freebsd-skq/sys/netpfil/ipfw/ip_fw_table.c
Gleb Smirnoff 3b3a8eb937 o Create directory sys/netpfil, where all packet filters should
reside, and move there ipfw(4) and pf(4).

o Move most modified parts of pf out of contrib.

Actual movements:

sys/contrib/pf/net/*.c		-> sys/netpfil/pf/
sys/contrib/pf/net/*.h		-> sys/net/
contrib/pf/pfctl/*.c		-> sbin/pfctl
contrib/pf/pfctl/*.h		-> sbin/pfctl
contrib/pf/pfctl/pfctl.8	-> sbin/pfctl
contrib/pf/pfctl/*.4		-> share/man/man4
contrib/pf/pfctl/*.5		-> share/man/man5

sys/netinet/ipfw		-> sys/netpfil/ipfw

The arguable movement is pf/net/*.h -> sys/net. There are
future plans to refactor pf includes, so I decided not to
break things twice.

Not modified bits of pf left in contrib: authpf, ftp-proxy,
tftp-proxy, pflogd.

The ipfw(4) movement is planned to be merged to stable/9,
to make head and stable match.

Discussed with:		bz, luigi
2012-09-14 11:51:49 +00:00

763 lines
19 KiB
C

/*-
* Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Lookup table support for ipfw
*
* Lookup tables are implemented (at the moment) using the radix
* tree used for routing tables. Tables store key-value entries, where
* keys are network prefixes (addr/masklen), and values are integers.
* As a degenerate case we can interpret keys as 32-bit integers
* (with a /32 mask).
*
* The table is protected by the IPFW lock even for manipulation coming
* from userland, because operations are typically fast.
*/
#include "opt_ipfw.h"
#include "opt_inet.h"
#ifndef INET
#error IPFIREWALL requires INET.
#endif /* INET */
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h> /* ip_fw.h requires IFNAMSIZ */
#include <net/radix.h>
#include <net/route.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/ip_var.h> /* struct ipfw_rule_ref */
#include <netinet/ip_fw.h>
#include <netpfil/ipfw/ip_fw_private.h>
#ifdef MAC
#include <security/mac/mac_framework.h>
#endif
static MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
struct table_entry {
struct radix_node rn[2];
struct sockaddr_in addr, mask;
u_int32_t value;
};
struct xaddr_iface {
uint8_t if_len; /* length of this struct */
uint8_t pad[7]; /* Align name */
char ifname[IF_NAMESIZE]; /* Interface name */
};
struct table_xentry {
struct radix_node rn[2];
union {
#ifdef INET6
struct sockaddr_in6 addr6;
#endif
struct xaddr_iface iface;
} a;
union {
#ifdef INET6
struct sockaddr_in6 mask6;
#endif
struct xaddr_iface ifmask;
} m;
u_int32_t value;
};
/*
* The radix code expects addr and mask to be array of bytes,
* with the first byte being the length of the array. rn_inithead
* is called with the offset in bits of the lookup key within the
* array. If we use a sockaddr_in as the underlying type,
* sin_len is conveniently located at offset 0, sin_addr is at
* offset 4 and normally aligned.
