freebsd-skq/usr.bin/sdiotool/sdiotool.c
imp 075b75a28b Added new tool for doing experiments with SDIO card.
Due to its experimental nature, it's not yet connected to the build.

Submitted by: Ilya Babulin
2017-07-09 17:05:48 +00:00

650 lines
19 KiB
C

/*-
* Copyright (c) 2016-2017 Ilya Bakulin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/ioctl.h>
#include <sys/stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/endian.h>
#include <sys/sbuf.h>
#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <limits.h>
#include <fcntl.h>
#include <ctype.h>
#include <err.h>
#include <libutil.h>
#include <unistd.h>
#include <cam/cam.h>
#include <cam/cam_debug.h>
#include <cam/cam_ccb.h>
#include <cam/mmc/mmc_all.h>
#include <camlib.h>
struct cis_info {
uint16_t man_id;
uint16_t prod_id;
uint16_t max_block_size;
};
static int sdio_rw_direct(struct cam_device *dev,
uint8_t func_number,
uint32_t addr,
uint8_t is_write,
uint8_t *data,
uint8_t *resp);
static uint8_t sdio_read_1(struct cam_device *dev, uint8_t func_number, uint32_t addr);
static void sdio_write_1(struct cam_device *dev, uint8_t func_number, uint32_t addr, uint8_t val);
static int sdio_is_func_ready(struct cam_device *dev, uint8_t func_number, uint8_t *is_enab);
static int sdio_is_func_enabled(struct cam_device *dev, uint8_t func_number, uint8_t *is_enab);
static int sdio_func_enable(struct cam_device *dev, uint8_t func_number, int enable);
static int sdio_is_func_intr_enabled(struct cam_device *dev, uint8_t func_number, uint8_t *is_enab);
static int sdio_func_intr_enable(struct cam_device *dev, uint8_t func_number, int enable);
static void sdio_card_reset(struct cam_device *dev);
static uint32_t sdio_get_common_cis_addr(struct cam_device *dev);
static void probe_bcrm(struct cam_device *dev);
/* Use CMD52 to read or write a single byte */
int
sdio_rw_direct(struct cam_device *dev,
uint8_t func_number,
uint32_t addr,
uint8_t is_write,
uint8_t *data, uint8_t *resp) {
union ccb *ccb;
uint32_t flags;
uint32_t arg;
int retval = 0;
ccb = cam_getccb(dev);
if (ccb == NULL) {
warnx("%s: error allocating CCB", __func__);
return (1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(union ccb) - sizeof(struct ccb_hdr));
flags = MMC_RSP_R5 | MMC_CMD_AC;
arg = SD_IO_RW_FUNC(func_number) | SD_IO_RW_ADR(addr);
if (is_write)
arg |= SD_IO_RW_WR | SD_IO_RW_RAW | SD_IO_RW_DAT(*data);
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_NONE,
/*mmc_opcode*/ SD_IO_RW_DIRECT,
/*mmc_arg*/ arg,
/*mmc_flags*/ flags,
/*mmc_data*/ 0,
/*timeout*/ 5000);
if (((retval = cam_send_ccb(dev, ccb)) < 0)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
const char warnstr[] = "error sending command";
if (retval < 0)
warn(warnstr);
else
warnx(warnstr);
return (-1);
}
*resp = ccb->mmcio.cmd.resp[0] & 0xFF;
cam_freeccb(ccb);
return (retval);
}
#if 0
/*
* CMD53 -- IO_RW_EXTENDED
* Use to read or write memory blocks
*
* is_increment=1: FIFO mode
* blk_count > 0: block mode
*/
int
sdio_rw_extended(struct cam_device *dev,
uint8_t func_number,
uint32_t addr,
uint8_t is_write,
uint8_t *data, size_t datalen,
uint8_t is_increment,
uint16_t blk_count) {
union ccb *ccb;
uint32_t flags;
uint32_t arg;
int retval = 0;
if (blk_count != 0) {
warnx("%s: block mode is not supported yet", __func__);
return (1);
}
ccb = cam_getccb(dev);
if (ccb == NULL) {
warnx("%s: error allocating CCB", __func__);
