freebsd-skq/sys/dev/acpica/acpi_hpet.c
Konstantin Belousov fc9134243d acpi_hpet: Add Hygon Dhyana support.
Submitted by:	Pu Wen <puwen@hygon.cn>
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D23555
2020-02-07 22:26:11 +00:00

996 lines
27 KiB
C

/*-
* Copyright (c) 2005 Poul-Henning Kamp
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#if defined(__amd64__)
#define DEV_APIC
#else
#include "opt_apic.h"
#endif
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/timeet.h>
#include <sys/timetc.h>
#include <sys/vdso.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include <dev/acpica/acpi_hpet.h>
#ifdef DEV_APIC
#include "pcib_if.h"
#endif
#define HPET_VENDID_AMD 0x4353
#define HPET_VENDID_AMD2 0x1022
#define HPET_VENDID_HYGON 0x1d94
#define HPET_VENDID_INTEL 0x8086
#define HPET_VENDID_NVIDIA 0x10de
#define HPET_VENDID_SW 0x1166
ACPI_SERIAL_DECL(hpet, "ACPI HPET support");
static devclass_t hpet_devclass;
/* ACPI CA debugging */
#define _COMPONENT ACPI_TIMER
ACPI_MODULE_NAME("HPET")
struct hpet_softc {
device_t dev;
int mem_rid;
int intr_rid;
int irq;
int useirq;
int legacy_route;
int per_cpu;
uint32_t allowed_irqs;
struct resource *mem_res;
struct resource *intr_res;
void *intr_handle;
ACPI_HANDLE handle;
uint32_t acpi_uid;
uint64_t freq;
uint32_t caps;
struct timecounter tc;
struct hpet_timer {
struct eventtimer et;
struct hpet_softc *sc;
int num;
int mode;
#define TIMER_STOPPED 0
#define TIMER_PERIODIC 1
#define TIMER_ONESHOT 2
int intr_rid;
int irq;
int pcpu_cpu;
int pcpu_misrouted;
int pcpu_master;
int pcpu_slaves[MAXCPU];
struct resource *intr_res;
void *intr_handle;
uint32_t caps;
uint32_t vectors;
uint32_t div;
uint32_t next;
char name[8];
} t[32];
int num_timers;
struct cdev *pdev;
int mmap_allow;
int mmap_allow_write;
};
static d_open_t hpet_open;
static d_mmap_t hpet_mmap;
static struct cdevsw hpet_cdevsw = {
.d_version = D_VERSION,
.d_name = "hpet",
.d_open = hpet_open,
.d_mmap = hpet_mmap,
};
static u_int hpet_get_timecount(struct timecounter *tc);
static void hpet_test(struct hpet_softc *sc);
static char *hpet_ids[] = { "PNP0103", NULL };
/* Knob to disable acpi_hpet device */
bool acpi_hpet_disabled = false;
static u_int
hpet_get_timecount(struct timecounter *tc)
{
struct hpet_softc *sc;
sc = tc->tc_priv;
return (bus_read_4(sc->mem_res, HPET_MAIN_COUNTER));
}
uint32_t
hpet_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
{
struct hpet_softc *sc;
sc = tc->tc_priv;
vdso_th->th_algo = VDSO_TH_ALGO_X86_HPET;
vdso_th->th_x86_shift = 0;
vdso_th->th_x86_hpet_idx = device_get_unit(sc->dev);
bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
return (sc->mmap_allow != 0);
}
#ifdef COMPAT_FREEBSD32
uint32_t
hpet_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
struct timecounter *tc)
{
struct hpet_softc *sc;
sc = tc->tc_priv;
vdso_th32->th_algo = VDSO_TH_ALGO_X86_HPET;
vdso_th32->th_x86_shift = 0;
vdso_th32->th_x86_hpet_idx = device_get_unit(sc->dev);
bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
return (sc->mmap_allow != 0);
}
#endif
static void
hpet_enable(struct hpet_softc *sc)
{
uint32_t val;
val = bus_read_4(sc->mem_res, HPET_CONFIG);
if (sc->legacy_route)
val |= HPET_CNF_LEG_RT;
else
val &= ~HPET_CNF_LEG_RT;
val |= HPET_CNF_ENABLE;
bus_write_4(sc->mem_res, HPET_CONFIG, val);
}
static void
hpet_disable(struct hpet_softc *sc)
{
uint32_t val;
val = bus_read_4(sc->mem_res, HPET_CONFIG);
val &= ~HPET_CNF_ENABLE;
bus_write_4(sc->mem_res, HPET_CONFIG, val);
}
static int
hpet_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
{
struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
struct hpet_timer *t;
struct hpet_softc *sc = mt->sc;
uint32_t fdiv, now;
t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
if (period != 0) {
t->mode = TIMER_PERIODIC;
t->div = (sc->freq * period) >> 32;
} else {
t->mode = TIMER_ONESHOT;
t->div = 0;
}
if (first != 0)
fdiv = (sc->freq * first) >> 32;
else
fdiv = t->div;
if (t->irq < 0)
bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
t->caps |= HPET_TCNF_INT_ENB;
now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
restart:
t->next = now + fdiv;
if (t->mode == TIMER_PERIODIC && (t->caps & HPET_TCAP_PER_INT)) {
t->caps |= HPET_TCNF_TYPE;
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
t->caps | HPET_TCNF_VAL_SET);
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->div);
} else {
t->caps &= ~HPET_TCNF_TYPE;
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
t->caps);
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
}
now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
if ((int32_t)(now - t->next + HPET_MIN_CYCLES) >= 0) {
fdiv *= 2;
goto restart;
}
return (0);
}
static int
hpet_stop(struct eventtimer *et)
{
struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
struct hpet_timer *t;
struct hpet_softc *sc = mt->sc;
t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
t->mode = TIMER_STOPPED;
t->caps &= ~(HPET_TCNF_INT_ENB | HPET_TCNF_TYPE);
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
return (0);
}
static int
hpet_intr_single(void *arg)
{
struct hpet_timer *t = (struct hpet_timer *)arg;
struct hpet_timer *mt;
struct hpet_softc *sc = t->sc;
uint32_t now;
if (t->mode == TIMER_STOPPED)
return (FILTER_STRAY);
/* Check that per-CPU timer interrupt reached right CPU. */
if (t->pcpu_cpu >= 0 && t->pcpu_cpu != curcpu) {
if ((++t->pcpu_misrouted) % 32 == 0) {
printf("HPET interrupt routed to the wrong CPU"
" (timer %d CPU %d -> %d)!\n",
t->num, t->pcpu_cpu, curcpu);
}
/*
* Reload timer, hoping that next time may be more lucky
* (system will manage proper interrupt binding).
