553 lines
12 KiB
Groff

.\" @(#)rpcgen.1 1.35 93/06/02 SMI
'\"macro stdmacro
.\" Copyright 1985-1993 Sun Microsystems, Inc.
.nr X
.TH rpcgen 1 "28 Mar 1993"
.SH NAME
rpcgen \- an RPC protocol compiler
.SH SYNOPSIS
.BI rpcgen " infile"
.LP
.B rpcgen
[
.B \-a
] [
.B \-b
] [
.B \-C
] [
.BI \-D name
[ =
.I value
] ]
.if n .ti +5n
[
.BI \-i " size"
]
[
.B \-I
[
.BI \-K " seconds"
] ]
[
.B \-L
] [
.B \-M
]
.if n .ti +5n
.if t .ti +5n
[
.B \-N
]
[
.B \-T
] [
.BI \-Y " pathname"
]
.I infile
.LP
.B rpcgen
[
.B \-c
|
.B \-h
|
.B \-l
|
.B \-m
|
.B \-t
|
.B \-Sc
|
.B \-Ss
|
.B \-Sm
]
.if n .ti +5n
[
.BI \-o " outfile"
] [
.I infile
]
.LP
.B rpcgen
[
.BI \-s " nettype"
] [
.BI \-o " outfile"
] [
.I infile
]
.LP
.B rpcgen
[
.BI \-n " netid"
] [
.BI \-o " outfile"
] [
.I infile
]
.\" .SH AVAILABILITY
.\" .LP
.\" SUNWcsu
.SH DESCRIPTION
.IX "rpcgen" "" "\fLrpcgen\fP \(em RPC protocol compiler"
.IX "RPC" "protocol compiler" "" "protocol compiler \(em \fLrpcgen\fP"
.IX "RPC Language" "RPC protocol compiler" "" "RPC protocol compiler \(em \fLrpcgen\fP"
.IX "compilers" "RPC protocol compiler" "" "RPC protocol compiler \(em \fLrpcgen\fP"
.IX "programming tools" "RPC protocol compiler" "" "RPC protocol compiler \(em \fLrpcgen\fP"
.LP
\f3rpcgen\f1
is a tool that generates C code to implement an RPC protocol.
The input to
\f3rpcgen\f1
is a language similar to C known as
RPC Language (Remote Procedure Call Language).
.LP
\f3rpcgen\f1
is normally used as in the first synopsis where
it takes an input file and generates three output files.
If the
\f2infile\f1
is named
\f3proto.x\f1,
then
\f3rpcgen\f1
generates a header in
\f3proto.h\f1,
XDR routines in
\f3proto_xdr.c\f1,
server-side stubs in
\f3proto_svc.c\f1,
and client-side stubs in
\f3proto_clnt.c\f1.
With the
\f3\-T\f1
option,
it also generates the RPC dispatch table in
\f3proto_tbl.i\f1.
.LP
.B rpcgen
can also generate sample client and server files
that can be customized to suit a particular application. The
\f3\-Sc\f1,
\f3\-Ss\f1
and
\f3\-Sm\f1
options generate sample client, server and makefile, respectively.
The
\f3\-a\f1
option generates all files, including sample files. If the infile
is \f3proto.x\f1, then the client side sample file is written to
\f3proto_client.c\f1, the server side sample file to \f3proto_server.c\f1
and the sample makefile to \f3makefile.proto\f1.
.LP
The server created can be started both by the port monitors
(for example, \f3inetd\f1)
or by itself.
When it is started by a port monitor,
it creates servers only for the transport for which
the file descriptor \f30\fP was passed.
The name of the transport must be specified
by setting up the environment variable
\f3PM_TRANSPORT\f1.
When the server generated by
\f3rpcgen\f1
is executed,
it creates server handles for all the transports
specified in
\f3NETPATH\f1
environment variable,
or if it is unset,
it creates server handles for all the visible transports from
\f3/etc/netconfig\f1
file.
Note:
the transports are chosen at run time and not at compile time.
When the server is self-started,
it backgrounds itself by default.
A special define symbol
\f3RPC_SVC_FG\f1
can be used to run the server process in foreground.
.LP
The second synopsis provides special features which allow
for the creation of more sophisticated RPC servers.
These features include support for user provided
\f3#defines\f1
and RPC dispatch tables.
The entries in the RPC dispatch table contain:
.RS
.PD 0
.TP 3
\(bu
pointers to the service routine corresponding to that procedure,
.TP
\(bu
a pointer to the input and output arguments
.TP
\(bu
the size of these routines
.PD
.RE
A server can use the dispatch table to check authorization
and then to execute the service routine;
a client library may use it to deal with the details of storage
management and XDR data conversion.