return (1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(union ccb) - sizeof(struct ccb_hdr));
flags = MMC_RSP_R5 | MMC_CMD_AC;
arg = SD_IO_RW_FUNC(func_number) | SD_IO_RW_ADR(addr);
if (is_write)
arg |= SD_IO_RW_WR;
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_NONE,
/*mmc_opcode*/ SD_IO_RW_DIRECT,
/*mmc_arg*/ arg,
/*mmc_flags*/ flags,
/*mmc_data*/ 0,
/*timeout*/ 5000);
if (((retval = cam_send_ccb(dev, ccb)) < 0)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
const char warnstr[] = "error sending command";
if (retval < 0)
warn(warnstr);
else
warnx(warnstr);
return (-1);
}
*resp = ccb->mmcio.cmd.resp[0] & 0xFF;
cam_freeccb(ccb);
return (retval);
}
#endif
static int
sdio_read_bool_for_func(struct cam_device *dev, uint32_t addr, uint8_t func_number, uint8_t *is_enab) {
uint8_t resp;
int ret;
ret = sdio_rw_direct(dev, 0, addr, 0, NULL, &resp);
if (ret < 0)
return ret;
*is_enab = (resp & (1 << func_number)) > 0 ? 1 : 0;
return (0);
}
static int
sdio_set_bool_for_func(struct cam_device *dev, uint32_t addr, uint8_t func_number, int enable) {
uint8_t resp;
int ret;
uint8_t is_enabled;
ret = sdio_rw_direct(dev, 0, addr, 0, NULL, &resp);
if (ret != 0)
return ret;
is_enabled = resp & (1 << func_number);
if ((is_enabled !=0 && enable == 1) || (is_enabled == 0 && enable == 0))
return 0;
if (enable)
resp |= 1 << func_number;
else
resp &= ~ (1 << func_number);
ret = sdio_rw_direct(dev, 0, addr, 1, &resp, &resp);
return ret;
}
static uint8_t
sdio_read_1(struct cam_device *dev, uint8_t func_number, uint32_t addr) {
uint8_t val;
sdio_rw_direct(dev, func_number, addr, 0, NULL, &val);
return val;
}
__unused static void
sdio_write_1(struct cam_device *dev, uint8_t func_number, uint32_t addr, uint8_t val) {
uint8_t _val;
sdio_rw_direct(dev, func_number, addr, 0, &val, &_val);
}
static int
sdio_is_func_ready(struct cam_device *dev, uint8_t func_number, uint8_t *is_enab) {
return sdio_read_bool_for_func(dev, SD_IO_CCCR_FN_READY, func_number, is_enab);
}
static int
sdio_is_func_enabled(struct cam_device *dev, uint8_t func_number, uint8_t *is_enab) {
return sdio_read_bool_for_func(dev, SD_IO_CCCR_FN_ENABLE, func_number, is_enab);
}
static int
sdio_func_enable(struct cam_device *dev, uint8_t func_number, int enable) {
return sdio_set_bool_for_func(dev, SD_IO_CCCR_FN_ENABLE, func_number, enable);
}
static int
sdio_is_func_intr_enabled(struct cam_device *dev, uint8_t func_number, uint8_t *is_enab) {
return sdio_read_bool_for_func(dev, SD_IO_CCCR_INT_ENABLE, func_number, is_enab);
}
static int
sdio_func_intr_enable(struct cam_device *dev, uint8_t func_number, int enable) {
return sdio_set_bool_for_func(dev, SD_IO_CCCR_INT_ENABLE, func_number, enable);
}
static int
sdio_card_set_bus_width(struct cam_device *dev, enum mmc_bus_width bw) {
int ret;
uint8_t ctl_val;
ret = sdio_rw_direct(dev, 0, SD_IO_CCCR_BUS_WIDTH, 0, NULL, &ctl_val);
if (ret < 0) {
warn("Error getting CCCR_BUS_WIDTH value");
return ret;
}
ctl_val &= ~0x3;
switch (bw) {
case bus_width_1:
/* Already set to 1-bit */
break;
case bus_width_4:
ctl_val |= CCCR_BUS_WIDTH_4;
break;
case bus_width_8:
warn("Cannot do 8-bit on SDIO yet");
return -1;
break;
}
ret = sdio_rw_direct(dev, 0, SD_IO_CCCR_BUS_WIDTH, 1, &ctl_val, &ctl_val);
if (ret < 0) {
warn("Error setting CCCR_BUS_WIDTH value");
return ret;
}
return ret;
}
static int
sdio_func_read_cis(struct cam_device *dev, uint8_t func_number,
uint32_t cis_addr, struct cis_info *info) {
