freebsd-skq/sys/dev/flash/cqspi.c
Konstantin Belousov cd85379104 Make MAXPHYS tunable. Bump MAXPHYS to 1M.
Replace MAXPHYS by runtime variable maxphys. It is initialized from
MAXPHYS by default, but can be also adjusted with the tunable kern.maxphys.

Make b_pages[] array in struct buf flexible.  Size b_pages[] for buffer
cache buffers exactly to atop(maxbcachebuf) (currently it is sized to
atop(MAXPHYS)), and b_pages[] for pbufs is sized to atop(maxphys) + 1.
The +1 for pbufs allow several pbuf consumers, among them vmapbuf(),
to use unaligned buffers still sized to maxphys, esp. when such
buffers come from userspace (*).  Overall, we save significant amount
of otherwise wasted memory in b_pages[] for buffer cache buffers,
while bumping MAXPHYS to desired high value.

Eliminate all direct uses of the MAXPHYS constant in kernel and driver
sources, except a place which initialize maxphys.  Some random (and
arguably weird) uses of MAXPHYS, e.g. in linuxolator, are converted
straight.  Some drivers, which use MAXPHYS to size embeded structures,
get private MAXPHYS-like constant; their convertion is out of scope
for this work.

Changes to cam/, dev/ahci, dev/ata, dev/mpr, dev/mpt, dev/mvs,
dev/siis, where either submitted by, or based on changes by mav.

Suggested by: mav (*)
Reviewed by:	imp, mav, imp, mckusick, scottl (intermediate versions)
Tested by:	pho
Sponsored by:	The FreeBSD Foundation
Differential revision:	https://reviews.freebsd.org/D27225
2020-11-28 12:12:51 +00:00

770 lines
17 KiB
C

/*-
* Copyright (c) 2017-2018 Ruslan Bukin <br@bsdpad.com>
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Cadence Quad SPI Flash Controller driver.
* 4B-addressing mode supported only.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <geom/geom_disk.h>
#include <machine/bus.h>
#include <dev/fdt/simplebus.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/openfirm.h>
#include <dev/flash/cqspi.h>
#include <dev/flash/mx25lreg.h>
#include <dev/xdma/xdma.h>
#include "qspi_if.h"
#define CQSPI_DEBUG
#undef CQSPI_DEBUG
#ifdef CQSPI_DEBUG
#define dprintf(fmt, ...) printf(fmt, ##__VA_ARGS__)
#else
#define dprintf(fmt, ...)
#endif
#define CQSPI_SECTORSIZE 512
#define TX_QUEUE_SIZE 16
#define RX_QUEUE_SIZE 16
#define READ4(_sc, _reg) bus_read_4((_sc)->res[0], _reg)
#define READ2(_sc, _reg) bus_read_2((_sc)->res[0], _reg)
#define READ1(_sc, _reg) bus_read_1((_sc)->res[0], _reg)
#define WRITE4(_sc, _reg, _val) bus_write_4((_sc)->res[0], _reg, _val)
#define WRITE2(_sc, _reg, _val) bus_write_2((_sc)->res[0], _reg, _val)
#define WRITE1(_sc, _reg, _val) bus_write_1((_sc)->res[0], _reg, _val)
#define READ_DATA_4(_sc, _reg) bus_read_4((_sc)->res[1], _reg)
#define READ_DATA_1(_sc, _reg) bus_read_1((_sc)->res[1], _reg)
#define WRITE_DATA_4(_sc, _reg, _val) bus_write_4((_sc)->res[1], _reg, _val)
#define WRITE_DATA_1(_sc, _reg, _val) bus_write_1((_sc)->res[1], _reg, _val)
struct cqspi_softc {
device_t dev;
struct resource *res[3];
bus_space_tag_t bst;
bus_space_handle_t bsh;
void *ih;
uint8_t read_op_done;
uint8_t write_op_done;
uint32_t fifo_depth;
uint32_t fifo_width;
uint32_t trigger_address;
uint32_t sram_phys;
/* xDMA */