.LP
The other three synopses shown above are used when
one does not want to generate all the output files,
but only a particular one.
See the
.SM EXAMPLES
section below for examples of
.B rpcgen
usage.
When
\f3rpcgen\f1
is executed with the
\f3\-s\f1
option,
it creates servers for that particular class of transports.
When
executed with the
\f3\-n\f1
option,
it creates a server for the transport specified by
\f2netid\f1.
If
\f2infile\f1
is not specified,
\f3rpcgen\f1
accepts the standard input.
.LP
The C preprocessor,
\f3cc \-E\f1
is run on the input file before it is actually interpreted by
\f3rpcgen\f1.
For each type of output file,
\f3rpcgen\f1
defines a special preprocessor symbol for use by the
\f3rpcgen\f1
programmer:
.LP
.PD 0
.RS
.TP 12
\f3RPC_HDR\f1
defined when compiling into headers
.TP
\f3RPC_XDR\f1
defined when compiling into XDR routines
.TP
\f3RPC_SVC\f1
defined when compiling into server-side stubs
.TP
\f3RPC_CLNT\f1
defined when compiling into client-side stubs
.TP
\f3RPC_TBL\f1
defined when compiling into RPC dispatch tables
.RE
.PD
.LP
Any line beginning with
``\f3%\f1''
is passed directly into the output file,
uninterpreted by
\f3rpcgen\f1.
To specify the path name of the C preprocessor use \f3\-Y\f1 flag.
.LP
For every data type referred to in
\f2infile\f1,
\f3rpcgen\f1
assumes that there exists a
routine with the string
\f3xdr_\f1
prepended to the name of the data type.
If this routine does not exist in the RPC/XDR
library, it must be provided.
Providing an undefined data type
allows customization of XDR routines.
.br
.ne 10
.SH OPTIONS
.TP 15
\f3\-a\f1
Generate all files, including sample files.
.TP
\f3\-b\f1
Backward compatibility mode.
Generate transport specific RPC code for older versions
of the operating system.
.IP
Note: in FreeBSD, this compatibility flag is turned on by
default since FreeBSD supports only the older ONC RPC library.
.TP
\f3\-c\f1
Compile into XDR routines.
.TP
\f3\-C\f1
Generate header and stub files which can be used with
.SM ANSI C
compilers. Headers generated with this flag can also be
used with C++ programs.
.TP
\f3\-D\f2name\f3[=\f2value\f3]\f1
Define a symbol
\f2name\f1.
Equivalent to the
\f3#define\f1
directive in the source.
If no
\f2value\f1
is given,
\f2value\f1
is defined as \f31\f1.
This option may be specified more than once.
.TP
\f3\-h\f1
Compile into
\f3C\f1
data-definitions (a header).
\f3\-T\f1
option can be used in conjunction to produce a
header which supports RPC dispatch tables.
.TP
\f3\-i \f2size\f1
Size at which to start generating inline code.
This option is useful for optimization. The default size is 5.
.IP
Note: in order to provide backwards compatibility with the older
.B rpcgen
on the FreeBSD platform, the default is actually 0 (which means
that inline code generation is disabled by default). You must specify
a non-zero value explicitly to override this default.
.TP
\f3\-I\f1
Compile support for
.BR inetd (8)
in the server side stubs.
Such servers can be self-started or can be started by \f3inetd\f1.
When the server is self-started, it backgrounds itself by default.
A special define symbol \f3RPC_SVC_FG\f1 can be used to run the
server process in foreground, or the user may simply compile without
the \f3\-I\f1 option.
.br
.ne 5
.IP
If there are no pending client requests, the
\f3inetd\f1 servers exit after 120 seconds (default).
The default can be changed with the
.B \-K
option.
All the error messages for \f3inetd\f1 servers
are always logged with
.BR syslog (3).
.\" .IP
.\" Note:
.\" this option is supported for backward compatibility only.
.\" By default,
.\" .B rpcgen
.\" generates servers that can be invoked through portmonitors.
.TP
.BI \-K " seconds"
By default, services created using \f3rpcgen\fP and invoked through
port monitors wait \f3120\fP seconds
after servicing a request before exiting.
That interval can be changed using the \f3\-K\fP flag.
To create a server that exits immediately upon servicing a request,
use
.BR "\-K\ 0".
To create a server that never exits, the appropriate argument is
\f3\-K \-1\fP.
.IP
When monitoring for a server,
some portmonitors
.I always
spawn a new process in response to a service request.
If it is known that a server will be used with such a monitor, the
server should exit immediately on completion.
