freebsd-skq/sys/amd64/amd64/pmap.c
Alan Cox fb1b26da19 Implement proper handling of PG_G mappings in pmap_protect(). (I don't
believe that this omission mattered before the introduction of MemGuard.)

Reviewed by: tegge@
MFC after: 1 week
2005-02-05 19:21:54 +00:00

2939 lines
69 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
* Copyright (c) 2003 Peter Wemm
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
*/
/*-
* Copyright (c) 2003 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Jake Burkholder,
* Safeport Network Services, and Network Associates Laboratories, the
* Security Research Division of Network Associates, Inc. under
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
* CHATS research program.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps.
*
* In addition to hardware address maps, this
* module is called upon to provide software-use-only
* maps which may or may not be stored in the same
* form as hardware maps. These pseudo-maps are
* used to store intermediate results from copy
* operations to and from address spaces.
*
* Since the information managed by this module is
* also stored by the logical address mapping module,
* this module may throw away valid virtual-to-physical
* mappings at almost any time. However, invalidations
* of virtual-to-physical mappings must be done as
* requested.
*
* In order to cope with hardware architectures which
* make virtual-to-physical map invalidates expensive,
* this module may delay invalidate or reduced protection
* operations until such time as they are actually
* necessary. This module is given full information as
* to which processors are currently using which maps,
* and to when physical maps must be made correct.
*/
#include "opt_msgbuf.h"
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sx.h>
#include <sys/vmmeter.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#ifdef SMP
#include <sys/smp.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/specialreg.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#ifndef PMAP_SHPGPERPROC
#define PMAP_SHPGPERPROC 200
#endif
#if defined(DIAGNOSTIC)
#define PMAP_DIAGNOSTIC
#endif
#define MINPV 2048
#if !defined(PMAP_DIAGNOSTIC)
#define PMAP_INLINE __inline
#else
#define PMAP_INLINE
#endif
struct pmap kernel_pmap_store;
vm_paddr_t avail_start; /* PA of first available physical page */
vm_paddr_t avail_end; /* PA of last available physical page */
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
static int nkpt;
static int ndmpdp;
static vm_paddr_t dmaplimit;
vm_offset_t kernel_vm_end;
pt_entry_t pg_nx;
static u_int64_t KPTphys; /* phys addr of kernel level 1 */
static u_int64_t KPDphys; /* phys addr of kernel level 2 */
static u_int64_t KPDPphys; /* phys addr of kernel level 3 */
u_int64_t KPML4phys; /* phys addr of kernel level 4 */
static u_int64_t DMPDphys; /* phys addr of direct mapped level 2 */
static u_int64_t DMPDPphys; /* phys addr of direct mapped level 3 */
/*
* Data for the pv entry allocation mechanism
*/
static uma_zone_t pvzone;
static struct vm_object pvzone_obj;
static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
int pmap_pagedaemon_waken;
/*
* All those kernel PT submaps that BSD is so fond of
*/
pt_entry_t *CMAP1 = 0;
caddr_t CADDR1 = 0;
struct msgbuf *msgbufp = 0;
/*
* Crashdump maps.
*/
static caddr_t crashdumpmap;
static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
static pv_entry_t get_pv_entry(void);
static void pmap_clear_ptes(vm_page_t m, long bit);
static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq,
vm_offset_t sva, pd_entry_t ptepde);
static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
vm_offset_t va, pd_entry_t ptepde);
static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, int flags);
static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
/*
* Move the kernel virtual free pointer to the next
* 2MB. This is used to help improve performance
* by using a large (2MB) page for much of the kernel
* (.text, .data, .bss)
*/
static vm_offset_t
pmap_kmem_choose(vm_offset_t addr)
{
vm_offset_t newaddr = addr;
newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
return newaddr;
}
/********************/
/* Inline functions */
/********************/
/* Return a non-clipped PD index for a given VA */
static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)
{
return va >> PDRSHIFT;
}
/* Return various clipped indexes for a given VA */
static __inline vm_pindex_t
pmap_pte_index(vm_offset_t va)
{
return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
}
static __inline vm_pindex_t
pmap_pde_index(vm_offset_t va)
{
return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
}
static __inline vm_pindex_t
pmap_pdpe_index(vm_offset_t va)
{
return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
}
static __inline vm_pindex_t
pmap_pml4e_index(vm_offset_t va)
{
return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
}
/* Return a pointer to the PML4 slot that corresponds to a VA */
static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap, vm_offset_t va)
{
if (!pmap)
return NULL;
return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
}
/* Return a pointer to the PDP slot that corresponds to a VA */
static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap, vm_offset_t va)
{
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pml4e = pmap_pml4e(pmap, va);
if (pml4e == NULL || (*pml4e & PG_V) == 0)
return NULL;
pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
return (&pdpe[pmap_pdpe_index(va)]);
}
/* Return a pointer to the PD slot that corresponds to a VA */
static __inline pd_entry_t *
pmap_pde(pmap_t pmap, vm_offset_t va)
{
pdp_entry_t *pdpe;
pd_entry_t *pde;
pdpe = pmap_pdpe(pmap, va);
if (pdpe == NULL || (*pdpe & PG_V) == 0)
return NULL;
pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
return (&pde[pmap_pde_index(va)]);
}
/* Return a pointer to the PT slot that corresponds to a VA */
static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
{
pt_entry_t *pte;
pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
return (&pte[pmap_pte_index(va)]);
}
/* Return a pointer to the PT slot that corresponds to a VA */
static __inline pt_entry_t *
pmap_pte(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *pde;
pde = pmap_pde(pmap, va);
if (pde == NULL || (*pde & PG_V) == 0)
return NULL;
if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
return ((pt_entry_t *)pde);
return (pmap_pde_to_pte(pde, va));
}
static __inline pt_entry_t *
pmap_pte_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *ptepde)
{
pd_entry_t *pde;
pde = pmap_pde(pmap, va);
if (pde == NULL || (*pde & PG_V) == 0)
return NULL;
*ptepde = *pde;
if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
return ((pt_entry_t *)pde);
return (pmap_pde_to_pte(pde, va));
}
PMAP_INLINE pt_entry_t *
vtopte(vm_offset_t va)
{
u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
return (PTmap + ((va >> PAGE_SHIFT) & mask));
}
static __inline pd_entry_t *
vtopde(vm_offset_t va)
{
u_int64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
return (PDmap + ((va >> PDRSHIFT) & mask));
}
static u_int64_t
allocpages(int n)
{
u_int64_t ret;
ret = avail_start;
bzero((void *)ret, n * PAGE_SIZE);
avail_start += n * PAGE_SIZE;
return (ret);
}
static void
create_pagetables(void)
{
int i;
/* Allocate pages */
KPTphys = allocpages(NKPT);
KPML4phys = allocpages(1);
KPDPphys = allocpages(NKPML4E);
KPDphys = allocpages(NKPDPE);
ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
if (ndmpdp < 4) /* Minimum 4GB of dirmap */
ndmpdp = 4;
DMPDPphys = allocpages(NDMPML4E);
DMPDphys = allocpages(ndmpdp);
dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
/* Fill in the underlying page table pages */
/* Read-only from zero to physfree */
/* XXX not fully used, underneath 2M pages */
for (i = 0; (i << PAGE_SHIFT) < avail_start; i++) {
((pt_entry_t *)KPTphys)[i] = i << PAGE_SHIFT;
((pt_entry_t *)KPTphys)[i] |= PG_RW | PG_V | PG_G;
}
/* Now map the page tables at their location within PTmap */
for (i = 0; i < NKPT; i++) {
((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
}
/* Map from zero to end of allocations under 2M pages */
/* This replaces some of the KPTphys entries above */
for (i = 0; (i << PDRSHIFT) < avail_start; i++) {
((pd_entry_t *)KPDphys)[i] = i << PDRSHIFT;
((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V | PG_PS | PG_G;
}
/* And connect up the PD to the PDP */
for (i = 0; i < NKPDPE; i++) {
((pdp_entry_t *)KPDPphys)[i + KPDPI] = KPDphys + (i << PAGE_SHIFT);
((pdp_entry_t *)KPDPphys)[i + KPDPI] |= PG_RW | PG_V | PG_U;
}
/* Now set up the direct map space using 2MB pages */
for (i = 0; i < NPDEPG * ndmpdp; i++) {
((pd_entry_t *)DMPDphys)[i] = (vm_paddr_t)i << PDRSHIFT;
((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS | PG_G;
}
/* And the direct map space's PDP */
for (i = 0; i < ndmpdp; i++) {
((pdp_entry_t *)DMPDPphys)[i] = DMPDphys + (i << PAGE_SHIFT);
((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
}
/* And recursively map PML4 to itself in order to get PTmap */
((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
/* Connect the Direct Map slot up to the PML4 */
((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
/* Connect the KVA slot up to the PML4 */
((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
}
/*
* Bootstrap the system enough to run with virtual memory.