* But for portability, let's avoid assumption and make the code explicit
*/
#define KEY_LEN(v) *((uint8_t *)&(v))
#define KEY_OFS (8*offsetof(struct sockaddr_in, sin_addr))
/*
* Do not require radix to compare more than actual IPv4/IPv6 address
*/
#define KEY_LEN_INET (offsetof(struct sockaddr_in, sin_addr) + sizeof(in_addr_t))
#define KEY_LEN_INET6 (offsetof(struct sockaddr_in6, sin6_addr) + sizeof(struct in6_addr))
#define KEY_LEN_IFACE (offsetof(struct xaddr_iface, ifname))
#define OFF_LEN_INET (8 * offsetof(struct sockaddr_in, sin_addr))
#define OFF_LEN_INET6 (8 * offsetof(struct sockaddr_in6, sin6_addr))
#define OFF_LEN_IFACE (8 * offsetof(struct xaddr_iface, ifname))
static inline void
ipv6_writemask(struct in6_addr *addr6, uint8_t mask)
{
uint32_t *cp;
for (cp = (uint32_t *)addr6; mask >= 32; mask -= 32)
*cp++ = 0xFFFFFFFF;
*cp = htonl(mask ? ~((1 << (32 - mask)) - 1) : 0);
}
int
ipfw_add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, void *paddr,
uint8_t plen, uint8_t mlen, uint8_t type, uint32_t value)
{
struct radix_node_head *rnh, **rnh_ptr;
struct table_entry *ent;
struct table_xentry *xent;
struct radix_node *rn;
in_addr_t addr;
int offset;
void *ent_ptr;
struct sockaddr *addr_ptr, *mask_ptr;
char c;
if (tbl >= V_fw_tables_max)
return (EINVAL);
switch (type) {
case IPFW_TABLE_CIDR:
if (plen == sizeof(in_addr_t)) {
#ifdef INET
/* IPv4 case */
if (mlen > 32)
return (EINVAL);
ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
ent->value = value;
/* Set 'total' structure length */
KEY_LEN(ent->addr) = KEY_LEN_INET;
KEY_LEN(ent->mask) = KEY_LEN_INET;
/* Set offset of IPv4 address in bits */
offset = OFF_LEN_INET;
ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
addr = *((in_addr_t *)paddr);
ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
/* Set pointers */
rnh_ptr = &ch->tables[tbl];
ent_ptr = ent;
addr_ptr = (struct sockaddr *)&ent->addr;
mask_ptr = (struct sockaddr *)&ent->mask;
#endif
#ifdef INET6
} else if (plen == sizeof(struct in6_addr)) {
/* IPv6 case */
if (mlen > 128)
return (EINVAL);
xent = malloc(sizeof(*xent), M_IPFW_TBL, M_WAITOK | M_ZERO);
xent->value = value;
/* Set 'total' structure length */
KEY_LEN(xent->a.addr6) = KEY_LEN_INET6;
KEY_LEN(xent->m.mask6) = KEY_LEN_INET6;
/* Set offset of IPv6 address in bits */
offset = OFF_LEN_INET6;
ipv6_writemask(&xent->m.mask6.sin6_addr, mlen);
memcpy(&xent->a.addr6.sin6_addr, paddr, sizeof(struct in6_addr));
APPLY_MASK(&xent->a.addr6.sin6_addr, &xent->m.mask6.sin6_addr);
/* Set pointers */
rnh_ptr = &ch->xtables[tbl];
ent_ptr = xent;
addr_ptr = (struct sockaddr *)&xent->a.addr6;
mask_ptr = (struct sockaddr *)&xent->m.mask6;
#endif
} else {
/* Unknown CIDR type */
return (EINVAL);
}
break;
case IPFW_TABLE_INTERFACE:
/* Check if string is terminated */
c = ((char *)paddr)[IF_NAMESIZE - 1];
((char *)paddr)[IF_NAMESIZE - 1] = '\0';
if (((mlen = strlen((char *)paddr)) == IF_NAMESIZE - 1) && (c != '\0'))
return (EINVAL);
/* Include last \0 into comparison */
mlen++;
xent = malloc(sizeof(*xent), M_IPFW_TBL, M_WAITOK | M_ZERO);
