freebsd-skq/usr.sbin/bluetooth/hccontrol/link_control.c
Hans Petter Selasky 6f80a2c88e Add missing feature descriptions to hci_features2str().
The list of possible features in hccontrol/features2str() is incomplete.
Refer to "Bluetooth Core Specification 5.2 Vol. 2 Part C. 3.3 Feature Mask Definition".

Submitted by:	Marc Veldman <marc@bumblingdork.com>
PR:		245354
MFC after:	1 week
Sponsored by:	Mellanox Technologies
2020-04-18 08:29:16 +00:00

964 lines
25 KiB
C

/*-
* link_control.c
*
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2001-2002 Maksim Yevmenkin <m_evmenkin@yahoo.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: link_control.c,v 1.4 2003/08/18 19:19:54 max Exp $
* $FreeBSD$
*/
#define L2CAP_SOCKET_CHECKED
#include <bluetooth.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include "hccontrol.h"
static void hci_inquiry_response (int n, uint8_t **b);
/* Send Inquiry command to the unit */
static int
hci_inquiry(int s, int argc, char **argv)
{
int n0, n1, n2, timo;
char b[512];
ng_hci_inquiry_cp cp;
ng_hci_event_pkt_t *e = (ng_hci_event_pkt_t *) b;
/* set defaults */
cp.lap[2] = 0x9e;
cp.lap[1] = 0x8b;
cp.lap[0] = 0x33;
cp.inquiry_length = 5;
cp.num_responses = 8;
/* parse command parameters */
switch (argc) {
case 3:
/* number of responses, range 0x00 - 0xff */
if (sscanf(argv[2], "%d", &n0) != 1 || n0 < 0 || n0 > 0xff)
return (USAGE);
cp.num_responses = (n0 & 0xff);
case 2:
/* inquiry length (N * 1.28) sec, range 0x01 - 0x30 */
if (sscanf(argv[1], "%d", &n0) != 1 || n0 < 0x1 || n0 > 0x30)
return (USAGE);
cp.inquiry_length = (n0 & 0xff);
case 1:
/* LAP */
if (sscanf(argv[0], "%x:%x:%x", &n2, &n1, &n0) != 3)
return (USAGE);
cp.lap[0] = (n0 & 0xff);
cp.lap[1] = (n1 & 0xff);
cp.lap[2] = (n2 & 0xff);
case 0:
/* use defaults */
break;
default:
return (USAGE);
}
/* send request and expect status back */
n0 = sizeof(b);
if (hci_request(s, NG_HCI_OPCODE(NG_HCI_OGF_LINK_CONTROL,
NG_HCI_OCF_INQUIRY), (char const *) &cp, sizeof(cp),
b, &n0) == ERROR)
return (ERROR);
if (*b != 0x00)
return (FAILED);
timo = timeout;
timeout = cp.inquiry_length * 1.28 + 1;
wait_for_more:
/* wait for inquiry events */
n0 = sizeof(b);
if (hci_recv(s, b, &n0) == ERROR) {
timeout = timo;
return (ERROR);
}
if (n0 < sizeof(*e)) {
timeout = timo;
errno = EIO;
return (ERROR);
}
switch (e->event) {
case NG_HCI_EVENT_INQUIRY_RESULT: {
ng_hci_inquiry_result_ep *ir =
(ng_hci_inquiry_result_ep *)(e + 1);
uint8_t *r = (uint8_t *)(ir + 1);
fprintf(stdout, "Inquiry result, num_responses=%d\n",
ir->num_responses);
for (n0 = 0; n0 < ir->num_responses; n0++)
hci_inquiry_response(n0, &r);
goto wait_for_more;
}
case NG_HCI_EVENT_INQUIRY_COMPL:
fprintf(stdout, "Inquiry complete. Status: %s [%#02x]\n",
hci_status2str(*(b + sizeof(*e))), *(b + sizeof(*e)));
break;
default:
goto wait_for_more;
}
timeout = timo;
return (OK);
} /* hci_inquiry */
/* Print Inquiry_Result event */