*
* On amd64 this is called after mapping has already been enabled
* and just syncs the pmap module with what has already been done.
* [We can't call it easily with mapping off since the kernel is not
* mapped with PA == VA, hence we would have to relocate every address
* from the linked base (virtual) address "KERNBASE" to the actual
* (physical) address starting relative to 0]
*/
void
pmap_bootstrap(firstaddr)
vm_paddr_t *firstaddr;
{
vm_offset_t va;
pt_entry_t *pte, *unused;
avail_start = *firstaddr;
/*
* Create an initial set of page tables to run the kernel in.
*/
create_pagetables();
*firstaddr = avail_start;
virtual_avail = (vm_offset_t) KERNBASE + avail_start;
virtual_avail = pmap_kmem_choose(virtual_avail);
virtual_end = VM_MAX_KERNEL_ADDRESS;
/* XXX do %cr0 as well */
load_cr4(rcr4() | CR4_PGE | CR4_PSE);
load_cr3(KPML4phys);
/*
* Initialize the kernel pmap (which is statically allocated).
*/
PMAP_LOCK_INIT(kernel_pmap);
kernel_pmap->pm_pml4 = (pdp_entry_t *) (KERNBASE + KPML4phys);
kernel_pmap->pm_active = -1; /* don't allow deactivation */
TAILQ_INIT(&kernel_pmap->pm_pvlist);
nkpt = NKPT;
/*
* Reserve some special page table entries/VA space for temporary
* mapping of pages.
*/
#define SYSMAP(c, p, v, n) \
v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
va = virtual_avail;
pte = vtopte(va);
/*
* CMAP1 is only used for the memory test.
*/
SYSMAP(caddr_t, CMAP1, CADDR1, 1)
/*
* Crashdump maps.
*/
SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
/*
* msgbufp is used to map the system message buffer.
*/
SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
virtual_avail = va;
*CMAP1 = 0;
invltlb();
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
* pmap_init has been enhanced to support in a fairly consistant
* way, discontiguous physical memory.
*/
void
pmap_init(void)
{
int i;
/*
* Allocate memory for random pmap data structures. Includes the
* pv_head_table.
*/
for(i = 0; i < vm_page_array_size; i++) {
vm_page_t m;
m = &vm_page_array[i];
TAILQ_INIT(&m->md.pv_list);
m->md.pv_list_count = 0;
}
/*
* init the pv free list
*/
pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
uma_prealloc(pvzone, MINPV);
/*
* Now it is safe to enable pv_table recording.
*/
pmap_initialized = TRUE;
}
/*
* Initialize the address space (zone) for the pv_entries. Set a
* high water mark so that the system can recover from excessive
* numbers of pv entries.
*/
void
pmap_init2()
{
int shpgperproc = PMAP_SHPGPERPROC;
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
pv_entry_high_water = 9 * (pv_entry_max / 10);
uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
}
/***************************************************
* Low level helper routines.....
***************************************************/
#if defined(PMAP_DIAGNOSTIC)
/*
* This code checks for non-writeable/modified pages.
* This should be an invalid condition.
*/
static int
pmap_nw_modified(pt_entry_t ptea)
{
int pte;
pte = (int) ptea;
if ((pte & (PG_M|PG_RW)) == PG_M)
return 1;
else
return 0;
}
#endif
/*
* this routine defines the region(s) of memory that should
* not be tested for the modified bit.
*/
static PMAP_INLINE int
pmap_track_modified(vm_offset_t va)
{
if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
return 1;
else
return 0;
}
#ifdef SMP
/*
* For SMP, these functions have to use the IPI mechanism for coherence.
*/
void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
u_int cpumask;
u_int other_cpus;
if (smp_started) {
if (!(read_rflags() & PSL_I))
panic("%s: interrupts disabled", __func__);
mtx_lock_spin(&smp_ipi_mtx);
} else
critical_enter();
/*
* We need to disable interrupt preemption but MUST NOT have
* interrupts disabled here.
* XXX we may need to hold schedlock to get a coherent pm_active
* XXX critical sections disable interrupts again
*/
if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
invlpg(va);
smp_invlpg(va);
} else {
cpumask = PCPU_GET(cpumask);
other_cpus = PCPU_GET(other_cpus);
if (pmap->pm_active & cpumask)
invlpg(va);
if (pmap->pm_active & other_cpus)
smp_masked_invlpg(pmap->pm_active & other_cpus, va);
}
if (smp_started)
mtx_unlock_spin(&smp_ipi_mtx);
else
critical_exit();
}
void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
u_int cpumask;
u_int other_cpus;
vm_offset_t addr;
if (smp_started) {
if (!(read_rflags() & PSL_I))
panic("%s: interrupts disabled", __func__);
mtx_lock_spin(&smp_ipi_mtx);
} else
critical_enter();
/*
* We need to disable interrupt preemption but MUST NOT have
* interrupts disabled here.
* XXX we may need to hold schedlock to get a coherent pm_active
* XXX critical sections disable interrupts again
*/
if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
for (addr = sva; addr < eva; addr += PAGE_SIZE)
invlpg(addr);
smp_invlpg_range(sva, eva);
} else {
cpumask = PCPU_GET(cpumask);
other_cpus = PCPU_GET(other_cpus);
if (pmap->pm_active & cpumask)
for (addr = sva; addr < eva; addr += PAGE_SIZE)
invlpg(addr);
if (pmap->pm_active & other_cpus)
smp_masked_invlpg_range(pmap->pm_active & other_cpus,
sva, eva);
}
if (smp_started)
mtx_unlock_spin(&smp_ipi_mtx);
else
critical_exit();
}
void
pmap_invalidate_all(pmap_t pmap)
{
u_int cpumask;
u_int other_cpus;
if (smp_started) {
if (!(read_rflags() & PSL_I))
panic("%s: interrupts disabled", __func__);
mtx_lock_spin(&smp_ipi_mtx);
} else
critical_enter();
/*
* We need to disable interrupt preemption but MUST NOT have
* interrupts disabled here.
* XXX we may need to hold schedlock to get a coherent pm_active
* XXX critical sections disable interrupts again
*/
if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
invltlb();
smp_invltlb();
} else {
cpumask = PCPU_GET(cpumask);
other_cpus = PCPU_GET(other_cpus);
if (pmap->pm_active & cpumask)
invltlb();
if (pmap->pm_active & other_cpus)
smp_masked_invltlb(pmap->pm_active & other_cpus);
}
if (smp_started)
mtx_unlock_spin(&smp_ipi_mtx);
else
critical_exit();
}
#else /* !SMP */
/*
* Normal, non-SMP, invalidation functions.