xent->value = value;
/* Set 'total' structure length */
KEY_LEN(xent->a.iface) = KEY_LEN_IFACE + mlen;
KEY_LEN(xent->m.ifmask) = KEY_LEN_IFACE + mlen;
/* Set offset of interface name in bits */
offset = OFF_LEN_IFACE;
memcpy(xent->a.iface.ifname, paddr, mlen);
/* Assume direct match */
/* TODO: Add interface pattern matching */
#if 0
memset(xent->m.ifmask.ifname, 0xFF, IF_NAMESIZE);
mask_ptr = (struct sockaddr *)&xent->m.ifmask;
#endif
/* Set pointers */
rnh_ptr = &ch->xtables[tbl];
ent_ptr = xent;
addr_ptr = (struct sockaddr *)&xent->a.iface;
mask_ptr = NULL;
break;
default:
return (EINVAL);
}
IPFW_WLOCK(ch);
/* Check if tabletype is valid */
if ((ch->tabletype[tbl] != 0) && (ch->tabletype[tbl] != type)) {
IPFW_WUNLOCK(ch);
free(ent_ptr, M_IPFW_TBL);
return (EINVAL);
}
/* Check if radix tree exists */
if ((rnh = *rnh_ptr) == NULL) {
IPFW_WUNLOCK(ch);
/* Create radix for a new table */
if (!rn_inithead((void **)&rnh, offset)) {
free(ent_ptr, M_IPFW_TBL);
return (ENOMEM);
}
IPFW_WLOCK(ch);
if (*rnh_ptr != NULL) {
/* Tree is already attached by other thread */
rn_detachhead((void **)&rnh);
rnh = *rnh_ptr;
/* Check table type another time */
if (ch->tabletype[tbl] != type) {
IPFW_WUNLOCK(ch);
free(ent_ptr, M_IPFW_TBL);
return (EINVAL);
}
} else {
*rnh_ptr = rnh;
/*
* Set table type. It can be set already
* (if we have IPv6-only table) but setting
* it another time does not hurt
*/
ch->tabletype[tbl] = type;
}
}
rn = rnh->rnh_addaddr(addr_ptr, mask_ptr, rnh, ent_ptr);
IPFW_WUNLOCK(ch);
if (rn == NULL) {
free(ent_ptr, M_IPFW_TBL);
return (EEXIST);
}
return (0);
}
int
ipfw_del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, void *paddr,
uint8_t plen, uint8_t mlen, uint8_t type)
{
struct radix_node_head *rnh, **rnh_ptr;
struct table_entry *ent;
in_addr_t addr;
struct sockaddr_in sa, mask;
struct sockaddr *sa_ptr, *mask_ptr;
char c;
if (tbl >= V_fw_tables_max)
return (EINVAL);
switch (type) {
case IPFW_TABLE_CIDR:
if (plen == sizeof(in_addr_t)) {
/* Set 'total' structure length */
KEY_LEN(sa) = KEY_LEN_INET;
KEY_LEN(mask) = KEY_LEN_INET;
mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
addr = *((in_addr_t *)paddr);
sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
rnh_ptr = &ch->tables[tbl];
sa_ptr = (struct sockaddr *)&sa;
mask_ptr = (struct sockaddr *)&mask;
#ifdef INET6
} else if (plen == sizeof(struct in6_addr)) {
/* IPv6 case */
if (mlen > 128)
return (EINVAL);
struct sockaddr_in6 sa6, mask6;
memset(&sa6, 0, sizeof(struct sockaddr_in6));
memset(&mask6, 0, sizeof(struct sockaddr_in6));
/* Set 'total' structure length */
KEY_LEN(sa6) = KEY_LEN_INET6;
KEY_LEN(mask6) = KEY_LEN_INET6;
ipv6_writemask(&mask6.sin6_addr, mlen);
memcpy(&sa6.sin6_addr, paddr, sizeof(struct in6_addr));
APPLY_MASK(&sa6.sin6_addr, &mask6.sin6_addr);
rnh_ptr = &ch->xtables[tbl];
sa_ptr = (struct sockaddr *)&sa6;
mask_ptr = (struct sockaddr *)&mask6;
#endif
} else {
/* Unknown CIDR type */
return (EINVAL);
}
break;
case IPFW_TABLE_INTERFACE:
/* Check if string is terminated */
c = ((char *)paddr)[IF_NAMESIZE - 1];