static void
hci_inquiry_response(int n, uint8_t **b)
{
ng_hci_inquiry_response *ir = (ng_hci_inquiry_response *)(*b);
fprintf(stdout, "Inquiry result #%d\n", n);
fprintf(stdout, "\tBD_ADDR: %s\n", hci_bdaddr2str(&ir->bdaddr));
fprintf(stdout, "\tPage Scan Rep. Mode: %#02x\n",
ir->page_scan_rep_mode);
fprintf(stdout, "\tPage Scan Period Mode: %#02x\n",
ir->page_scan_period_mode);
fprintf(stdout, "\tPage Scan Mode: %#02x\n",
ir->page_scan_mode);
fprintf(stdout, "\tClass: %02x:%02x:%02x\n",
ir->uclass[2], ir->uclass[1], ir->uclass[0]);
fprintf(stdout, "\tClock offset: %#04x\n",
le16toh(ir->clock_offset));
*b += sizeof(*ir);
} /* hci_inquiry_response */
/* Send Create_Connection command to the unit */
static int
hci_create_connection(int s, int argc, char **argv)
{
int n0;
char b[512];
ng_hci_create_con_cp cp;
ng_hci_event_pkt_t *e = (ng_hci_event_pkt_t *) b;
/* Set defaults */
memset(&cp, 0, sizeof(cp));
cp.pkt_type = htole16( NG_HCI_PKT_DM1 | NG_HCI_PKT_DH1 |
NG_HCI_PKT_DM3 | NG_HCI_PKT_DH3 |
NG_HCI_PKT_DM5);
cp.page_scan_rep_mode = NG_HCI_SCAN_REP_MODE0;
cp.page_scan_mode = NG_HCI_MANDATORY_PAGE_SCAN_MODE;
cp.clock_offset = 0;
cp.accept_role_switch = 1;
/* parse command parameters */
switch (argc) {
case 6:
/* accept role switch */
if (sscanf(argv[5], "%d", &n0) != 1)
return (USAGE);
cp.accept_role_switch = n0 ? 1 : 0;
case 5:
/* clock offset */
if (sscanf(argv[4], "%d", &n0) != 1)
return (USAGE);
cp.clock_offset = (n0 & 0xffff);
cp.clock_offset = htole16(cp.clock_offset);
case 4:
/* page scan mode */
if (sscanf(argv[3], "%d", &n0) != 1 || n0 < 0 || n0 > 3)
return (USAGE);
cp.page_scan_mode = (n0 & 0xff);
case 3:
/* page scan rep mode */
if (sscanf(argv[2], "%d", &n0) != 1 || n0 < 0 || n0 > 2)
return (USAGE);
cp.page_scan_rep_mode = (n0 & 0xff);
case 2:
/* packet type */
if (sscanf(argv[1], "%x", &n0) != 1)
return (USAGE);
n0 &= ( NG_HCI_PKT_DM1 | NG_HCI_PKT_DH1 |
NG_HCI_PKT_DM3 | NG_HCI_PKT_DH3 |
NG_HCI_PKT_DM5);
if (n0 == 0)
return (USAGE);
cp.pkt_type = (n0 & 0xffff);
cp.pkt_type = htole16(cp.pkt_type);
case 1:
/* BD_ADDR */
if (!bt_aton(argv[0], &cp.bdaddr)) {
struct hostent *he = NULL;
if ((he = bt_gethostbyname(argv[0])) == NULL)
return (USAGE);
memcpy(&cp.bdaddr, he->h_addr, sizeof(cp.bdaddr));
}
break;
default:
return (USAGE);
}
/* send request and expect status response */
n0 = sizeof(b);
if (hci_request(s, NG_HCI_OPCODE(NG_HCI_OGF_LINK_CONTROL,
NG_HCI_OCF_CREATE_CON),
(char const *) &cp, sizeof(cp), b, &n0) == ERROR)
return (ERROR);
if (*b != 0x00)
return (FAILED);
/* wait for event */
again:
n0 = sizeof(b);
if (hci_recv(s, b, &n0) == ERROR)
return (ERROR);
if (n0 < sizeof(*e)) {
errno = EIO;
return (ERROR);
}
if (e->event == NG_HCI_EVENT_CON_COMPL) {
ng_hci_con_compl_ep *ep = (ng_hci_con_compl_ep *)(e + 1);
if (ep->status != 0x00) {
fprintf(stdout, "Status: %s [%#02x]\n",
hci_status2str(ep->status), ep->status);
return (FAILED);