* We inline these within pmap.c for speed.
*/
PMAP_INLINE void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
if (pmap == kernel_pmap || pmap->pm_active)
invlpg(va);
}
PMAP_INLINE void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t addr;
if (pmap == kernel_pmap || pmap->pm_active)
for (addr = sva; addr < eva; addr += PAGE_SIZE)
invlpg(addr);
}
PMAP_INLINE void
pmap_invalidate_all(pmap_t pmap)
{
if (pmap == kernel_pmap || pmap->pm_active)
invltlb();
}
#endif /* !SMP */
/*
* Are we current address space or kernel?
*/
static __inline int
pmap_is_current(pmap_t pmap)
{
return (pmap == kernel_pmap ||
(pmap->pm_pml4[PML4PML4I] & PG_FRAME) == (PML4pml4e[0] & PG_FRAME));
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
vm_paddr_t rtval;
pt_entry_t *pte;
pd_entry_t pde, *pdep;
rtval = 0;
PMAP_LOCK(pmap);
pdep = pmap_pde(pmap, va);
if (pdep != NULL) {
pde = *pdep;
if (pde) {
if ((pde & PG_PS) != 0) {
rtval = (pde & ~PDRMASK) | (va & PDRMASK);
PMAP_UNLOCK(pmap);
return rtval;
}
pte = pmap_pde_to_pte(pdep, va);
rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
}
}
PMAP_UNLOCK(pmap);
return (rtval);
}
/*
* Routine: pmap_extract_and_hold
* Function:
* Atomically extract and hold the physical page
* with the given pmap and virtual address pair
* if that mapping permits the given protection.
*/
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
pd_entry_t pde, *pdep;
pt_entry_t pte;
vm_page_t m;
m = NULL;
vm_page_lock_queues();
PMAP_LOCK(pmap);
pdep = pmap_pde(pmap, va);
if (pdep != NULL && (pde = *pdep)) {
if (pde & PG_PS) {
if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
(va & PDRMASK));
vm_page_hold(m);
}
} else {
pte = *pmap_pde_to_pte(pdep, va);
if ((pte & PG_V) &&
((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
vm_page_hold(m);
}
}
}
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
return (m);
}
vm_paddr_t
pmap_kextract(vm_offset_t va)
{
pd_entry_t *pde;
vm_paddr_t pa;
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
pa = DMAP_TO_PHYS(va);
} else {
pde = vtopde(va);
if (*pde & PG_PS) {
pa = (*pde & ~(NBPDR - 1)) | (va & (NBPDR - 1));
} else {
pa = *vtopte(va);
pa = (pa & PG_FRAME) | (va & PAGE_MASK);
}
}
return pa;
}
/***************************************************
* Low level mapping routines.....
***************************************************/
/*
* Add a wired page to the kva.
* Note: not SMP coherent.
*/
PMAP_INLINE void
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
{
pt_entry_t *pte;
pte = vtopte(va);
pte_store(pte, pa | PG_RW | PG_V | PG_G);
}
/*
* Remove a page from the kernel pagetables.
* Note: not SMP coherent.
*/
PMAP_INLINE void
pmap_kremove(vm_offset_t va)
{
pt_entry_t *pte;
pte = vtopte(va);
pte_clear(pte);
}
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* The value passed in '*virt' is a suggested virtual address for
* the mapping. Architectures which can support a direct-mapped
* physical to virtual region can return the appropriate address
* within that region, leaving '*virt' unchanged. Other
* architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped
* region.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
{
return PHYS_TO_DMAP(start);
}
/*
* Add a list of wired pages to the kva
* this routine is only used for temporary
* kernel mappings that do not need to have
* page modification or references recorded.
* Note that old mappings are simply written
* over. The page *must* be wired.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
va += PAGE_SIZE;
m++;
}
pmap_invalidate_range(kernel_pmap, sva, va);
}
/*
* This routine tears out page mappings from the
* kernel -- it is meant only for temporary mappings.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qremove(vm_offset_t sva, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
pmap_kremove(va);
va += PAGE_SIZE;
}
pmap_invalidate_range(kernel_pmap, sva, va);
}
/***************************************************
* Page table page management routines.....
***************************************************/
/*
* This routine unholds page table pages, and if the hold count
* drops to zero, then it decrements the wire count.
*/
static PMAP_INLINE int
pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
--m->wire_count;
if (m->wire_count == 0)
return _pmap_unwire_pte_hold(pmap, va, m);
else
return 0;
}
static int
_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
vm_offset_t pteva;
/*
* unmap the page table page
*/
if (m->pindex >= (NUPDE + NUPDPE)) {
/* PDP page */
pml4_entry_t *pml4;
pml4 = pmap_pml4e(pmap, va);
pteva = (vm_offset_t) PDPmap + amd64_ptob(m->pindex - (NUPDE + NUPDPE));
*pml4 = 0;
} else if (m->pindex >= NUPDE) {
/* PD page */
pdp_entry_t *pdp;
pdp = pmap_pdpe(pmap, va);
pteva = (vm_offset_t) PDmap + amd64_ptob(m->pindex - NUPDE);
*pdp = 0;
} else {
/* PTE page */
pd_entry_t *pd;
pd = pmap_pde(pmap, va);
pteva = (vm_offset_t) PTmap + amd64_ptob(m->pindex);
*pd = 0;
}
--pmap->pm_stats.resident_count;
if (m->pindex < NUPDE) {
/* We just released a PT, unhold the matching PD */
vm_page_t pdpg;
pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
pmap_unwire_pte_hold(pmap, va, pdpg);
}
if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
/* We just released a PD, unhold the matching PDP */
vm_page_t pdppg;
pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
pmap_unwire_pte_hold(pmap, va, pdppg);
}
/*
* Do an invltlb to make the invalidated mapping
* take effect immediately.
*/
pmap_invalidate_page(pmap, pteva);
vm_page_free_zero(m);
atomic_subtract_int(&cnt.v_wire_count, 1);
return 1;
}
/*
* After removing a page table entry, this routine is used to
* conditionally free the page, and manage the hold/wire counts.
*/
static int
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde)
{
vm_page_t mpte;
if (va >= VM_MAXUSER_ADDRESS)
return 0;
KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
return pmap_unwire_pte_hold(pmap, va, mpte);
}
void
pmap_pinit0(pmap)
struct pmap *pmap;
{
PMAP_LOCK_INIT(pmap);
pmap->pm_pml4 = (pml4_entry_t *)(KERNBASE + KPML4phys);
pmap->pm_active = 0;
TAILQ_INIT(&pmap->pm_pvlist);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
void
pmap_pinit(pmap)
register struct pmap *pmap;
{
vm_page_t pml4pg;
static vm_pindex_t color;
PMAP_LOCK_INIT(pmap);
/*
* allocate the page directory page
*/
while ((pml4pg = vm_page_alloc(NULL, color++, VM_ALLOC_NOOBJ |
VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
VM_WAIT;
pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
if ((pml4pg->flags & PG_ZERO) == 0)
pagezero(pmap->pm_pml4);
/* Wire in kernel global address entries. */
pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
/* install self-referential address mapping entry(s) */
pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | PG_V | PG_RW | PG_A | PG_M;
pmap->pm_active = 0;
TAILQ_INIT(&pmap->pm_pvlist);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
}
/*
* this routine is called if the page table page is not
* mapped correctly.
*
* Note: If a page allocation fails at page table level two or three,
* one or two pages may be held during the wait, only to be released
* afterwards. This conservative approach is easily argued to avoid
* race conditions.
*/
static vm_page_t
_pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, int flags)
{
vm_page_t m, pdppg, pdpg;
KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
(flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
/*
* Allocate a page table page.