((char *)paddr)[IF_NAMESIZE - 1] = '\0';
if (((mlen = strlen((char *)paddr)) == IF_NAMESIZE - 1) && (c != '\0'))
return (EINVAL);
struct xaddr_iface ifname, ifmask;
memset(&ifname, 0, sizeof(ifname));
/* Include last \0 into comparison */
mlen++;
/* Set 'total' structure length */
KEY_LEN(ifname) = KEY_LEN_IFACE + mlen;
KEY_LEN(ifmask) = KEY_LEN_IFACE + mlen;
/* Assume direct match */
/* FIXME: Add interface pattern matching */
#if 0
memset(ifmask.ifname, 0xFF, IF_NAMESIZE);
mask_ptr = (struct sockaddr *)&ifmask;
#endif
mask_ptr = NULL;
memcpy(ifname.ifname, paddr, mlen);
/* Set pointers */
rnh_ptr = &ch->xtables[tbl];
sa_ptr = (struct sockaddr *)&ifname;
break;
default:
return (EINVAL);
}
IPFW_WLOCK(ch);
if ((rnh = *rnh_ptr) == NULL) {
IPFW_WUNLOCK(ch);
return (ESRCH);
}
if (ch->tabletype[tbl] != type) {
IPFW_WUNLOCK(ch);
return (EINVAL);
}
ent = (struct table_entry *)rnh->rnh_deladdr(sa_ptr, mask_ptr, rnh);
IPFW_WUNLOCK(ch);
if (ent == NULL)
return (ESRCH);
free(ent, M_IPFW_TBL);
return (0);
}
static int
flush_table_entry(struct radix_node *rn, void *arg)
{
struct radix_node_head * const rnh = arg;
struct table_entry *ent;
ent = (struct table_entry *)
rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
if (ent != NULL)
free(ent, M_IPFW_TBL);
return (0);
}
int
ipfw_flush_table(struct ip_fw_chain *ch, uint16_t tbl)
{
struct radix_node_head *rnh, *xrnh;
if (tbl >= V_fw_tables_max)
return (EINVAL);
/*
* We free both (IPv4 and extended) radix trees and
* clear table type here to permit table to be reused
* for different type without module reload
*/
IPFW_WLOCK(ch);
/* Set IPv4 table pointer to zero */
if ((rnh = ch->tables[tbl]) != NULL)
ch->tables[tbl] = NULL;
/* Set extended table pointer to zero */
if ((xrnh = ch->xtables[tbl]) != NULL)
ch->xtables[tbl] = NULL;
/* Zero table type */
ch->tabletype[tbl] = 0;
IPFW_WUNLOCK(ch);
if (rnh != NULL) {
rnh->rnh_walktree(rnh, flush_table_entry, rnh);
rn_detachhead((void **)&rnh);
}
if (xrnh != NULL) {
xrnh->rnh_walktree(xrnh, flush_table_entry, xrnh);
rn_detachhead((void **)&xrnh);
}
return (0);
}
void
ipfw_destroy_tables(struct ip_fw_chain *ch)
{
uint16_t tbl;
/* Flush all tables */
for (tbl = 0; tbl < V_fw_tables_max; tbl++)
ipfw_flush_table(ch, tbl);
/* Free pointers itself */
free(ch->tables, M_IPFW);
free(ch->xtables, M_IPFW);
free(ch->tabletype, M_IPFW);
}
int
ipfw_init_tables(struct ip_fw_chain *ch)
{
/* Allocate pointers */
ch->tables = malloc(V_fw_tables_max * sizeof(void *), M_IPFW, M_WAITOK | M_ZERO);
ch->xtables = malloc(V_fw_tables_max * sizeof(void *), M_IPFW, M_WAITOK | M_ZERO);
ch->tabletype = malloc(V_fw_tables_max * sizeof(uint8_t), M_IPFW, M_WAITOK | M_ZERO);
return (0);
}
int
ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables)
{
struct radix_node_head **tables, **xtables, *rnh;
struct radix_node_head **tables_old, **xtables_old;
uint8_t *tabletype, *tabletype_old;
unsigned int ntables_old, tbl;
/* Check new value for validity */
if (ntables > IPFW_TABLES_MAX)
ntables = IPFW_TABLES_MAX;
/* Allocate new pointers */