}
fprintf(stdout, "BD_ADDR: %s\n", hci_bdaddr2str(&ep->bdaddr));
fprintf(stdout, "Connection handle: %d\n",
le16toh(ep->con_handle));
fprintf(stdout, "Encryption mode: %s [%d]\n",
hci_encrypt2str(ep->encryption_mode, 0),
ep->encryption_mode);
} else
goto again;
return (OK);
} /* hci_create_connection */
/* Send Disconnect command to the unit */
static int
hci_disconnect(int s, int argc, char **argv)
{
int n;
char b[512];
ng_hci_discon_cp cp;
ng_hci_event_pkt_t *e = (ng_hci_event_pkt_t *) b;
/* Set defaults */
memset(&cp, 0, sizeof(cp));
cp.reason = 0x13;
/* parse command parameters */
switch (argc) {
case 2:
/* reason */
if (sscanf(argv[1], "%d", &n) != 1 || n <= 0x00 || n > 0xff)
return (USAGE);
cp.reason = (uint8_t) (n & 0xff);
case 1:
/* connection handle */
if (sscanf(argv[0], "%d", &n) != 1 || n <= 0 || n > 0x0eff)
return (USAGE);
cp.con_handle = (uint16_t) (n & 0x0fff);
cp.con_handle = htole16(cp.con_handle);
break;
default:
return (USAGE);
}
/* send request and expect status response */
n = sizeof(b);
if (hci_request(s, NG_HCI_OPCODE(NG_HCI_OGF_LINK_CONTROL,
NG_HCI_OCF_DISCON),
(char const *) &cp, sizeof(cp), b, &n) == ERROR)
return (ERROR);
if (*b != 0x00)
return (FAILED);
/* wait for event */
again:
n = sizeof(b);
if (hci_recv(s, b, &n) == ERROR)
return (ERROR);
if (n < sizeof(*e)) {
errno = EIO;
return (ERROR);
}
if (e->event == NG_HCI_EVENT_DISCON_COMPL) {
ng_hci_discon_compl_ep *ep = (ng_hci_discon_compl_ep *)(e + 1);
if (ep->status != 0x00) {
fprintf(stdout, "Status: %s [%#02x]\n",
hci_status2str(ep->status), ep->status);
return (FAILED);
}
fprintf(stdout, "Connection handle: %d\n",
le16toh(ep->con_handle));
fprintf(stdout, "Reason: %s [%#02x]\n",
hci_status2str(ep->reason), ep->reason);
} else
goto again;
return (OK);
} /* hci_disconnect */
/* Send Add_SCO_Connection command to the unit */
static int
hci_add_sco_connection(int s, int argc, char **argv)
{
int n;
char b[512];
ng_hci_add_sco_con_cp cp;
ng_hci_event_pkt_t *e = (ng_hci_event_pkt_t *) b;
/* Set defaults */
memset(&cp, 0, sizeof(cp));
cp.pkt_type = htole16(NG_HCI_PKT_HV1 | NG_HCI_PKT_HV2 | NG_HCI_PKT_HV3);
/* parse command parameters */
switch (argc) {
case 2:
/* packet type */
if (sscanf(argv[1], "%x", &n) != 1)
return (USAGE);
n &= (NG_HCI_PKT_HV1 | NG_HCI_PKT_HV2 | NG_HCI_PKT_HV3);
if (n == 0)
return (USAGE);
cp.pkt_type = (uint16_t) (n & 0x0fff);
cp.pkt_type = htole16(cp.pkt_type);
case 1:
/* acl connection handle */
if (sscanf(argv[0], "%d", &n) != 1 || n <= 0 || n > 0x0eff)
return (USAGE);
cp.con_handle = (uint16_t) (n & 0x0fff);
cp.con_handle = htole16(cp.con_handle);
break;
default:
return (USAGE);
}
/* send request and expect status response */
n = sizeof(b);
if (hci_request(s, NG_HCI_OPCODE(NG_HCI_OGF_LINK_CONTROL,
NG_HCI_OCF_ADD_SCO_CON),
(char const *) &cp, sizeof(cp), b, &n) == ERROR)
return (ERROR);
if (*b != 0x00)
return (FAILED);
/* wait for event */