*/
if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
if (flags & M_WAITOK) {
PMAP_UNLOCK(pmap);
vm_page_unlock_queues();
VM_WAIT;
vm_page_lock_queues();
PMAP_LOCK(pmap);
}
/*
* Indicate the need to retry. While waiting, the page table
* page may have been allocated.
*/
return (NULL);
}
if ((m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
/*
* Map the pagetable page into the process address space, if
* it isn't already there.
*/
pmap->pm_stats.resident_count++;
if (ptepindex >= (NUPDE + NUPDPE)) {
pml4_entry_t *pml4;
vm_pindex_t pml4index;
/* Wire up a new PDPE page */
pml4index = ptepindex - (NUPDE + NUPDPE);
pml4 = &pmap->pm_pml4[pml4index];
*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
} else if (ptepindex >= NUPDE) {
vm_pindex_t pml4index;
vm_pindex_t pdpindex;
pml4_entry_t *pml4;
pdp_entry_t *pdp;
/* Wire up a new PDE page */
pdpindex = ptepindex - NUPDE;
pml4index = pdpindex >> NPML4EPGSHIFT;
pml4 = &pmap->pm_pml4[pml4index];
if ((*pml4 & PG_V) == 0) {
/* Have to allocate a new pdp, recurse */
if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index,
flags) == NULL) {
--m->wire_count;
vm_page_free(m);
return (NULL);
}
} else {
/* Add reference to pdp page */
pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
pdppg->wire_count++;
}
pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
/* Now find the pdp page */
pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
} else {
vm_pindex_t pml4index;
vm_pindex_t pdpindex;
pml4_entry_t *pml4;
pdp_entry_t *pdp;
pd_entry_t *pd;
/* Wire up a new PTE page */
pdpindex = ptepindex >> NPDPEPGSHIFT;
pml4index = pdpindex >> NPML4EPGSHIFT;
/* First, find the pdp and check that its valid. */
pml4 = &pmap->pm_pml4[pml4index];
if ((*pml4 & PG_V) == 0) {
/* Have to allocate a new pd, recurse */
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
flags) == NULL) {
--m->wire_count;
vm_page_free(m);
return (NULL);
}
pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
} else {
pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
if ((*pdp & PG_V) == 0) {
/* Have to allocate a new pd, recurse */
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
flags) == NULL) {
--m->wire_count;
vm_page_free(m);
return (NULL);
}
} else {
/* Add reference to the pd page */
pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
pdpg->wire_count++;
}
}
pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
/* Now we know where the page directory page is */
pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
}
return m;
}
static vm_page_t
pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
{
vm_pindex_t ptepindex;
pd_entry_t *pd;
vm_page_t m;
KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
(flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
/*
* Calculate pagetable page index
*/
ptepindex = pmap_pde_pindex(va);
retry:
/*
* Get the page directory entry
*/
pd = pmap_pde(pmap, va);
/*
* This supports switching from a 2MB page to a
* normal 4K page.
*/
if (pd != 0 && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
*pd = 0;
pd = 0;
pmap_invalidate_all(kernel_pmap);
}
/*
* If the page table page is mapped, we just increment the
* hold count, and activate it.
*/
if (pd != 0 && (*pd & PG_V) != 0) {
m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
m->wire_count++;
} else {
/*
* Here if the pte page isn't mapped, or if it has been
* deallocated.
*/
m = _pmap_allocpte(pmap, ptepindex, flags);
if (m == NULL && (flags & M_WAITOK))
goto retry;
}
return (m);
}
/***************************************************
* Pmap allocation/deallocation routines.
***************************************************/
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pmap)
{
vm_page_t m;
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
m = PHYS_TO_VM_PAGE(pmap->pm_pml4[PML4PML4I] & PG_FRAME);
pmap->pm_pml4[KPML4I] = 0; /* KVA */
pmap->pm_pml4[DMPML4I] = 0; /* Direct Map */
pmap->pm_pml4[PML4PML4I] = 0; /* Recursive Mapping */
vm_page_lock_queues();
m->wire_count--;
atomic_subtract_int(&cnt.v_wire_count, 1);
vm_page_free_zero(m);
vm_page_unlock_queues();
PMAP_LOCK_DESTROY(pmap);
}
static int
kvm_size(SYSCTL_HANDLER_ARGS)
{
unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
return sysctl_handle_long(oidp, &ksize, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
0, 0, kvm_size, "IU", "Size of KVM");
static int
kvm_free(SYSCTL_HANDLER_ARGS)
{
unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
return sysctl_handle_long(oidp, &kfree, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
0, 0, kvm_free, "IU", "Amount of KVM free");
/*
* grow the number of kernel page table entries, if needed
*/
void
pmap_growkernel(vm_offset_t addr)
{
vm_paddr_t paddr;
vm_page_t nkpg;
pd_entry_t *pde, newpdir;
pdp_entry_t newpdp;
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
if (kernel_vm_end == 0) {
kernel_vm_end = KERNBASE;
nkpt = 0;
while ((*pmap_pde(kernel_pmap, kernel_vm_end) & PG_V) != 0) {
kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
nkpt++;
}
}
addr = roundup2(addr, PAGE_SIZE * NPTEPG);
while (kernel_vm_end < addr) {
pde = pmap_pde(kernel_pmap, kernel_vm_end);
if (pde == NULL) {
/* We need a new PDP entry */
nkpg = vm_page_alloc(NULL, nkpt,
VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
if (!nkpg)
panic("pmap_growkernel: no memory to grow kernel");
pmap_zero_page(nkpg);
paddr = VM_PAGE_TO_PHYS(nkpg);
newpdp = (pdp_entry_t)
(paddr | PG_V | PG_RW | PG_A | PG_M);
*pmap_pdpe(kernel_pmap, kernel_vm_end) = newpdp;
continue; /* try again */
}
if ((*pde & PG_V) != 0) {
kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
continue;
}
/*
* This index is bogus, but out of the way
*/
nkpg = vm_page_alloc(NULL, nkpt,
VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
if (!nkpg)
panic("pmap_growkernel: no memory to grow kernel");
nkpt++;
pmap_zero_page(nkpg);
paddr = VM_PAGE_TO_PHYS(nkpg);
newpdir = (pd_entry_t) (paddr | PG_V | PG_RW | PG_A | PG_M);
*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
}
}
/***************************************************
* page management routines.
***************************************************/
/*
* free the pv_entry back to the free list
*/
static PMAP_INLINE void
free_pv_entry(pv_entry_t pv)
{
pv_entry_count--;
uma_zfree(pvzone, pv);
}
/*
* get a new pv_entry, allocating a block from the system
* when needed.
* the memory allocation is performed bypassing the malloc code
* because of the possibility of allocations at interrupt time.
*/
static pv_entry_t
get_pv_entry(void)
{
pv_entry_count++;
if (pv_entry_high_water &&
(pv_entry_count > pv_entry_high_water) &&
(pmap_pagedaemon_waken == 0)) {
pmap_pagedaemon_waken = 1;
wakeup (&vm_pages_needed);
}
return uma_zalloc(pvzone, M_NOWAIT);
}
static int
pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va, pd_entry_t ptepde)
{
pv_entry_t pv;
int rtval;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
if (pmap == pv->pv_pmap && va == pv->pv_va)
break;
}
} else {
TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
if (va == pv->pv_va)
break;
}
}
rtval = 0;
if (pv) {
rtval = pmap_unuse_pt(pmap, va, ptepde);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
m->md.pv_list_count--;
if (TAILQ_FIRST(&m->md.pv_list) == NULL)
vm_page_flag_clear(m, PG_WRITEABLE);
TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
free_pv_entry(pv);
}
return rtval;
}
/*
* Create a pv entry for page at pa for
* (pmap, va).