xdma_controller_t *xdma_tx;
xdma_channel_t *xchan_tx;
void *ih_tx;
xdma_controller_t *xdma_rx;
xdma_channel_t *xchan_rx;
void *ih_rx;
struct intr_config_hook config_intrhook;
struct mtx sc_mtx;
};
#define CQSPI_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define CQSPI_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define CQSPI_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
"cqspi", MTX_DEF)
#define CQSPI_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define CQSPI_ASSERT_LOCKED(_sc) \
mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define CQSPI_ASSERT_UNLOCKED(_sc) \
mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
static struct resource_spec cqspi_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_MEMORY, 1, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
static struct ofw_compat_data compat_data[] = {
{ "cdns,qspi-nor", 1 },
{ NULL, 0 },
};
static void
cqspi_intr(void *arg)
{
struct cqspi_softc *sc;
uint32_t pending;
sc = arg;
pending = READ4(sc, CQSPI_IRQSTAT);
dprintf("%s: IRQSTAT %x\n", __func__, pending);
if (pending & (IRQMASK_INDOPDONE | IRQMASK_INDXFRLVL |
IRQMASK_INDSRAMFULL)) {
/* TODO: PIO operation done */
}
WRITE4(sc, CQSPI_IRQSTAT, pending);
}
static int
cqspi_xdma_tx_intr(void *arg, xdma_transfer_status_t *status)
{
struct xdma_transfer_status st;
struct cqspi_softc *sc;
struct bio *bp;
int ret;
int deq;
sc = arg;
dprintf("%s\n", __func__);
deq = 0;
while (1) {
ret = xdma_dequeue_bio(sc->xchan_tx, &bp, &st);
if (ret != 0) {
break;
}
sc->write_op_done = 1;
deq++;
}
if (deq > 1)
device_printf(sc->dev,
"Warning: more than 1 tx bio dequeued\n");
wakeup(&sc->xdma_tx);
return (0);
}
static int
cqspi_xdma_rx_intr(void *arg, xdma_transfer_status_t *status)
{
struct xdma_transfer_status st;
struct cqspi_softc *sc;
struct bio *bp;
int ret;
int deq;
sc = arg;
dprintf("%s\n", __func__);
deq = 0;
while (1) {
ret = xdma_dequeue_bio(sc->xchan_rx, &bp, &st);
if (ret != 0) {
break;
}
sc->read_op_done = 1;
deq++;
}
if (deq > 1)
device_printf(sc->dev,
"Warning: more than 1 rx bio dequeued\n");
wakeup(&sc->xdma_rx);
return (0);
}
static int
cqspi_wait_for_completion(struct cqspi_softc *sc)
{
int timeout;
int i;
timeout = 10000;
for (i = timeout; i > 0; i--) {
if ((READ4(sc, CQSPI_FLASHCMD) & FLASHCMD_CMDEXECSTAT) == 0) {
break;
}
}
if (i == 0) {
device_printf(sc->dev, "%s: cmd timed out: %x\n",
__func__, READ4(sc, CQSPI_FLASHCMD));
return (-1);
}
return (0);
}
static int
cqspi_cmd_write_addr(struct cqspi_softc *sc, uint8_t cmd,
uint32_t addr, uint32_t len)
{
uint32_t reg;
int ret;
dprintf("%s: %x\n", __func__, cmd);
WRITE4(sc, CQSPI_FLASHCMDADDR, addr);
reg = (cmd << FLASHCMD_CMDOPCODE_S);
reg |= (FLASHCMD_ENCMDADDR);
reg |= ((len - 1) << FLASHCMD_NUMADDRBYTES_S);
WRITE4(sc, CQSPI_FLASHCMD, reg);
reg |= FLASHCMD_EXECCMD;
WRITE4(sc, CQSPI_FLASHCMD, reg);
ret = cqspi_wait_for_completion(sc);
return (ret);
}
static int
cqspi_cmd_write(struct cqspi_softc *sc, uint8_t cmd,
uint8_t *addr, uint32_t len)
{
uint32_t reg;
int ret;
reg = (cmd << FLASHCMD_CMDOPCODE_S);
WRITE4(sc, CQSPI_FLASHCMD, reg);
reg |= FLASHCMD_EXECCMD;
WRITE4(sc, CQSPI_FLASHCMD, reg);