again:
n = sizeof(b);
if (hci_recv(s, b, &n) == ERROR)
return (ERROR);
if (n < sizeof(*e)) {
errno = EIO;
return (ERROR);
}
if (e->event == NG_HCI_EVENT_CON_COMPL) {
ng_hci_con_compl_ep *ep = (ng_hci_con_compl_ep *)(e + 1);
if (ep->status != 0x00) {
fprintf(stdout, "Status: %s [%#02x]\n",
hci_status2str(ep->status), ep->status);
return (FAILED);
}
fprintf(stdout, "BD_ADDR: %s\n", hci_bdaddr2str(&ep->bdaddr));
fprintf(stdout, "Connection handle: %d\n",
le16toh(ep->con_handle));
fprintf(stdout, "Encryption mode: %s [%d]\n",
hci_encrypt2str(ep->encryption_mode, 0),
ep->encryption_mode);
} else
goto again;
return (OK);
} /* Add_SCO_Connection */
/* Send Change_Connection_Packet_Type command to the unit */
static int
hci_change_connection_packet_type(int s, int argc, char **argv)
{
int n;
char b[512];
ng_hci_change_con_pkt_type_cp cp;
ng_hci_event_pkt_t *e = (ng_hci_event_pkt_t *) b;
switch (argc) {
case 2:
/* connection handle */
if (sscanf(argv[0], "%d", &n) != 1 || n <= 0 || n > 0x0eff)
return (USAGE);
cp.con_handle = (uint16_t) (n & 0x0fff);
cp.con_handle = htole16(cp.con_handle);
/* packet type */
if (sscanf(argv[1], "%x", &n) != 1)
return (USAGE);
cp.pkt_type = (uint16_t) (n & 0xffff);
cp.pkt_type = htole16(cp.pkt_type);
break;
default:
return (USAGE);
}
/* send request and expect status response */
n = sizeof(b);
if (hci_request(s, NG_HCI_OPCODE(NG_HCI_OGF_LINK_CONTROL,
NG_HCI_OCF_CHANGE_CON_PKT_TYPE),
(char const *) &cp, sizeof(cp), b, &n) == ERROR)
return (ERROR);
if (*b != 0x00)
return (FAILED);
/* wait for event */
again:
n = sizeof(b);
if (hci_recv(s, b, &n) == ERROR)
return (ERROR);
if (n < sizeof(*e)) {
errno = EIO;
return (ERROR);
}
if (e->event == NG_HCI_EVENT_CON_PKT_TYPE_CHANGED) {
ng_hci_con_pkt_type_changed_ep *ep =
(ng_hci_con_pkt_type_changed_ep *)(e + 1);
if (ep->status != 0x00) {
fprintf(stdout, "Status: %s [%#02x]\n",
hci_status2str(ep->status), ep->status);
return (FAILED);
}
fprintf(stdout, "Connection handle: %d\n",
le16toh(ep->con_handle));
fprintf(stdout, "Packet type: %#04x\n",
le16toh(ep->pkt_type));
} else
goto again;
return (OK);
} /* hci_change_connection_packet_type */
/* Send Remote_Name_Request command to the unit */
static int
hci_remote_name_request(int s, int argc, char **argv)
{
int n0;
char b[512];
ng_hci_remote_name_req_cp cp;
ng_hci_event_pkt_t *e = (ng_hci_event_pkt_t *) b;
memset(&cp, 0, sizeof(cp));
cp.page_scan_rep_mode = NG_HCI_SCAN_REP_MODE0;
cp.page_scan_mode = NG_HCI_MANDATORY_PAGE_SCAN_MODE;
/* parse command parameters */
switch (argc) {
case 4:
/* clock_offset */
if (sscanf(argv[3], "%x", &n0) != 1)
return (USAGE);
cp.clock_offset = (n0 & 0xffff);
cp.clock_offset = htole16(cp.clock_offset);
case 3:
/* page_scan_mode */
if (sscanf(argv[2], "%d", &n0) != 1 || n0 < 0x00 || n0 > 0x03)
return (USAGE);
cp.page_scan_mode = (n0 & 0xff);
case 2:
/* page_scan_rep_mode */
if (sscanf(argv[1], "%d", &n0) != 1 || n0 < 0x00 || n0 > 0x02)