*/
static void
pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pv_entry_t pv;
pv = get_pv_entry();
pv->pv_va = va;
pv->pv_pmap = pmap;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
m->md.pv_list_count++;
}
/*
* pmap_remove_pte: do the things to unmap a page in a process
*/
static int
pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, pd_entry_t ptepde)
{
pt_entry_t oldpte;
vm_page_t m;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldpte = pte_load_clear(ptq);
if (oldpte & PG_W)
pmap->pm_stats.wired_count -= 1;
/*
* Machines that don't support invlpg, also don't support
* PG_G.
*/
if (oldpte & PG_G)
pmap_invalidate_page(kernel_pmap, va);
pmap->pm_stats.resident_count -= 1;
if (oldpte & PG_MANAGED) {
m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
if (oldpte & PG_M) {
#if defined(PMAP_DIAGNOSTIC)
if (pmap_nw_modified((pt_entry_t) oldpte)) {
printf(
"pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
va, oldpte);
}
#endif
if (pmap_track_modified(va))
vm_page_dirty(m);
}
if (oldpte & PG_A)
vm_page_flag_set(m, PG_REFERENCED);
return pmap_remove_entry(pmap, m, va, ptepde);
} else {
return pmap_unuse_pt(pmap, va, ptepde);
}
}
/*
* Remove a single page from a process address space
*/
static void
pmap_remove_page(pmap_t pmap, vm_offset_t va)
{
pd_entry_t ptepde;
pt_entry_t *pte;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pte = pmap_pte_pde(pmap, va, &ptepde);
if (pte == NULL || (*pte & PG_V) == 0)
return;
pmap_remove_pte(pmap, pte, va, ptepde);
pmap_invalidate_page(pmap, va);
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
void
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t va_next;
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pd_entry_t ptpaddr, *pde;
pt_entry_t *pte;
int anyvalid;
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pmap->pm_stats.resident_count == 0)
return;
anyvalid = 0;
vm_page_lock_queues();
PMAP_LOCK(pmap);
/*
* special handling of removing one page. a very
* common operation and easy to short circuit some
* code.
*/
if (sva + PAGE_SIZE == eva) {
pde = pmap_pde(pmap, sva);
if (pde && (*pde & PG_PS) == 0) {
pmap_remove_page(pmap, sva);
goto out;
}
}
for (; sva < eva; sva = va_next) {
if (pmap->pm_stats.resident_count == 0)
break;
pml4e = pmap_pml4e(pmap, sva);
if (pml4e == 0) {
va_next = (sva + NBPML4) & ~PML4MASK;
continue;
}
pdpe = pmap_pdpe(pmap, sva);
if (pdpe == 0) {
va_next = (sva + NBPDP) & ~PDPMASK;
continue;
}
/*
* Calculate index for next page table.
*/
va_next = (sva + NBPDR) & ~PDRMASK;
pde = pmap_pde(pmap, sva);
if (pde == 0)
continue;
ptpaddr = *pde;
/*
* Weed out invalid mappings.
*/
if (ptpaddr == 0)
continue;
/*
* Check for large page.
*/
if ((ptpaddr & PG_PS) != 0) {
*pde = 0;
pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
anyvalid = 1;
continue;
}
/*
* Limit our scan to either the end of the va represented
* by the current page table page, or to the end of the
* range being removed.
*/
if (va_next > eva)
va_next = eva;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
if (*pte == 0)
continue;
anyvalid = 1;
if (pmap_remove_pte(pmap, pte, sva, ptpaddr))
break;
}
}
out:
vm_page_unlock_queues();
if (anyvalid)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*
* Notes:
* Original versions of this routine were very
* inefficient because they iteratively called
* pmap_remove (slow...)
*/
void
pmap_remove_all(vm_page_t m)
{
register pv_entry_t pv;
pt_entry_t *pte, tpte;
pd_entry_t ptepde;
#if defined(PMAP_DIAGNOSTIC)
/*
* XXX This makes pmap_remove_all() illegal for non-managed pages!
*/
if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
panic("pmap_remove_all: illegal for unmanaged page, va: 0x%lx",
VM_PAGE_TO_PHYS(m));
}
#endif
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
PMAP_LOCK(pv->pv_pmap);
pv->pv_pmap->pm_stats.resident_count--;
pte = pmap_pte_pde(pv->pv_pmap, pv->pv_va, &ptepde);
tpte = pte_load_clear(pte);
if (tpte & PG_W)
pv->pv_pmap->pm_stats.wired_count--;
if (tpte & PG_A)
vm_page_flag_set(m, PG_REFERENCED);
/*
* Update the vm_page_t clean and reference bits.
*/
if (tpte & PG_M) {
#if defined(PMAP_DIAGNOSTIC)
if (pmap_nw_modified((pt_entry_t) tpte)) {
printf(
"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
pv->pv_va, tpte);
}
#endif
if (pmap_track_modified(pv->pv_va))
vm_page_dirty(m);
}
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
m->md.pv_list_count--;
pmap_unuse_pt(pv->pv_pmap, pv->pv_va, ptepde);
PMAP_UNLOCK(pv->pv_pmap);
free_pv_entry(pv);
}
vm_page_flag_clear(m, PG_WRITEABLE);
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
vm_offset_t va_next;
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pd_entry_t ptpaddr, *pde;
pt_entry_t *pte;
int anychanged;
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
pmap_remove(pmap, sva, eva);
return;
}
if (prot & VM_PROT_WRITE)
return;
anychanged = 0;
vm_page_lock_queues();
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
pml4e = pmap_pml4e(pmap, sva);
if (pml4e == 0) {
va_next = (sva + NBPML4) & ~PML4MASK;
continue;
}
pdpe = pmap_pdpe(pmap, sva);
if (pdpe == 0) {
va_next = (sva + NBPDP) & ~PDPMASK;
continue;
}
va_next = (sva + NBPDR) & ~PDRMASK;
pde = pmap_pde(pmap, sva);
if (pde == NULL)
continue;
ptpaddr = *pde;
/*
* Weed out invalid mappings.
*/
if (ptpaddr == 0)
continue;
/*
* Check for large page.
*/
if ((ptpaddr & PG_PS) != 0) {
*pde &= ~(PG_M|PG_RW);
pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
anychanged = 1;
continue;
}
if (va_next > eva)
va_next = eva;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
pt_entry_t obits, pbits;
vm_page_t m;
retry:
obits = pbits = *pte;
if (pbits & PG_MANAGED) {
m = NULL;
if (pbits & PG_A) {
m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
vm_page_flag_set(m, PG_REFERENCED);
pbits &= ~PG_A;
}
if ((pbits & PG_M) != 0 &&
pmap_track_modified(sva)) {
if (m == NULL)
m = PHYS_TO_VM_PAGE(pbits &
PG_FRAME);
vm_page_dirty(m);
}
}
pbits &= ~(PG_RW | PG_M);
if (pbits != obits) {
if (!atomic_cmpset_long(pte, obits, pbits))
goto retry;
if (obits & PG_G)
pmap_invalidate_page(pmap, sva);
else
anychanged = 1;
}
}
}
vm_page_unlock_queues();
if (anychanged)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
}
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
void
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
boolean_t wired)
{
vm_paddr_t pa;
register pt_entry_t *pte;
vm_paddr_t opa;
pd_entry_t ptepde;
pt_entry_t origpte, newpte;
vm_page_t mpte, om;
va = trunc_page(va);
#ifdef PMAP_DIAGNOSTIC
if (va > VM_MAX_KERNEL_ADDRESS)
panic("pmap_enter: toobig");
if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)", va);
#endif
mpte = NULL;
vm_page_lock_queues();
PMAP_LOCK(pmap);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
mpte = pmap_allocpte(pmap, va, M_WAITOK);
}
#if 0 && defined(PMAP_DIAGNOSTIC)
else {
pd_entry_t *pdeaddr = pmap_pde(pmap, va);
origpte = *pdeaddr;
if ((origpte & PG_V) == 0) {
panic("pmap_enter: invalid kernel page table page, pde=%p, va=%p\n",
origpte, va);
}
}
#endif
pte = pmap_pte_pde(pmap, va, &ptepde);
/*
* Page Directory table entry not valid, we need a new PT page
*/
if (pte == NULL)
panic("pmap_enter: invalid page directory va=%#lx\n", va);
pa = VM_PAGE_TO_PHYS(m);
om = NULL;
origpte = *pte;
opa = origpte & PG_FRAME;
if (origpte & PG_PS)
panic("pmap_enter: attempted pmap_enter on 2MB page");
/*
* Mapping has not changed, must be protection or wiring change.