uint8_t tuple_id, tuple_len, tuple_count;
uint32_t addr;
char *cis1_info[4];
int start, i, ch, count;
char cis1_info_buf[256];
tuple_count = 0; /* Use to prevent infinite loop in case of parse errors */
memset(cis1_info_buf, 0, 256);
do {
addr = cis_addr;
tuple_id = sdio_read_1(dev, 0, addr++);
if (tuple_id == SD_IO_CISTPL_END)
break;
if (tuple_id == 0) {
cis_addr++;
continue;
}
tuple_len = sdio_read_1(dev, 0, addr++);
if (tuple_len == 0 && tuple_id != 0x00) {
warn("Parse error: 0-length tuple %02X\n", tuple_id);
return -1;
}
switch (tuple_id) {
case SD_IO_CISTPL_VERS_1:
addr += 2;
for (count = 0, start = 0, i = 0;
(count < 4) && ((i + 4) < 256); i++) {
ch = sdio_read_1(dev, 0, addr + i);
printf("count=%d, start=%d, i=%d, Got %c (0x%02x)\n", count, start, i, ch, ch);
if (ch == 0xff)
break;
cis1_info_buf[i] = ch;
if (ch == 0) {
cis1_info[count] =
cis1_info_buf + start;
start = i + 1;
count++;
}
}
printf("Card info:");
for (i=0; i<4; i++)
if (cis1_info[i])
printf(" %s", cis1_info[i]);
printf("\n");
break;
case SD_IO_CISTPL_MANFID:
info->man_id = sdio_read_1(dev, 0, addr++);
info->man_id |= sdio_read_1(dev, 0, addr++) << 8;
info->prod_id = sdio_read_1(dev, 0, addr++);
info->prod_id |= sdio_read_1(dev, 0, addr++) << 8;
break;
case SD_IO_CISTPL_FUNCID:
/* not sure if we need to parse it? */
break;
case SD_IO_CISTPL_FUNCE:
if (tuple_len < 4) {
printf("FUNCE is too short: %d\n", tuple_len);
break;
}
if (func_number == 0) {
/* skip extended_data */
addr++;
info->max_block_size = sdio_read_1(dev, 0, addr++);
info->max_block_size |= sdio_read_1(dev, 0, addr++) << 8;
} else {
info->max_block_size = sdio_read_1(dev, 0, addr + 0xC);
info->max_block_size |= sdio_read_1(dev, 0, addr + 0xD) << 8;
}
break;
default:
printf("Skipping tuple ID %02X len %02X\n", tuple_id, tuple_len);
}
cis_addr += tuple_len + 2;
tuple_count++;
} while (tuple_count < 20);
return 0;
}
static uint32_t
sdio_get_common_cis_addr(struct cam_device *dev) {
uint32_t addr;
addr = sdio_read_1(dev, 0, SD_IO_CCCR_CISPTR);
addr |= sdio_read_1(dev, 0, SD_IO_CCCR_CISPTR + 1) << 8;
addr |= sdio_read_1(dev, 0, SD_IO_CCCR_CISPTR + 2) << 16;
if (addr < SD_IO_CIS_START || addr > SD_IO_CIS_START + SD_IO_CIS_SIZE) {
warn("Bad CIS address: %04X\n", addr);
addr = 0;
}
return addr;
}
static void sdio_card_reset(struct cam_device *dev) {
int ret;
uint8_t ctl_val;
ret = sdio_rw_direct(dev, 0, SD_IO_CCCR_CTL, 0, NULL, &ctl_val);
if (ret < 0)
errx(1, "Error getting CCCR_CTL value");
ctl_val |= CCCR_CTL_RES;
ret = sdio_rw_direct(dev, 0, SD_IO_CCCR_CTL, 1, &ctl_val, &ctl_val);
if (ret < 0)
errx(1, "Error setting CCCR_CTL value");
}
/*
* How Linux driver works
*
* The probing begins by calling brcmf_ops_sdio_probe() which is defined as probe function in struct sdio_driver. http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/bcmsdh.c#L1126
*
* The driver does black magic by copying func struct for F2 and setting func number to zero there, to create an F0 func structure :)
* Driver state changes to BRCMF_SDIOD_DOWN.
* ops_sdio_probe() then calls brcmf_sdio_probe() -- at this point it has filled in sdiodev struct with the pointers to all three functions (F0, F1, F2).
*
* brcmf_sdiod_probe() sets block sizes for F1 and F2. It sets F1 block size to 64 and F2 to 512, not consulting the values stored in SDIO CCCR / FBR registers!
* Then it increases timeout for F2 (what is this?!)
