INSN, ("fpu_execute: FCFID\n"));
type = FTYPE_LNG;
fpu_explode(fe, fp = &fe->fe_f1, type, rb);
type = FTYPE_DBL;
break;
default:
return (NOTFPU);
break;
}
} else {
/* Format A */
rt = instr.i_a.i_frt;
ra = instr.i_a.i_fra;
rb = instr.i_a.i_frb;
rc = instr.i_a.i_frc;
/*
* All arithmetic operations work on registers, which
* are stored as doubles.
*/
type = FTYPE_DBL;
switch ((unsigned int)instr.i_a.i_xo) {
case OPC59_FDIVS:
FPU_EMU_EVCNT_INCR(fdiv);
DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_div(fe);
break;
case OPC59_FSUBS:
FPU_EMU_EVCNT_INCR(fsub);
DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_sub(fe);
break;
case OPC59_FADDS:
FPU_EMU_EVCNT_INCR(fadd);
DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_add(fe);
break;
case OPC59_FSQRTS:
FPU_EMU_EVCNT_INCR(fsqrt);
DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
fpu_explode(fe, &fe->fe_f1, type, rb);
fp = fpu_sqrt(fe);
break;
case OPC63M_FSEL:
FPU_EMU_EVCNT_INCR(fsel);
DPRINTF(FPE_INSN, ("fpu_execute: FSEL\n"));
a = (int *)&fe->fe_fpstate->fpreg[ra].fpr;
if ((*a & 0x80000000) && (*a & 0x7fffffff))
/* fra < 0 */
rc = rb;
DPRINTF(FPE_INSN, ("f%d => f%d\n", rc, rt));
memcpy(&fs->fpreg[rt].fpr, &fs->fpreg[rc].fpr,
sizeof(double));
break;
case OPC59_FRES:
FPU_EMU_EVCNT_INCR(fpres);
DPRINTF(FPE_INSN, ("fpu_execute: FPRES\n"));
fpu_explode(fe, &fe->fe_f1, type, rb);
fp = fpu_sqrt(fe);
/* now we've gotta overwrite the dest reg */
*((int *)&fe->fe_fpstate->fpreg[rt].fpr) = 1;
fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt);
fpu_div(fe);
break;
case OPC59_FMULS:
FPU_EMU_EVCNT_INCR(fmul);
DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
break;
case OPC63M_FRSQRTE:
/* Reciprocal sqrt() estimate */
FPU_EMU_EVCNT_INCR(frsqrte);
DPRINTF(FPE_INSN, ("fpu_execute: FRSQRTE\n"));
fpu_explode(fe, &fe->fe_f1, type, rb);
fp = fpu_sqrt(fe);
fe->fe_f2 = *fp;
/* now we've gotta overwrite the dest reg */
*((int *)&fe->fe_fpstate->fpreg[rt].fpr) = 1;
fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt);
fpu_div(fe);
break;
case OPC59_FMSUBS:
FPU_EMU_EVCNT_INCR(fmulsub);
DPRINTF(FPE_INSN, ("fpu_execute: FMULSUB\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
fe->fe_f1 = *fp;
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_sub(fe);
break;
case OPC59_FMADDS:
FPU_EMU_EVCNT_INCR(fmuladd);
DPRINTF(FPE_INSN, ("fpu_execute: FMULADD\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
fe->fe_f1 = *fp;
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_add(fe);
break;
case OPC59_FNMSUBS:
FPU_EMU_EVCNT_INCR(fnmsub);
DPRINTF(FPE_INSN, ("fpu_execute: FNMSUB\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
fe->fe_f1 = *fp;
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_sub(fe);
/* Negate */
fp->fp_sign ^= 1;
break;
case OPC59_FNMADDS:
FPU_EMU_EVCNT_INCR(fnmadd);
DPRINTF(FPE_INSN, ("fpu_execute: FNMADD\n"));
fpu_explode(fe, &fe->fe_f1, type, ra);
fpu_explode(fe, &fe->fe_f2, type, rc);
fp = fpu_mul(fe);
fe->fe_f1 = *fp;
fpu_explode(fe, &fe->fe_f2, type, rb);
fp = fpu_add(fe);
/* Negate */
fp->fp_sign ^= 1;
break;
default:
return (NOTFPU);
break;
}
/* If the instruction was single precision, round */
if (!(instr.i_any.i_opcd & 0x4)) {
fpu_implode(fe, fp, FTYPE_SNG,
(u_int *)&fs->fpreg[rt].fpr);
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG, rt);
}
}
} else {
return (NOTFPU);
}
/*
* ALU operation is complete. Collapse the result and then check
* for exceptions. If we got any, and they are enabled, do not
* alter the destination register, just stop with an exception.
* Otherwise set new current exceptions and accrue.
*/
if (fp)
fpu_implode(fe, fp, type, (u_int *)&fs->fpreg[rt].fpr);
cx = fe->fe_cx;
fsr = fe->fe_fpscr;
if (cx != 0) {
fsr &= ~FPSCR_FX;
if ((cx^fsr)&FPSR_EX_MSK)
fsr |= FPSCR_FX;
mask = fsr & FPSR_EX;
mask <<= (25-3);
if (cx & mask)
fsr |= FPSCR_FEX;
if (cx & FPSCR_FPRF) {
/* Need to replace CC */
fsr &= ~FPSCR_FPRF;
}
if (cx & (FPSR_EXOP))
fsr |= FPSCR_VX;
fsr |= cx;
DPRINTF(FPE_INSN, ("fpu_execute: cx %x, fsr %x\n", cx, fsr));
}
if (cond) {
cond = fsr & 0xf0000000;
/* Isolate condition codes */
cond >>= 28;
/* Move fpu condition codes to cr[1] */
tf->cr &= (0x0f000000);
tf->cr |= (cond<<24);
DPRINTF(FPE_INSN, ("fpu_execute: cr[1] <= %x\n", cond));
}
if (setcr) {
cond = fsr & FPSCR_FPCC;
/* Isolate condition codes */
cond <<= 16;
/* Move fpu condition codes to cr[1] */
tf->cr &= ~(0xf0000000>>bf);
tf->cr |= (cond>>bf);
DPRINTF(FPE_INSN, ("fpu_execute: cr[%d] (cr=%jx) <= %x\n",
bf/4, (uintmax_t)tf->cr, cond));
}
((int *)&fs->fpscr)[1] = fsr;
if (fsr & FPSCR_FEX)
return(FPE);
return (0); /* success */
}