*/
if (origpte && (opa == pa)) {
/*
* Wiring change, just update stats. We don't worry about
* wiring PT pages as they remain resident as long as there
* are valid mappings in them. Hence, if a user page is wired,
* the PT page will be also.
*/
if (wired && ((origpte & PG_W) == 0))
pmap->pm_stats.wired_count++;
else if (!wired && (origpte & PG_W))
pmap->pm_stats.wired_count--;
#if defined(PMAP_DIAGNOSTIC)
if (pmap_nw_modified((pt_entry_t) origpte)) {
printf(
"pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
va, origpte);
}
#endif
/*
* Remove extra pte reference
*/
if (mpte)
mpte->wire_count--;
/*
* We might be turning off write access to the page,
* so we go ahead and sense modify status.
*/
if (origpte & PG_MANAGED) {
om = m;
pa |= PG_MANAGED;
}
goto validate;
}
/*
* Mapping has changed, invalidate old range and fall through to
* handle validating new mapping.
*/
if (opa) {
int err;
if (origpte & PG_W)
pmap->pm_stats.wired_count--;
if (origpte & PG_MANAGED) {
om = PHYS_TO_VM_PAGE(opa);
err = pmap_remove_entry(pmap, om, va, ptepde);
} else
err = pmap_unuse_pt(pmap, va, ptepde);
if (err)
panic("pmap_enter: pte vanished, va: 0x%lx", va);
} else
pmap->pm_stats.resident_count++;
/*
* Enter on the PV list if part of our managed memory. Note that we
* raise IPL while manipulating pv_table since pmap_enter can be
* called at interrupt time.
*/
if (pmap_initialized &&
(m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
pmap_insert_entry(pmap, va, m);
pa |= PG_MANAGED;
}
/*
* Increment counters
*/
if (wired)
pmap->pm_stats.wired_count++;
validate:
/*
* Now validate mapping with desired protection/wiring.
*/
newpte = (pt_entry_t)(pa | PG_V);
if ((prot & VM_PROT_WRITE) != 0)
newpte |= PG_RW;
if ((prot & VM_PROT_EXECUTE) == 0)
newpte |= pg_nx;
if (wired)
newpte |= PG_W;
if (va < VM_MAXUSER_ADDRESS)
newpte |= PG_U;
if (pmap == kernel_pmap)
newpte |= PG_G;
/*
* if the mapping or permission bits are different, we need
* to update the pte.
*/
if ((origpte & ~(PG_M|PG_A)) != newpte) {
if (origpte & PG_MANAGED) {
origpte = pte_load_store(pte, newpte | PG_A);
if ((origpte & PG_M) && pmap_track_modified(va))
vm_page_dirty(om);
if (origpte & PG_A)
vm_page_flag_set(om, PG_REFERENCED);
} else
pte_store(pte, newpte | PG_A);
if (origpte) {
pmap_invalidate_page(pmap, va);
}
}
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
/*
* this code makes some *MAJOR* assumptions:
* 1. Current pmap & pmap exists.
* 2. Not wired.
* 3. Read access.
* 4. No page table pages.
* 6. Page IS managed.
* but is *MUCH* faster than pmap_enter...
*/
vm_page_t
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
{
pt_entry_t *pte;
vm_paddr_t pa;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
PMAP_LOCK(pmap);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
vm_pindex_t ptepindex;
pd_entry_t *ptepa;
/*
* Calculate pagetable page index
*/
ptepindex = pmap_pde_pindex(va);
if (mpte && (mpte->pindex == ptepindex)) {
mpte->wire_count++;
} else {
retry:
/*
* Get the page directory entry
*/
ptepa = pmap_pde(pmap, va);
/*
* If the page table page is mapped, we just increment
* the hold count, and activate it.
*/
if (ptepa && (*ptepa & PG_V) != 0) {
if (*ptepa & PG_PS)
panic("pmap_enter_quick: unexpected mapping into 2MB page");
mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
mpte->wire_count++;
} else {
mpte = _pmap_allocpte(pmap, ptepindex,
M_NOWAIT);
if (mpte == NULL) {
PMAP_UNLOCK(pmap);
vm_page_busy(m);
vm_page_unlock_queues();
VM_OBJECT_UNLOCK(m->object);
VM_WAIT;
VM_OBJECT_LOCK(m->object);
vm_page_lock_queues();
vm_page_wakeup(m);
PMAP_LOCK(pmap);
goto retry;
}
}
}
} else {
mpte = NULL;
}
/*
* This call to vtopte makes the assumption that we are
* entering the page into the current pmap. In order to support
* quick entry into any pmap, one would likely use pmap_pte.
* But that isn't as quick as vtopte.
*/
pte = vtopte(va);
if (*pte) {
if (mpte != NULL) {
pmap_unwire_pte_hold(pmap, va, mpte);
mpte = NULL;
}
goto out;
}
/*
* Enter on the PV list if part of our managed memory. Note that we
* raise IPL while manipulating pv_table since pmap_enter can be
* called at interrupt time.
*/
if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
pmap_insert_entry(pmap, va, m);
/*
* Increment counters
*/
pmap->pm_stats.resident_count++;
pa = VM_PAGE_TO_PHYS(m);
/*
* Now validate mapping with RO protection
*/
if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
pte_store(pte, pa | PG_V | PG_U);
else
pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
out:
PMAP_UNLOCK(pmap);
return mpte;
}
/*
* Make a temporary mapping for a physical address. This is only intended
* to be used for panic dumps.
*/
void *
pmap_kenter_temporary(vm_paddr_t pa, int i)
{
vm_offset_t va;
va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
pmap_kenter(va, pa);
invlpg(va);
return ((void *)crashdumpmap);
}
/*
* This code maps large physical mmap regions into the
* processor address space. Note that some shortcuts
* are taken, but the code works.
*/
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
vm_object_t object, vm_pindex_t pindex,
vm_size_t size)
{
vm_page_t p;
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
KASSERT(object->type == OBJT_DEVICE,
("pmap_object_init_pt: non-device object"));
if (((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
int i;
vm_page_t m[1];
int npdes;
pd_entry_t ptepa, *pde;
PMAP_LOCK(pmap);
pde = pmap_pde(pmap, addr);
if (pde != 0 && (*pde & PG_V) != 0)
goto out;
PMAP_UNLOCK(pmap);
retry:
p = vm_page_lookup(object, pindex);
if (p != NULL) {
vm_page_lock_queues();
if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
goto retry;
} else {
p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
if (p == NULL)
return;
m[0] = p;
if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
vm_page_lock_queues();
vm_page_free(p);
vm_page_unlock_queues();
return;
}
p = vm_page_lookup(object, pindex);
vm_page_lock_queues();
vm_page_wakeup(p);
}
vm_page_unlock_queues();
ptepa = VM_PAGE_TO_PHYS(p);
if (ptepa & (NBPDR - 1))
return;
p->valid = VM_PAGE_BITS_ALL;
PMAP_LOCK(pmap);
pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
npdes = size >> PDRSHIFT;
for(i = 0; i < npdes; i++) {
pde_store(pde, ptepa | PG_U | PG_RW | PG_V | PG_PS);
ptepa += NBPDR;
pde++;
}
pmap_invalidate_all(pmap);
out:
PMAP_UNLOCK(pmap);
}
}
/*
* Routine: pmap_change_wiring
* Function: Change the wiring attribute for a map/virtual-address
* pair.