ret = cqspi_wait_for_completion(sc);
return (ret);
}
static int
cqspi_cmd_read(struct cqspi_softc *sc, uint8_t cmd,
uint8_t *addr, uint32_t len)
{
uint32_t data;
uint32_t reg;
uint8_t *buf;
int ret;
int i;
if (len > 8) {
device_printf(sc->dev, "Failed to read data\n");
return (-1);
}
dprintf("%s: %x\n", __func__, cmd);
buf = (uint8_t *)addr;
reg = (cmd << FLASHCMD_CMDOPCODE_S);
reg |= ((len - 1) << FLASHCMD_NUMRDDATABYTES_S);
reg |= FLASHCMD_ENRDDATA;
WRITE4(sc, CQSPI_FLASHCMD, reg);
reg |= FLASHCMD_EXECCMD;
WRITE4(sc, CQSPI_FLASHCMD, reg);
ret = cqspi_wait_for_completion(sc);
if (ret != 0) {
device_printf(sc->dev, "%s: cmd failed: %x\n",
__func__, cmd);
return (ret);
}
data = READ4(sc, CQSPI_FLASHCMDRDDATALO);
for (i = 0; i < len; i++)
buf[i] = (data >> (i * 8)) & 0xff;
return (0);
}
static int
cqspi_wait_ready(struct cqspi_softc *sc)
{
uint8_t data;
int ret;
do {
ret = cqspi_cmd_read(sc, CMD_READ_STATUS, &data, 1);
} while (data & STATUS_WIP);
return (0);
}
static int
cqspi_write_reg(device_t dev, device_t child,
uint8_t opcode, uint8_t *addr, uint32_t len)
{
struct cqspi_softc *sc;
int ret;
sc = device_get_softc(dev);
ret = cqspi_cmd_write(sc, opcode, addr, len);
return (ret);
}
static int
cqspi_read_reg(device_t dev, device_t child,
uint8_t opcode, uint8_t *addr, uint32_t len)
{
struct cqspi_softc *sc;
int ret;
sc = device_get_softc(dev);
ret = cqspi_cmd_read(sc, opcode, addr, len);
return (ret);
}
static int
cqspi_wait_idle(struct cqspi_softc *sc)
{
uint32_t reg;
do {
reg = READ4(sc, CQSPI_CFG);
if (reg & CFG_IDLE) {
break;
}
} while (1);
return (0);
}
static int
cqspi_erase(device_t dev, device_t child, off_t offset)
{
struct cqspi_softc *sc;
int ret;
sc = device_get_softc(dev);
cqspi_wait_idle(sc);
cqspi_wait_ready(sc);
ret = cqspi_cmd_write(sc, CMD_WRITE_ENABLE, 0, 0);
cqspi_wait_idle(sc);
cqspi_wait_ready(sc);
ret = cqspi_cmd_write_addr(sc, CMD_QUAD_SECTOR_ERASE, offset, 4);
cqspi_wait_idle(sc);
return (0);
}
static int
cqspi_write(device_t dev, device_t child, struct bio *bp,
off_t offset, caddr_t data, off_t count)
{
struct cqspi_softc *sc;
uint32_t reg;
dprintf("%s: offset 0x%llx count %lld bytes\n",
__func__, offset, count);
sc = device_get_softc(dev);
cqspi_wait_ready(sc);
reg = cqspi_cmd_write(sc, CMD_WRITE_ENABLE, 0, 0);
cqspi_wait_idle(sc);
cqspi_wait_ready(sc);
cqspi_wait_idle(sc);
reg = DMAPER_NUMSGLREQBYTES_4;
reg |= DMAPER_NUMBURSTREQBYTES_4;
WRITE4(sc, CQSPI_DMAPER, reg);
WRITE4(sc, CQSPI_INDWRWATER, 64);
WRITE4(sc, CQSPI_INDWR, INDRD_IND_OPS_DONE_STATUS);
WRITE4(sc, CQSPI_INDWR, 0);
WRITE4(sc, CQSPI_INDWRCNT, count);
WRITE4(sc, CQSPI_INDWRSTADDR, offset);
reg = (0 << DEVWR_DUMMYWRCLKS_S);
reg |= DEVWR_DATA_WIDTH_QUAD;
reg |= DEVWR_ADDR_WIDTH_SINGLE;
reg |= (CMD_QUAD_PAGE_PROGRAM << DEVWR_WROPCODE_S);
WRITE4(sc, CQSPI_DEVWR, reg);
reg = DEVRD_DATA_WIDTH_QUAD;
reg |= DEVRD_ADDR_WIDTH_SINGLE;
reg |= DEVRD_INST_WIDTH_SINGLE;
WRITE4(sc, CQSPI_DEVRD, reg);
xdma_enqueue_bio(sc->xchan_tx, &bp,
sc->sram_phys, 4, 4, XDMA_MEM_TO_DEV);
xdma_queue_submit(sc->xchan_tx);
sc->write_op_done = 0;
WRITE4(sc, CQSPI_INDWR, INDRD_START);
while (sc->write_op_done == 0)
tsleep(&sc->xdma_tx, PCATCH | PZERO, "spi", hz/2);