tables = malloc(ntables * sizeof(void *), M_IPFW, M_WAITOK | M_ZERO);
xtables = malloc(ntables * sizeof(void *), M_IPFW, M_WAITOK | M_ZERO);
tabletype = malloc(ntables * sizeof(uint8_t), M_IPFW, M_WAITOK | M_ZERO);
IPFW_WLOCK(ch);
tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables;
/* Copy old table pointers */
memcpy(tables, ch->tables, sizeof(void *) * tbl);
memcpy(xtables, ch->xtables, sizeof(void *) * tbl);
memcpy(tabletype, ch->tabletype, sizeof(uint8_t) * tbl);
/* Change pointers and number of tables */
tables_old = ch->tables;
xtables_old = ch->xtables;
tabletype_old = ch->tabletype;
ch->tables = tables;
ch->xtables = xtables;
ch->tabletype = tabletype;
ntables_old = V_fw_tables_max;
V_fw_tables_max = ntables;
IPFW_WUNLOCK(ch);
/* Check if we need to destroy radix trees */
if (ntables < ntables_old) {
for (tbl = ntables; tbl < ntables_old; tbl++) {
if ((rnh = tables_old[tbl]) != NULL) {
rnh->rnh_walktree(rnh, flush_table_entry, rnh);
rn_detachhead((void **)&rnh);
}
if ((rnh = xtables_old[tbl]) != NULL) {
rnh->rnh_walktree(rnh, flush_table_entry, rnh);
rn_detachhead((void **)&rnh);
}
}
}
/* Free old pointers */
free(tables_old, M_IPFW);
free(xtables_old, M_IPFW);
free(tabletype_old, M_IPFW);
return (0);
}
int
ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
uint32_t *val)
{
struct radix_node_head *rnh;
struct table_entry *ent;
struct sockaddr_in sa;
if (tbl >= V_fw_tables_max)
return (0);
if ((rnh = ch->tables[tbl]) == NULL)
return (0);
KEY_LEN(sa) = KEY_LEN_INET;
sa.sin_addr.s_addr = addr;
ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
if (ent != NULL) {
*val = ent->value;
return (1);
}
return (0);
}
int
ipfw_lookup_table_extended(struct ip_fw_chain *ch, uint16_t tbl, void *paddr,
uint32_t *val, int type)
{
struct radix_node_head *rnh;
struct table_xentry *xent;
struct sockaddr_in6 sa6;
struct xaddr_iface iface;
if (tbl >= V_fw_tables_max)
return (0);
if ((rnh = ch->xtables[tbl]) == NULL)
return (0);
switch (type) {
case IPFW_TABLE_CIDR:
KEY_LEN(sa6) = KEY_LEN_INET6;
memcpy(&sa6.sin6_addr, paddr, sizeof(struct in6_addr));
xent = (struct table_xentry *)(rnh->rnh_lookup(&sa6, NULL, rnh));
break;
case IPFW_TABLE_INTERFACE:
KEY_LEN(iface) = KEY_LEN_IFACE +
strlcpy(iface.ifname, (char *)paddr, IF_NAMESIZE) + 1;
/* Assume direct match */
/* FIXME: Add interface pattern matching */
xent = (struct table_xentry *)(rnh->rnh_lookup(&iface, NULL, rnh));
break;
default:
return (0);
}
if (xent != NULL) {
*val = xent->value;
return (1);
}
return (0);
}
static int
count_table_entry(struct radix_node *rn, void *arg)
{
u_int32_t * const cnt = arg;
(*cnt)++;
return (0);
}
int
ipfw_count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
{
struct radix_node_head *rnh;
if (tbl >= V_fw_tables_max)
return (EINVAL);
*cnt = 0;
if ((rnh = ch->tables[tbl]) == NULL)
return (0);
rnh->rnh_walktree(rnh, count_table_entry, cnt);
return (0);
}
static int
dump_table_entry(struct radix_node *rn, void *arg)
{
struct table_entry * const n = (struct table_entry *)rn;
ipfw_table * const tbl = arg;
ipfw_table_entry *ent;
if (tbl->cnt == tbl->size)