return (USAGE);
cp.page_scan_rep_mode = (n0 & 0xff);
case 1:
/* BD_ADDR */
if (!bt_aton(argv[0], &cp.bdaddr)) {
struct hostent *he = NULL;
if ((he = bt_gethostbyname(argv[0])) == NULL)
return (USAGE);
memcpy(&cp.bdaddr, he->h_addr, sizeof(cp.bdaddr));
}
break;
default:
return (USAGE);
}
/* send request and expect status response */
n0 = sizeof(b);
if (hci_request(s, NG_HCI_OPCODE(NG_HCI_OGF_LINK_CONTROL,
NG_HCI_OCF_REMOTE_NAME_REQ),
(char const *) &cp, sizeof(cp), b, &n0) == ERROR)
return (ERROR);
if (*b != 0x00)
return (FAILED);
/* wait for event */
again:
n0 = sizeof(b);
if (hci_recv(s, b, &n0) == ERROR)
return (ERROR);
if (n0 < sizeof(*e)) {
errno = EIO;
return (ERROR);
}
if (e->event == NG_HCI_EVENT_REMOTE_NAME_REQ_COMPL) {
ng_hci_remote_name_req_compl_ep *ep =
(ng_hci_remote_name_req_compl_ep *)(e + 1);
if (ep->status != 0x00) {
fprintf(stdout, "Status: %s [%#02x]\n",
hci_status2str(ep->status), ep->status);
return (FAILED);
}
fprintf(stdout, "BD_ADDR: %s\n", hci_bdaddr2str(&ep->bdaddr));
fprintf(stdout, "Name: %s\n", ep->name);
} else
goto again;
return (OK);
} /* hci_remote_name_request */
/* Send Read_Remote_Supported_Features command to the unit */
static int
hci_read_remote_supported_features(int s, int argc, char **argv)
{
int n;
char b[512];
ng_hci_read_remote_features_cp cp;
ng_hci_event_pkt_t *e = (ng_hci_event_pkt_t *) b;
char buffer[2048];
/* parse command parameters */
switch (argc) {
case 1:
/* connecton handle */
if (sscanf(argv[0], "%d", &n) != 1 || n < 0 || n > 0x0eff)
return (USAGE);
cp.con_handle = (n & 0x0fff);
cp.con_handle = htole16(cp.con_handle);
break;
default:
return (USAGE);
}
/* send request and expect status response */
n = sizeof(b);
if (hci_request(s, NG_HCI_OPCODE(NG_HCI_OGF_LINK_CONTROL,
NG_HCI_OCF_READ_REMOTE_FEATURES),
(char const *) &cp, sizeof(cp), b, &n) == ERROR)
return (ERROR);
if (*b != 0x00)
return (FAILED);
/* wait for event */
again:
n = sizeof(b);
if (hci_recv(s, b, &n) == ERROR)
return (ERROR);
if (n < sizeof(*e)) {
errno = EIO;
return (ERROR);
}
if (e->event == NG_HCI_EVENT_READ_REMOTE_FEATURES_COMPL) {
ng_hci_read_remote_features_compl_ep *ep =
(ng_hci_read_remote_features_compl_ep *)(e + 1);
if (ep->status != 0x00) {
fprintf(stdout, "Status: %s [%#02x]\n",
hci_status2str(ep->status), ep->status);
return (FAILED);
}
fprintf(stdout, "Connection handle: %d\n",
le16toh(ep->con_handle));
fprintf(stdout, "Features: ");
for (n = 0; n < sizeof(ep->features); n++)
fprintf(stdout, "%#02x ", ep->features[n]);
fprintf(stdout, "\n%s\n", hci_features2str(ep->features,
buffer, sizeof(buffer)));
} else
goto again;
return (OK);
} /* hci_read_remote_supported_features */
/* Send Read_Remote_Version_Information command to the unit */
static int
hci_read_remote_version_information(int s, int argc, char **argv)
{
int n;
char b[512];
ng_hci_read_remote_ver_info_cp cp;