* In/out conditions:
* The mapping must already exist in the pmap.
*/
void
pmap_change_wiring(pmap, va, wired)
register pmap_t pmap;
vm_offset_t va;
boolean_t wired;
{
register pt_entry_t *pte;
/*
* Wiring is not a hardware characteristic so there is no need to
* invalidate TLB.
*/
PMAP_LOCK(pmap);
pte = pmap_pte(pmap, va);
if (wired && (*pte & PG_W) == 0) {
pmap->pm_stats.wired_count++;
atomic_set_long(pte, PG_W);
} else if (!wired && (*pte & PG_W) != 0) {
pmap->pm_stats.wired_count--;
atomic_clear_long(pte, PG_W);
}
PMAP_UNLOCK(pmap);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
vm_offset_t src_addr)
{
vm_offset_t addr;
vm_offset_t end_addr = src_addr + len;
vm_offset_t va_next;
vm_page_t m;
if (dst_addr != src_addr)
return;
if (!pmap_is_current(src_pmap))
return;
vm_page_lock_queues();
if (dst_pmap < src_pmap) {
PMAP_LOCK(dst_pmap);
PMAP_LOCK(src_pmap);
} else {
PMAP_LOCK(src_pmap);
PMAP_LOCK(dst_pmap);
}
for (addr = src_addr; addr < end_addr; addr = va_next) {
pt_entry_t *src_pte, *dst_pte;
vm_page_t dstmpte, srcmpte;
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pd_entry_t srcptepaddr, *pde;
if (addr >= UPT_MIN_ADDRESS)
panic("pmap_copy: invalid to pmap_copy page tables");
/*
* Don't let optional prefaulting of pages make us go
* way below the low water mark of free pages or way
* above high water mark of used pv entries.
*/
if (cnt.v_free_count < cnt.v_free_reserved ||
pv_entry_count > pv_entry_high_water)
break;
pml4e = pmap_pml4e(src_pmap, addr);
if (pml4e == 0) {
va_next = (addr + NBPML4) & ~PML4MASK;
continue;
}
pdpe = pmap_pdpe(src_pmap, addr);
if (pdpe == 0) {
va_next = (addr + NBPDP) & ~PDPMASK;
continue;
}
va_next = (addr + NBPDR) & ~PDRMASK;
pde = pmap_pde(src_pmap, addr);
if (pde)
srcptepaddr = *pde;
else
continue;
if (srcptepaddr == 0)
continue;
if (srcptepaddr & PG_PS) {
pde = pmap_pde(dst_pmap, addr);
if (pde == 0) {
/*
* XXX should do an allocpte here to
* instantiate the pde
*/
continue;
}
if (*pde == 0) {
*pde = srcptepaddr;
dst_pmap->pm_stats.resident_count +=
NBPDR / PAGE_SIZE;
}
continue;
}
srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
if (srcmpte->wire_count == 0)
panic("pmap_copy: source page table page is unused");
if (va_next > end_addr)
va_next = end_addr;
src_pte = vtopte(addr);
while (addr < va_next) {
pt_entry_t ptetemp;
ptetemp = *src_pte;
/*
* we only virtual copy managed pages
*/
if ((ptetemp & PG_MANAGED) != 0) {
/*
* We have to check after allocpte for the
* pte still being around... allocpte can
* block.
*/
dstmpte = pmap_allocpte(dst_pmap, addr,
M_NOWAIT);
if (dstmpte == NULL)
break;
dst_pte = (pt_entry_t *)
PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
dst_pte = &dst_pte[pmap_pte_index(addr)];
if (*dst_pte == 0) {
/*
* Clear the modified and
* accessed (referenced) bits
* during the copy.
*/
m = PHYS_TO_VM_PAGE(ptetemp & PG_FRAME);
*dst_pte = ptetemp & ~(PG_M | PG_A);
dst_pmap->pm_stats.resident_count++;
pmap_insert_entry(dst_pmap, addr, m);
} else
pmap_unwire_pte_hold(dst_pmap, addr, dstmpte);
if (dstmpte->wire_count >= srcmpte->wire_count)
break;
}
addr += PAGE_SIZE;
src_pte++;
}
}
vm_page_unlock_queues();
PMAP_UNLOCK(src_pmap);
PMAP_UNLOCK(dst_pmap);
}
/*
* pmap_zero_page zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*/
void
pmap_zero_page(vm_page_t m)
{
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
pagezero((void *)va);
}
/*
* pmap_zero_page_area zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*
* off and size may not cover an area beyond a single hardware page.
*/
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
if (off == 0 && size == PAGE_SIZE)
pagezero((void *)va);
else
bzero((char *)va + off, size);
}
/*
* pmap_zero_page_idle zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents. This
* is intended to be called from the vm_pagezero process only and
* outside of Giant.
*/
void
pmap_zero_page_idle(vm_page_t m)
{
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
pagezero((void *)va);
}
/*
* pmap_copy_page copies the specified (machine independent)
* page by mapping the page into virtual memory and using
* bcopy to copy the page, one machine dependent page at a
* time.
*/
void
pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
pagecopy((void *)src, (void *)dst);
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
pmap_page_exists_quick(pmap, m)
pmap_t pmap;
vm_page_t m;
{
pv_entry_t pv;
int loops = 0;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
return FALSE;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
if (pv->pv_pmap == pmap) {
return TRUE;
}
loops++;
if (loops >= 16)
break;
}
return (FALSE);
}
#define PMAP_REMOVE_PAGES_CURPROC_ONLY
/*
* Remove all pages from specified address space
* this aids process exit speeds. Also, this code
* is special cased for current process only, but
* can have the more generic (and slightly slower)
* mode enabled. This is much faster than pmap_remove
* in the case of running down an entire address space.
*/
void
pmap_remove_pages(pmap, sva, eva)
pmap_t pmap;
vm_offset_t sva, eva;
{
pt_entry_t *pte, tpte;
vm_page_t m;
pv_entry_t pv, npv;
#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
printf("warning: pmap_remove_pages called with non-current pmap\n");
return;
}
#endif
vm_page_lock_queues();
PMAP_LOCK(pmap);
for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
if (pv->pv_va >= eva || pv->pv_va < sva) {
npv = TAILQ_NEXT(pv, pv_plist);
continue;
}
#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
pte = vtopte(pv->pv_va);
#else
pte = pmap_pte(pmap, pv->pv_va);
#endif
tpte = *pte;
if (tpte == 0) {
printf("TPTE at %p IS ZERO @ VA %08lx\n",
pte, pv->pv_va);
panic("bad pte");
}
/*
* We cannot remove wired pages from a process' mapping at this time
*/
if (tpte & PG_W) {
npv = TAILQ_NEXT(pv, pv_plist);
continue;
}
m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
KASSERT(m->phys_addr == (tpte & PG_FRAME),
("vm_page_t %p phys_addr mismatch %016jx %016jx",
m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
KASSERT(m < &vm_page_array[vm_page_array_size],
("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
pmap->pm_stats.resident_count--;
pte_clear(pte);
/*
* Update the vm_page_t clean and reference bits.
*/
if (tpte & PG_M) {
vm_page_dirty(m);
}
npv = TAILQ_NEXT(pv, pv_plist);
TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
m->md.pv_list_count--;
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_flag_clear(m, PG_WRITEABLE);
pmap_unuse_pt(pmap, pv->pv_va, *vtopde(pv->pv_va));
free_pv_entry(pv);
}
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
vm_page_unlock_queues();
}
/*
* pmap_is_modified:
*
* Return whether or not the specified physical page was modified
* in any physical maps.