* Then it enables F1
* Then it attaches "freezer" (without PM this is NOP)
* Finally it calls brcmf_sdio_probe() http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c#L4082
*
* Here high-level workqueues and sg tables are allocated.
* It then calls brcmf_sdio_probe_attach()
*
* Here at the beginning there is a pr_debug() call with brcmf_sdiod_regrl() inside to addr #define SI_ENUM_BASE 0x18000000.
* Return value is 0x16044330.
* Then turns off PLL: byte-write BRCMF_INIT_CLKCTL1 (0x28) -> SBSDIO_FUNC1_CHIPCLKCSR (0x1000E)
* Then it reads value back, should be 0xe8.
* Then calls brcmf_chip_attach()
*
* http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/chip.c#L1054
* This func enumerates and resets all the cores on the dongle.
* - brcmf_sdio_buscoreprep(): force clock to ALPAvail req only:
* SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ -> SBSDIO_FUNC1_CHIPCLKCSR
* Wait up to 15ms to !SBSDIO_ALPAV(clkval) of the value from CLKCSR.
* Force ALP:
* SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP (0x21)-> SBSDIO_FUNC1_CHIPCLKCSR
* Disaable SDIO pullups:
* byte 0 -> SBSDIO_FUNC1_SDIOPULLUP (0x0001000f)
*
* Calls brcmf_chip_recognition()
* http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/chip.c#L908
* Read 0x18000000. Get 0x16044330: chip 4330 rev 4
* AXI chip, call brcmf_chip_dmp_erom_scan() to get info about all cores.
* Then brcmf_chip_cores_check() to check that CPU and RAM are found,
*
* Setting cores to passive: not clear which of CR4/CA7/CM3 our chip has.
* Quite a few r/w calls to different parts of the chip to reset cores....
* Finally get_raminfo() called to fill in RAM info:
* brcmf_chip_get_raminfo: RAM: base=0x0 size=294912 (0x48000) sr=0 (0x0)
* http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/chip.c#L700
*
* Then brcmf_chip_setup() is called, this prints and fills in chipcommon rev and PMU caps:
* brcmf_chip_setup: ccrev=39, pmurev=12, pmucaps=0x19583c0c
* http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/chip.c#L1015
* Bus-specific setup code is NOP for SDIO.
*
* brcmf_sdio_kso_init() is called.
* Here it first reads 0x1 from SBSDIO_FUNC1_SLEEPCSR 0x18000650 and then writes it back... WTF?
*
* brcmf_sdio_drivestrengthinit() is called
* http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c#L3630
*
* Set card control so an SDIO card reset does a WLAN backplane reset
* set PMUControl so a backplane reset does PMU state reload
* === end of brcmf_sdio_probe_attach ===
**** Finished reading at http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/sdio.c#L4152, line 2025 in the dump
* === How register reading works ===
* http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/bcmsdh.c#L357
* The address to read from is written to three byte-sized registers of F1:
* - SBSDIO_FUNC1_SBADDRLOW 0x1000A
* - SBSDIO_FUNC1_SBADDRMID 0x1000B
* - SBSDIO_FUNC1_SBADDRHIGH 0x1000C
* If this is 32-bit read , a flag is set. The address is ANDed with SBSDIO_SB_OFT_ADDR_MASK which is 0x07FFF.
* Then brcmf_sdiod_regrw_helper() is called to read the reply.
* http://lxr.free-electrons.com/source/drivers/net/wireless/broadcom/brcm80211/brcmfmac/bcmsdh.c#L306
* Based on the address it figures out where to read it from (CCCR / FBR in F0, or somewhere in F1).
* Reads are retried three times.
* 1-byte IO is done with CMD52, more is read with CMD53 with address increment (not FIFO mode).