cqspi_wait_idle(sc);
return (0);
}
static int
cqspi_read(device_t dev, device_t child, struct bio *bp,
off_t offset, caddr_t data, off_t count)
{
struct cqspi_softc *sc;
uint32_t reg;
sc = device_get_softc(dev);
dprintf("%s: offset 0x%llx count %lld bytes\n",
__func__, offset, count);
cqspi_wait_idle(sc);
reg = DMAPER_NUMSGLREQBYTES_4;
reg |= DMAPER_NUMBURSTREQBYTES_4;
WRITE4(sc, CQSPI_DMAPER, reg);
WRITE4(sc, CQSPI_INDRDWATER, 64);
WRITE4(sc, CQSPI_INDRD, INDRD_IND_OPS_DONE_STATUS);
WRITE4(sc, CQSPI_INDRD, 0);
WRITE4(sc, CQSPI_INDRDCNT, count);
WRITE4(sc, CQSPI_INDRDSTADDR, offset);
reg = (0 << DEVRD_DUMMYRDCLKS_S);
reg |= DEVRD_DATA_WIDTH_QUAD;
reg |= DEVRD_ADDR_WIDTH_SINGLE;
reg |= DEVRD_INST_WIDTH_SINGLE;
reg |= DEVRD_ENMODEBITS;
reg |= (CMD_READ_4B_QUAD_OUTPUT << DEVRD_RDOPCODE_S);
WRITE4(sc, CQSPI_DEVRD, reg);
WRITE4(sc, CQSPI_MODEBIT, 0xff);
WRITE4(sc, CQSPI_IRQMASK, 0);
xdma_enqueue_bio(sc->xchan_rx, &bp, sc->sram_phys, 4, 4,
XDMA_DEV_TO_MEM);
xdma_queue_submit(sc->xchan_rx);
sc->read_op_done = 0;
WRITE4(sc, CQSPI_INDRD, INDRD_START);
while (sc->read_op_done == 0)
tsleep(&sc->xdma_rx, PCATCH | PZERO, "spi", hz/2);
cqspi_wait_idle(sc);
return (0);
}
static int
cqspi_init(struct cqspi_softc *sc)
{
pcell_t dts_value[1];
phandle_t node;
uint32_t reg;
int len;
device_printf(sc->dev, "Module ID %x\n",
READ4(sc, CQSPI_MODULEID));
if ((node = ofw_bus_get_node(sc->dev)) == -1) {
return (ENXIO);
}
if ((len = OF_getproplen(node, "cdns,fifo-depth")) <= 0) {
return (ENXIO);
}
OF_getencprop(node, "cdns,fifo-depth", dts_value, len);
sc->fifo_depth = dts_value[0];
if ((len = OF_getproplen(node, "cdns,fifo-width")) <= 0) {
return (ENXIO);
}
OF_getencprop(node, "cdns,fifo-width", dts_value, len);
sc->fifo_width = dts_value[0];
if ((len = OF_getproplen(node, "cdns,trigger-address")) <= 0) {
return (ENXIO);
}
OF_getencprop(node, "cdns,trigger-address", dts_value, len);
sc->trigger_address = dts_value[0];
/* Disable controller */
reg = READ4(sc, CQSPI_CFG);
reg &= ~(CFG_EN);
WRITE4(sc, CQSPI_CFG, reg);
reg = READ4(sc, CQSPI_DEVSZ);
reg &= ~(DEVSZ_NUMADDRBYTES_M);
reg |= ((4 - 1) - DEVSZ_NUMADDRBYTES_S);
WRITE4(sc, CQSPI_DEVSZ, reg);
WRITE4(sc, CQSPI_SRAMPART, sc->fifo_depth/2);
/* TODO: calculate baud rate and delay values. */
reg = READ4(sc, CQSPI_CFG);
/* Configure baud rate */
reg &= ~(CFG_BAUD_M);
reg |= CFG_BAUD12;
reg |= CFG_ENDMA;
WRITE4(sc, CQSPI_CFG, reg);
reg = (3 << DELAY_NSS_S);
reg |= (3 << DELAY_BTWN_S);
reg |= (1 << DELAY_AFTER_S);
reg |= (1 << DELAY_INIT_S);
WRITE4(sc, CQSPI_DELAY, reg);
READ4(sc, CQSPI_RDDATACAP);
reg &= ~(RDDATACAP_DELAY_M);
reg |= (1 << RDDATACAP_DELAY_S);
WRITE4(sc, CQSPI_RDDATACAP, reg);
/* Enable controller */
reg = READ4(sc, CQSPI_CFG);
reg |= (CFG_EN);
WRITE4(sc, CQSPI_CFG, reg);
return (0);
}
static int
cqspi_add_devices(device_t dev)
{
phandle_t child, node;
device_t child_dev;
int error;
node = ofw_bus_get_node(dev);
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
child_dev =
simplebus_add_device(dev, child, 0, NULL, -1, NULL);
if (child_dev == NULL) {
return (ENXIO);
}
error = device_probe_and_attach(child_dev);
if (error != 0) {
printf("can't probe and attach: %d\n", error);