For such servers, \f3rpcgen\fP should be used with \f3\-K 0\fP.
.TP
\f3\-l\f1
Compile into client-side stubs.
.TP
.B \-L
When the servers are started in foreground, use
.BR syslog (3)
to log the server errors instead of printing them on the standard
error.
.TP
\f3\-m\f1
Compile into server-side stubs,
but do not generate a \(lqmain\(rq routine.
This option is useful for doing callback-routines
and for users who need to write their own
\(lqmain\(rq routine to do initialization.
.TP
\f3\-M\f1
Generate multithread-safe stubs for passing arguments and results between
rpcgen generated code and user written code. This option is useful
for users who want to use threads in their code. However, the
.BR rpc_svc_calls (3N)
functions are not yet MT-safe, which means that rpcgen generated server-side
code will not be MT-safe.
.TP
.B \-N
This option allows procedures to have multiple arguments.
It also uses the style of parameter passing that closely resembles C.
So, when passing an argument to a remote procedure, you do not have to
pass a pointer to the argument, but can pass the argument itself.
This behavior is different from the old style of
.B rpcgen
generated code.
To maintain backward compatibility,
this option is not the default.
.TP
\f3\-n \f2netid\f1
Compile into server-side stubs for the transport
specified by
\f2netid\f1.
There should be an entry for
\f2netid\f1
in the
netconfig database.
This option may be specified more than once,
so as to compile a server that serves multiple transports.
.TP
\f3\-o \f2outfile\f1
Specify the name of the output file.
If none is specified,
standard output is used
(\f3\-c\f1,
\f3\-h\f1,
\f3\-l\f1,
\f3\-m\f1,
\f3\-n\f1,
\f3\-s\f1,
\f3\-Sc\f1,
\f3\-Sm\f1,
\f3\-Ss\f1,
and
\f3\-t\f1
modes only).
.TP
\f3\-s \f2nettype\f1
Compile into server-side stubs for all the
transports belonging to the class
\f2nettype\f1.
The supported classes are
\f3netpath\f1,
\f3visible\f1,
\f3circuit_n\f1,
\f3circuit_v\f1,
\f3datagram_n\f1,
\f3datagram_v\f1,
\f3tcp\f1,
and
\f3udp\f1
(see
.BR rpc (3N)
for the meanings associated with these classes).
This option may be specified more than once.
Note:
the transports are chosen at run time and not at compile time.
.TP
\f3\-Sc\f1
Generate sample client code that uses remote procedure calls.
.br
.ne 5
.TP
\f3\-Sm\f1
Generate a sample Makefile which can be used for compiling the
application.
.TP
\f3\-Ss\f1
Generate sample server code that uses remote procedure calls.
.TP
\f3\-t\f1
Compile into RPC dispatch table.
.TP
\f3\-T\f1
Generate the code to support RPC dispatch tables.
.IP
The options
\f3\-c\f1,
\f3\-h\f1,
\f3\-l\f1,
\f3\-m\f1,
\f3\-s\f1,
\f3\-Sc\f1,
\f3\-Sm\f1,
\f3\-Ss\f1,
and
\f3\-t\f1
are used exclusively to generate a particular type of file,
while the options
\f3\-D\f1
and
\f3\-T\f1
are global and can be used with the other options.
.TP
\f3\-Y\f2 pathname\f1
Give the name of the directory where
.B rpcgen
will start looking for the C-preprocessor.
.br
.ne 5
.SH EXAMPLES
The following example:
.LP
.RS
.B example% rpcgen \-T prot.x
.RE
.LP
generates all the five files:
.BR prot.h ,
.BR prot_clnt.c ,
.BR prot_svc.c ,
.B prot_xdr.c
and
.BR prot_tbl.i .
.LP
The following example sends the C data-definitions (header)
to the standard output.
.LP
.RS
.B example% rpcgen \-h prot.x
.RE
.LP
To send the test version of the
.BR -DTEST ,
server side stubs for
all the transport belonging to the class
.B datagram_n
to standard output, use:
.LP
.RS
.B example% rpcgen \-s datagram_n \-DTEST prot.x
.RE
.LP
To create the server side stubs for the transport indicated
by
\f2netid\f1
\f3tcp\f1,
use:
.LP
.RS
.B example% rpcgen \-n tcp \-o prot_svc.c prot.x
.RE
.SH "SEE ALSO"
.BR cc (1),
.BR inetd (8),
.BR syslog (3),
.BR rpc (3),
.\" .BR rpc_svc_calls (3)
.LP
The
.B rpcgen
chapter in the
.TZ NETP
manual.