ng_hci_event_pkt_t *e = (ng_hci_event_pkt_t *) b;
/* parse command parameters */
switch (argc) {
case 1:
/* connecton handle */
if (sscanf(argv[0], "%d", &n) != 1 || n < 0 || n > 0x0eff)
return (USAGE);
cp.con_handle = (n & 0x0fff);
cp.con_handle = htole16(cp.con_handle);
break;
default:
return (USAGE);
}
/* send request and expect status response */
n = sizeof(b);
if (hci_request(s, NG_HCI_OPCODE(NG_HCI_OGF_LINK_CONTROL,
NG_HCI_OCF_READ_REMOTE_VER_INFO),
(char const *) &cp, sizeof(cp), b, &n) == ERROR)
return (ERROR);
if (*b != 0x00)
return (FAILED);
/* wait for event */
again:
n = sizeof(b);
if (hci_recv(s, b, &n) == ERROR)
return (ERROR);
if (n < sizeof(*e)) {
errno = EIO;
return (ERROR);
}
if (e->event == NG_HCI_EVENT_READ_REMOTE_VER_INFO_COMPL) {
ng_hci_read_remote_ver_info_compl_ep *ep =
(ng_hci_read_remote_ver_info_compl_ep *)(e + 1);
if (ep->status != 0x00) {
fprintf(stdout, "Status: %s [%#02x]\n",
hci_status2str(ep->status), ep->status);
return (FAILED);
}
ep->manufacturer = le16toh(ep->manufacturer);
fprintf(stdout, "Connection handle: %d\n",
le16toh(ep->con_handle));
fprintf(stdout, "LMP version: %s [%#02x]\n",
hci_lmpver2str(ep->lmp_version), ep->lmp_version);
fprintf(stdout, "LMP sub-version: %#04x\n",
le16toh(ep->lmp_subversion));
fprintf(stdout, "Manufacturer: %s [%#04x]\n",
hci_manufacturer2str(ep->manufacturer),
ep->manufacturer);
} else
goto again;
return (OK);
} /* hci_read_remote_version_information */
/* Send Read_Clock_Offset command to the unit */
static int
hci_read_clock_offset(int s, int argc, char **argv)
{
int n;
char b[512];
ng_hci_read_clock_offset_cp cp;
ng_hci_event_pkt_t *e = (ng_hci_event_pkt_t *) b;
/* parse command parameters */
switch (argc) {
case 1:
/* connecton handle */
if (sscanf(argv[0], "%d", &n) != 1 || n < 0 || n > 0x0eff)
return (USAGE);
cp.con_handle = (n & 0x0fff);
cp.con_handle = htole16(cp.con_handle);
break;
default:
return (USAGE);
}
/* send request and expect status response */
n = sizeof(b);
if (hci_request(s, NG_HCI_OPCODE(NG_HCI_OGF_LINK_CONTROL,
NG_HCI_OCF_READ_CLOCK_OFFSET),
(char const *) &cp, sizeof(cp), b, &n) == ERROR)
return (ERROR);
if (*b != 0x00)
return (FAILED);
/* wait for event */
again:
n = sizeof(b);
if (hci_recv(s, b, &n) == ERROR)
return (ERROR);
if (n < sizeof(*e)) {
errno = EIO;
return (ERROR);
}
if (e->event == NG_HCI_EVENT_READ_CLOCK_OFFSET_COMPL) {
ng_hci_read_clock_offset_compl_ep *ep =
(ng_hci_read_clock_offset_compl_ep *)(e + 1);
if (ep->status != 0x00) {
fprintf(stdout, "Status: %s [%#02x]\n",
hci_status2str(ep->status), ep->status);
return (FAILED);
}
fprintf(stdout, "Connection handle: %d\n",
le16toh(ep->con_handle));
fprintf(stdout, "Clock offset: %#04x\n",
le16toh(ep->clock_offset));
} else
goto again;
return (OK);
} /* hci_read_clock_offset */
struct hci_command link_control_commands[] = {
{
"inquiry <LAP> <inquiry_length> <num_reponses>",