* http://lxr.free-electrons.com/source/drivers/mmc/core/sdio_io.c#L458
* ==================================
*
*
*/
__unused
static void
probe_bcrm(struct cam_device *dev) {
uint32_t cis_addr;
struct cis_info info;
sdio_card_set_bus_width(dev, bus_width_4);
cis_addr = sdio_get_common_cis_addr(dev);
printf("CIS address: %04X\n", cis_addr);
memset(&info, 0, sizeof(info));
sdio_func_read_cis(dev, 0, cis_addr, &info);
printf("Vendor 0x%04X product 0x%04X\n", info.man_id, info.prod_id);
}
__unused
static uint8_t *
mmap_fw() {
const char fw_path[] = "/home/kibab/repos/fbsd-bbb/brcm-firmware/brcmfmac4330-sdio.bin";
struct stat sb;
uint8_t *fw_ptr;
int fd = open(fw_path, O_RDONLY);
if (fd < 0)
errx(1, "Cannot open firmware file");
if (fstat(fd, &sb) < 0)
errx(1, "Cannot get file stat");
fw_ptr = mmap(NULL, sb.st_size, PROT_READ, 0, fd, 0);
if (fw_ptr == MAP_FAILED)
errx(1, "Cannot map the file");
return fw_ptr;
}
static void
usage() {
printf("sdiotool -u <pass_dev_unit>\n");
exit(0);
}
static void
get_sdio_card_info(struct cam_device *dev) {
uint32_t cis_addr;
uint32_t fbr_addr;
struct cis_info info;
cis_addr = sdio_get_common_cis_addr(dev);
memset(&info, 0, sizeof(info));
sdio_func_read_cis(dev, 0, cis_addr, &info);
printf("F0: Vendor 0x%04X product 0x%04X max block size %d bytes\n",
info.man_id, info.prod_id, info.max_block_size);
for (int i = 1; i <= 2; i++) {
fbr_addr = SD_IO_FBR_START * i + 0x9;
cis_addr = sdio_read_1(dev, 0, fbr_addr++);
cis_addr |= sdio_read_1(dev, 0, fbr_addr++) << 8;
cis_addr |= sdio_read_1(dev, 0, fbr_addr++) << 16;
memset(&info, 0, sizeof(info));
sdio_func_read_cis(dev, i, cis_addr, &info);
printf("F%d: Vendor 0x%04X product 0x%04X max block size %d bytes\n",
i, info.man_id, info.prod_id, info.max_block_size);
}
}
/* Test interrupt delivery when select() */
__unused static int
sdio_signal_intr(struct cam_device *dev) {
uint8_t resp;
int ret;
ret = sdio_rw_direct(dev, 0, 0x666, 0, NULL, &resp);
if (ret < 0)
return ret;
return (0);
}
static void
do_intr_test(__unused struct cam_device *dev) {
}
int
main(int argc, char **argv) {
char device[] = "pass";
int unit = 0;
int func = 0;
uint8_t resp;
uint8_t is_enab;
__unused uint8_t *fw_ptr;
int ch;
struct cam_device *cam_dev;
int is_intr_test = 0;
//fw_ptr = mmap_fw();
while ((ch = getopt(argc, argv, "Iu:")) != -1) {
switch (ch) {
case 'u':
unit = (int) strtol(optarg, NULL, 10);
break;
case 'f':
func = (int) strtol(optarg, NULL, 10);
case 'I':
is_intr_test = 1;
case '?':
default:
usage();
}
}
argc -= optind;
argv += optind;
if ((cam_dev = cam_open_spec_device(device, unit, O_RDWR, NULL)) == NULL)
errx(1, "Cannot open device");
get_sdio_card_info(cam_dev);
if (is_intr_test > 0)
do_intr_test(cam_dev);
exit(0);
sdio_card_reset(cam_dev);
/* Read Addr 7 of func 0 */
int ret = sdio_rw_direct(cam_dev, 0, 7, 0, NULL, &resp);
if (ret < 0)
errx(1, "Error sending CAM command");
printf("Result: %02x\n", resp);
/* Check if func 1 is enabled */
ret = sdio_is_func_enabled(cam_dev, 1, &is_enab);
if (ret < 0)
errx(1, "Cannot check if func is enabled");
printf("F1 enabled: %d\n", is_enab);
ret = sdio_func_enable(cam_dev, 1, 1 - is_enab);
if (ret < 0)
errx(1, "Cannot enable/disable func");
printf("F1 en/dis result: %d\n", ret);
/* Check if func 1 is ready */
ret = sdio_is_func_ready(cam_dev, 1, &is_enab);
if (ret < 0)
errx(1, "Cannot check if func is ready");
printf("F1 ready: %d\n", is_enab);
/* Check if interrupts are enabled */
ret = sdio_is_func_intr_enabled(cam_dev, 1, &is_enab);
if (ret < 0)
errx(1, "Cannot check if func intr is enabled");
printf("F1 intr enabled: %d\n", is_enab);
ret = sdio_func_intr_enable(cam_dev, 1, 1 - is_enab);
if (ret < 0)
errx(1, "Cannot enable/disable func intr");
printf("F1 intr en/dis result: %d\n", ret);
cam_close_spec_device(cam_dev);
}