return (1);
ent = &tbl->ent[tbl->cnt];
ent->tbl = tbl->tbl;
if (in_nullhost(n->mask.sin_addr))
ent->masklen = 0;
else
ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
ent->addr = n->addr.sin_addr.s_addr;
ent->value = n->value;
tbl->cnt++;
return (0);
}
int
ipfw_dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
{
struct radix_node_head *rnh;
if (tbl->tbl >= V_fw_tables_max)
return (EINVAL);
tbl->cnt = 0;
if ((rnh = ch->tables[tbl->tbl]) == NULL)
return (0);
rnh->rnh_walktree(rnh, dump_table_entry, tbl);
return (0);
}
static int
count_table_xentry(struct radix_node *rn, void *arg)
{
uint32_t * const cnt = arg;
(*cnt) += sizeof(ipfw_table_xentry);
return (0);
}
int
ipfw_count_xtable(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
{
struct radix_node_head *rnh;
if (tbl >= V_fw_tables_max)
return (EINVAL);
*cnt = 0;
if ((rnh = ch->tables[tbl]) != NULL)
rnh->rnh_walktree(rnh, count_table_xentry, cnt);
if ((rnh = ch->xtables[tbl]) != NULL)
rnh->rnh_walktree(rnh, count_table_xentry, cnt);
/* Return zero if table is empty */
if (*cnt > 0)
(*cnt) += sizeof(ipfw_xtable);
return (0);
}
static int
dump_table_xentry_base(struct radix_node *rn, void *arg)
{
struct table_entry * const n = (struct table_entry *)rn;
ipfw_xtable * const tbl = arg;
ipfw_table_xentry *xent;
/* Out of memory, returning */
if (tbl->cnt == tbl->size)
return (1);
xent = &tbl->xent[tbl->cnt];
xent->len = sizeof(ipfw_table_xentry);
xent->tbl = tbl->tbl;
if (in_nullhost(n->mask.sin_addr))
xent->masklen = 0;
else
xent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
/* Save IPv4 address as deprecated IPv6 compatible */
xent->k.addr6.s6_addr32[3] = n->addr.sin_addr.s_addr;
xent->value = n->value;
tbl->cnt++;
return (0);
}
static int
dump_table_xentry_extended(struct radix_node *rn, void *arg)
{
struct table_xentry * const n = (struct table_xentry *)rn;
ipfw_xtable * const tbl = arg;
ipfw_table_xentry *xent;
#ifdef INET6
int i;
uint32_t *v;
#endif
/* Out of memory, returning */
if (tbl->cnt == tbl->size)
return (1);
xent = &tbl->xent[tbl->cnt];
xent->len = sizeof(ipfw_table_xentry);
xent->tbl = tbl->tbl;
switch (tbl->type) {
#ifdef INET6
case IPFW_TABLE_CIDR:
/* Count IPv6 mask */
v = (uint32_t *)&n->m.mask6.sin6_addr;
for (i = 0; i < sizeof(struct in6_addr) / 4; i++, v++)
xent->masklen += bitcount32(*v);
memcpy(&xent->k, &n->a.addr6.sin6_addr, sizeof(struct in6_addr));
break;
#endif
case IPFW_TABLE_INTERFACE:
/* Assume exact mask */
xent->masklen = 8 * IF_NAMESIZE;
memcpy(&xent->k, &n->a.iface.ifname, IF_NAMESIZE);
break;
default:
/* unknown, skip entry */
return (0);
}
xent->value = n->value;
tbl->cnt++;
return (0);
}
int
ipfw_dump_xtable(struct ip_fw_chain *ch, ipfw_xtable *tbl)
{
struct radix_node_head *rnh;
if (tbl->tbl >= V_fw_tables_max)
return (EINVAL);
tbl->cnt = 0;
tbl->type = ch->tabletype[tbl->tbl];
if ((rnh = ch->tables[tbl->tbl]) != NULL)
rnh->rnh_walktree(rnh, dump_table_xentry_base, tbl);
if ((rnh = ch->xtables[tbl->tbl]) != NULL)
rnh->rnh_walktree(rnh, dump_table_xentry_extended, tbl);
return (0);
}
/* end of file */