}
}
return (0);
}
static void
cqspi_delayed_attach(void *arg)
{
struct cqspi_softc *sc;
sc = arg;
cqspi_add_devices(sc->dev);
bus_generic_attach(sc->dev);
config_intrhook_disestablish(&sc->config_intrhook);
}
static int
cqspi_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev)) {
return (ENXIO);
}
if (!ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
return (ENXIO);
}
device_set_desc(dev, "Cadence Quad SPI controller");
return (0);
}
static int
cqspi_attach(device_t dev)
{
struct cqspi_softc *sc;
uint32_t caps;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
if (bus_alloc_resources(dev, cqspi_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
sc->sram_phys = rman_get_start(sc->res[1]);
/* Setup interrupt handlers */
if (bus_setup_intr(sc->dev, sc->res[2], INTR_TYPE_BIO | INTR_MPSAFE,
NULL, cqspi_intr, sc, &sc->ih)) {
device_printf(sc->dev, "Unable to setup intr\n");
return (ENXIO);
}
CQSPI_LOCK_INIT(sc);
caps = 0;
/* Get xDMA controller. */
sc->xdma_tx = xdma_ofw_get(sc->dev, "tx");
if (sc->xdma_tx == NULL) {
device_printf(dev, "Can't find DMA controller.\n");
return (ENXIO);
}
sc->xdma_rx = xdma_ofw_get(sc->dev, "rx");
if (sc->xdma_rx == NULL) {
device_printf(dev, "Can't find DMA controller.\n");
return (ENXIO);
}
/* Alloc xDMA virtual channels. */
sc->xchan_tx = xdma_channel_alloc(sc->xdma_tx, caps);
if (sc->xchan_tx == NULL) {
device_printf(dev, "Can't alloc virtual DMA channel.\n");
return (ENXIO);
}
sc->xchan_rx = xdma_channel_alloc(sc->xdma_rx, caps);
if (sc->xchan_rx == NULL) {
device_printf(dev, "Can't alloc virtual DMA channel.\n");
return (ENXIO);
}
/* Setup xDMA interrupt handlers. */
error = xdma_setup_intr(sc->xchan_tx, 0, cqspi_xdma_tx_intr,
sc, &sc->ih_tx);
if (error) {
device_printf(sc->dev,
"Can't setup xDMA interrupt handler.\n");
return (ENXIO);
}
error = xdma_setup_intr(sc->xchan_rx, 0, cqspi_xdma_rx_intr,
sc, &sc->ih_rx);
if (error) {
device_printf(sc->dev,
"Can't setup xDMA interrupt handler.\n");
return (ENXIO);
}
xdma_prep_sg(sc->xchan_tx, TX_QUEUE_SIZE, maxphys, 8, 16, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR);
xdma_prep_sg(sc->xchan_rx, TX_QUEUE_SIZE, maxphys, 8, 16, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR);
cqspi_init(sc);
sc->config_intrhook.ich_func = cqspi_delayed_attach;
sc->config_intrhook.ich_arg = sc;
if (config_intrhook_establish(&sc->config_intrhook) != 0) {
device_printf(dev, "config_intrhook_establish failed\n");
return (ENOMEM);
}
return (0);
}
static int
cqspi_detach(device_t dev)
{
return (ENXIO);
}
static device_method_t cqspi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cqspi_probe),
DEVMETHOD(device_attach, cqspi_attach),
DEVMETHOD(device_detach, cqspi_detach),
/* Quad SPI Flash Interface */
DEVMETHOD(qspi_read_reg, cqspi_read_reg),
DEVMETHOD(qspi_write_reg, cqspi_write_reg),
DEVMETHOD(qspi_read, cqspi_read),
DEVMETHOD(qspi_write, cqspi_write),
DEVMETHOD(qspi_erase, cqspi_erase),
{ 0, 0 }
};
static devclass_t cqspi_devclass;
DEFINE_CLASS_1(cqspi, cqspi_driver, cqspi_methods,
sizeof(struct cqspi_softc), simplebus_driver);
DRIVER_MODULE(cqspi, simplebus, cqspi_driver, cqspi_devclass, 0, 0);