"\nThis command will cause the Bluetooth unit to enter Inquiry Mode.\n" \
"Inquiry Mode is used to discover other nearby Bluetooth units. The LAP\n" \
"input parameter contains the LAP from which the inquiry access code shall\n" \
"be derived when the inquiry procedure is made. The Inquiry_Length parameter\n"\
"specifies the total duration of the Inquiry Mode and, when this time\n" \
"expires, Inquiry will be halted. The Num_Responses parameter specifies the\n" \
"number of responses that can be received before the Inquiry is halted.\n\n" \
"\t<LAP> - xx:xx:xx; 9e:8b:33 (GIAC), 93:8b:00 (LDIAC)\n" \
"\t<inquiry_length> - dd; total length == dd * 1.28 sec\n" \
"\t<num_responses> - dd",
&hci_inquiry
},
{
"create_connection <BD_ADDR> <pkt> <rep_mode> <ps_mode> <clck_off> <role_sw>",
"" \
"\t<BD_ADDR> - xx:xx:xx:xx:xx:xx BD_ADDR or name\n\n" \
"\t<pkt> - xxxx; packet type\n" \
"" \
"\t\tACL packets\n" \
"\t\t-----------\n" \
"\t\t0x0008 DM1\n" \
"\t\t0x0010 DH1\n" \
"\t\t0x0400 DM3\n" \
"\t\t0x0800 DH3\n" \
"\t\t0x4000 DM5\n" \
"\t\t0x8000 DH5\n\n" \
"" \
"\trep_mode - d; page scan repetition mode\n" \
"" \
"\t\tPage scan repetition modes\n" \
"\t\t--------------------------\n" \
"\t\t0 Page scan repetition mode 0\n" \
"\t\t1 Page scan repetition mode 1\n" \
"\t\t2 Page scan repetition mode 2\n" \
"\n" \
"\tps_mode - d; Page scan mode\n" \
"" \
"\t\tPage scan modes\n" \
"\t\t---------------\n" \
"\t\t0 Mandatory page scan mode\n" \
"\t\t1 Optional page scan mode1\n" \
"\t\t2 Optional page scan mode2\n" \
"\t\t3 Optional page scan mode3\n" \
"\n" \
"\tclck_off - dddd; clock offset. Use 0 if unknown\n\n" \
"\trole_sw - d; allow (1) or deny role switch\n",
&hci_create_connection
},
{
"disconnect <connection_handle> <reason>",
"\nThe Disconnection command is used to terminate an existing connection.\n" \
"The connection handle command parameter indicates which connection is to\n" \
"be disconnected. The Reason command parameter indicates the reason for\n" \
"ending the connection.\n\n" \
"\t<connection_handle> - dddd; connection handle\n" \
"\t<reason> - dd; reason; usually 19 (0x13) - user ended;\n" \
"\t also 0x05, 0x13-0x15, 0x1A, 0x29",
&hci_disconnect
},
{
"add_sco_connection <acl connection handle> <packet type>",
"This command will cause the link manager to create a SCO connection using\n" \
"the ACL connection specified by the connection handle command parameter.\n" \
"The Link Manager will determine how the new connection is established. This\n"\
"connection is determined by the current state of the device, its piconet,\n" \
"and the state of the device to be connected. The packet type command parameter\n" \
"specifies which packet types the Link Manager should use for the connection.\n"\
"The Link Manager must only use the packet type(s) specified by the packet\n" \
"type command parameter for sending HCI SCO data packets. Multiple packet\n" \