*/
boolean_t
pmap_is_modified(vm_page_t m)
{
pv_entry_t pv;
pt_entry_t *pte;
boolean_t rv;
rv = FALSE;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
return (rv);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
/*
* if the bit being tested is the modified bit, then
* mark clean_map and ptes as never
* modified.
*/
if (!pmap_track_modified(pv->pv_va))
continue;
#if defined(PMAP_DIAGNOSTIC)
if (!pv->pv_pmap) {
printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
continue;
}
#endif
PMAP_LOCK(pv->pv_pmap);
pte = pmap_pte(pv->pv_pmap, pv->pv_va);
rv = (*pte & PG_M) != 0;
PMAP_UNLOCK(pv->pv_pmap);
if (rv)
break;
}
return (rv);
}
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is elgible
* for prefault.
*/
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
pd_entry_t *pde;
pt_entry_t *pte;
boolean_t rv;
rv = FALSE;
PMAP_LOCK(pmap);
pde = pmap_pde(pmap, addr);
if (pde != NULL && (*pde & PG_V)) {
pte = vtopte(addr);
rv = (*pte & PG_V) == 0;
}
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Clear the given bit in each of the given page's ptes.
*/
static __inline void
pmap_clear_ptes(vm_page_t m, long bit)
{
register pv_entry_t pv;
pt_entry_t pbits, *pte;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
(bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
return;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
/*
* Loop over all current mappings setting/clearing as appropos If
* setting RO do we need to clear the VAC?
*/
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
/*
* don't write protect pager mappings
*/
if (bit == PG_RW) {
if (!pmap_track_modified(pv->pv_va))
continue;
}
#if defined(PMAP_DIAGNOSTIC)
if (!pv->pv_pmap) {
printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
continue;
}
#endif
PMAP_LOCK(pv->pv_pmap);
pte = pmap_pte(pv->pv_pmap, pv->pv_va);
retry:
pbits = *pte;
if (pbits & bit) {
if (bit == PG_RW) {
if (!atomic_cmpset_long(pte, pbits,
pbits & ~(PG_RW | PG_M)))
goto retry;
if (pbits & PG_M) {
vm_page_dirty(m);
}
} else {
atomic_clear_long(pte, bit);
}
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
}
PMAP_UNLOCK(pv->pv_pmap);
}
if (bit == PG_RW)
vm_page_flag_clear(m, PG_WRITEABLE);
}
/*
* pmap_page_protect:
*
* Lower the permission for all mappings to a given page.
*/
void
pmap_page_protect(vm_page_t m, vm_prot_t prot)
{
if ((prot & VM_PROT_WRITE) == 0) {
if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
pmap_clear_ptes(m, PG_RW);
} else {
pmap_remove_all(m);
}
}
}
/*
* pmap_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
int
pmap_ts_referenced(vm_page_t m)
{
register pv_entry_t pv, pvf, pvn;
pt_entry_t *pte;
pt_entry_t v;
int rtval = 0;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
return (rtval);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
pvf = pv;
do {
pvn = TAILQ_NEXT(pv, pv_list);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
if (!pmap_track_modified(pv->pv_va))
continue;
PMAP_LOCK(pv->pv_pmap);
pte = pmap_pte(pv->pv_pmap, pv->pv_va);
if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
atomic_clear_long(pte, PG_A);
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
rtval++;
if (rtval > 4) {
PMAP_UNLOCK(pv->pv_pmap);
break;
}
}
PMAP_UNLOCK(pv->pv_pmap);
} while ((pv = pvn) != NULL && pv != pvf);
}
return (rtval);
}
/*
* Clear the modify bits on the specified physical page.
*/
void
pmap_clear_modify(vm_page_t m)
{
pmap_clear_ptes(m, PG_M);
}
/*
* pmap_clear_reference:
*
* Clear the reference bit on the specified physical page.
*/
void
pmap_clear_reference(vm_page_t m)
{
pmap_clear_ptes(m, PG_A);
}
/*
* Miscellaneous support routines follow
*/
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
pmap_mapdev(pa, size)
vm_paddr_t pa;
vm_size_t size;
{
vm_offset_t va, tmpva, offset;
/* If this fits within the direct map window, use it */
if (pa < dmaplimit && (pa + size) < dmaplimit)
return ((void *)PHYS_TO_DMAP(pa));
offset = pa & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
va = kmem_alloc_nofault(kernel_map, size);
if (!va)
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
pa = trunc_page(pa);
for (tmpva = va; size > 0; ) {
pmap_kenter(tmpva, pa);
size -= PAGE_SIZE;
tmpva += PAGE_SIZE;
pa += PAGE_SIZE;
}
pmap_invalidate_range(kernel_pmap, va, tmpva);
return ((void *)(va + offset));
}
void
pmap_unmapdev(va, size)
vm_offset_t va;
vm_size_t size;
{
vm_offset_t base, offset, tmpva;
/* If we gave a direct map region in pmap_mapdev, do nothing */
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
return;
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
pmap_kremove(tmpva);
pmap_invalidate_range(kernel_pmap, va, tmpva);
kmem_free(kernel_map, base, size);
}
/*
* perform the pmap work for mincore
*/
int
pmap_mincore(pmap, addr)
pmap_t pmap;
vm_offset_t addr;
{
pt_entry_t *ptep, pte;
vm_page_t m;
int val = 0;
PMAP_LOCK(pmap);
ptep = pmap_pte(pmap, addr);
pte = (ptep != NULL) ? *ptep : 0;
PMAP_UNLOCK(pmap);
if (pte != 0) {
vm_paddr_t pa;
val = MINCORE_INCORE;
if ((pte & PG_MANAGED) == 0)
return val;
pa = pte & PG_FRAME;
m = PHYS_TO_VM_PAGE(pa);
/*
* Modified by us
*/
if (pte & PG_M)
val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
else {
/*
* Modified by someone else
*/
vm_page_lock_queues();
if (m->dirty || pmap_is_modified(m))
val |= MINCORE_MODIFIED_OTHER;
vm_page_unlock_queues();
}
/*
* Referenced by us
*/
if (pte & PG_A)
val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
else {
/*
* Referenced by someone else
*/
vm_page_lock_queues();
if ((m->flags & PG_REFERENCED) ||
pmap_ts_referenced(m)) {
val |= MINCORE_REFERENCED_OTHER;
vm_page_flag_set(m, PG_REFERENCED);
}
vm_page_unlock_queues();
}
}
return val;
}
void
pmap_activate(struct thread *td)
{
struct proc *p = td->td_proc;
pmap_t pmap, oldpmap;
u_int64_t cr3;
critical_enter();
pmap = vmspace_pmap(td->td_proc->p_vmspace);
oldpmap = PCPU_GET(curpmap);
#ifdef SMP
if (oldpmap) /* XXX FIXME */
atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
#else
if (oldpmap) /* XXX FIXME */
oldpmap->pm_active &= ~PCPU_GET(cpumask);
pmap->pm_active |= PCPU_GET(cpumask);
#endif
cr3 = vtophys(pmap->pm_pml4);
/* XXXKSE this is wrong.
* pmap_activate is for the current thread on the current cpu
*/
if (p->p_flag & P_SA) {
/* Make sure all other cr3 entries are updated. */
/* what if they are running? XXXKSE (maybe abort them) */
FOREACH_THREAD_IN_PROC(p, td) {
td->td_pcb->pcb_cr3 = cr3;
}
} else {
td->td_pcb->pcb_cr3 = cr3;
}
load_cr3(cr3);
critical_exit();
}
vm_offset_t
pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
{
if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
return addr;
}
addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
return addr;
}