"types may be specified for the packet type command parameter by performing\n" \
"a bitwise OR operation of the different packet types. Note: An SCO connection\n" \
"can only be created when an ACL connection already exists and when it is\n" \
"not put in park mode.\n\n" \
"\t<connection_handle> - dddd; ACL connection handle\n" \
"\t<packet_type> - xxxx; packet type\n" \
"" \
"\t\tSCO packets\n" \
"\t\t-----------\n" \
"\t\t0x0020 HV1\n" \
"\t\t0x0040 HV2\n" \
"\t\t0x0080 HV3\n",
&hci_add_sco_connection
},
{
"change_connection_packet_type <connection_hande> <packet_type>",
"The Change_Connection_Packet_Type command is used to change which packet\n" \
"types can be used for a connection that is currently established. This\n" \
"allows current connections to be dynamically modified to support different\n" \
"types of user data. The Packet_Type command parameter specifies which\n" \
"packet types the Link Manager can use for the connection. Multiple packet\n" \
"types may be specified for the Packet_Type command parameter by bitwise OR\n" \
"operation of the different packet types.\n\n" \
"\t<connection_handle> - dddd; connection handle\n" \
"\t<packet_type> - xxxx; packet type mask\n" \
"" \
"\t\tACL packets\n" \
"\t\t-----------\n" \
"\t\t0x0008 DM1\n" \
"\t\t0x0010 DH1\n" \
"\t\t0x0400 DM3\n" \
"\t\t0x0800 DH3\n" \
"\t\t0x4000 DM5\n" \
"\t\t0x8000 DH5\n\n" \
"" \
"\t\tSCO packets\n" \
"\t\t-----------\n" \
"\t\t0x0020 HV1\n" \
"\t\t0x0040 HV2\n" \
"\t\t0x0080 HV3\n" \
"",
&hci_change_connection_packet_type
},
{
"remote_name_request <BD_ADDR> <ps_rep_mode> <ps_mode> <clock_offset>",
"\nThe Remote_Name_Request command is used to obtain the user-friendly\n" \
"name of another Bluetooth unit.\n\n" \
"\t<BD_ADDR> - xx:xx:xx:xx:xx:xx BD_ADDR or name\n" \
"\t<ps_rep_mode> - dd; page scan repetition mode [0-2]\n" \
"\t<ps_mode> - dd; page scan mode [0-3]\n" \
"\t<clock_offset> - xxxx; clock offset [0 - 0xffff]",
&hci_remote_name_request
},
{
"read_remote_supported_features <connection_handle>",
"\nThis command requests a list of the supported features for the remote\n" \
"unit identified by the connection handle parameter. The connection handle\n" \
"must be a connection handle for an ACL connection.\n\n" \
"\t<connection_handle> - dddd; connection handle",
&hci_read_remote_supported_features
},
{
"read_remote_version_information <connection_handle>",
"\nThis command will obtain the values for the version information for the\n" \
"remote Bluetooth unit identified by the connection handle parameter. The\n" \
"connection handle must be a connection handle for an ACL connection.\n\n" \
"\t<connection_handle> - dddd; connection handle",
&hci_read_remote_version_information
},
{
"read_clock_offset <connection_handle>",
"\nThis command allows the Host to read the clock offset from the remote unit.\n" \
"\t<connection_handle> - dddd; connection handle",
&hci_read_clock_offset
},
{
NULL,
}};