*/
if ((t->mode == TIMER_PERIODIC &&
(t->caps & HPET_TCAP_PER_INT) == 0) ||
t->mode == TIMER_ONESHOT) {
t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER) +
sc->freq / 8;
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
}
return (FILTER_HANDLED);
}
if (t->mode == TIMER_PERIODIC &&
(t->caps & HPET_TCAP_PER_INT) == 0) {
t->next += t->div;
now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
if ((int32_t)((now + t->div / 2) - t->next) > 0)
t->next = now + t->div / 2;
bus_write_4(sc->mem_res,
HPET_TIMER_COMPARATOR(t->num), t->next);
} else if (t->mode == TIMER_ONESHOT)
t->mode = TIMER_STOPPED;
mt = (t->pcpu_master < 0) ? t : &sc->t[t->pcpu_master];
if (mt->et.et_active)
mt->et.et_event_cb(&mt->et, mt->et.et_arg);
return (FILTER_HANDLED);
}
static int
hpet_intr(void *arg)
{
struct hpet_softc *sc = (struct hpet_softc *)arg;
int i;
uint32_t val;
val = bus_read_4(sc->mem_res, HPET_ISR);
if (val) {
bus_write_4(sc->mem_res, HPET_ISR, val);
val &= sc->useirq;
for (i = 0; i < sc->num_timers; i++) {
if ((val & (1 << i)) == 0)
continue;
hpet_intr_single(&sc->t[i]);
}
return (FILTER_HANDLED);
}
return (FILTER_STRAY);
}
uint32_t
hpet_get_uid(device_t dev)
{
struct hpet_softc *sc;
sc = device_get_softc(dev);
return (sc->acpi_uid);
}
static ACPI_STATUS
hpet_find(ACPI_HANDLE handle, UINT32 level, void *context,
void **status)
{
char **ids;
uint32_t id = (uint32_t)(uintptr_t)context;
uint32_t uid = 0;
for (ids = hpet_ids; *ids != NULL; ids++) {
if (acpi_MatchHid(handle, *ids))
break;
}
if (*ids == NULL)
return (AE_OK);
if (ACPI_FAILURE(acpi_GetInteger(handle, "_UID", &uid)) ||
id == uid)
*status = acpi_get_device(handle);
return (AE_OK);
}
/*
* Find an existing IRQ resource that matches the requested IRQ range
* and return its RID. If one is not found, use a new RID.
*/
static int
hpet_find_irq_rid(device_t dev, u_long start, u_long end)
{
rman_res_t irq;
int error, rid;
for (rid = 0;; rid++) {
error = bus_get_resource(dev, SYS_RES_IRQ, rid, &irq, NULL);
if (error != 0 || (start <= irq && irq <= end))
return (rid);
}
}
static int
hpet_open(struct cdev *cdev, int oflags, int devtype, struct thread *td)
{
struct hpet_softc *sc;
sc = cdev->si_drv1;
if (!sc->mmap_allow)
return (EPERM);
else
return (0);
}
static int
hpet_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
int nprot, vm_memattr_t *memattr)
{
struct hpet_softc *sc;
sc = cdev->si_drv1;
if (offset >= rman_get_size(sc->mem_res))
return (EINVAL);
if (!sc->mmap_allow_write && (nprot & PROT_WRITE))
return (EPERM);
*paddr = rman_get_start(sc->mem_res) + offset;
*memattr = VM_MEMATTR_UNCACHEABLE;
return (0);
}
/* Discover the HPET via the ACPI table of the same name. */
static void
hpet_identify(driver_t *driver, device_t parent)
{
ACPI_TABLE_HPET *hpet;
ACPI_STATUS status;
device_t child;
int i;
/* Only one HPET device can be added. */
if (devclass_get_device(hpet_devclass, 0))
return;
for (i = 1; ; i++) {
/* Search for HPET table. */
status = AcpiGetTable(ACPI_SIG_HPET, i, (ACPI_TABLE_HEADER **)&hpet);
if (ACPI_FAILURE(status))
return;
/* Search for HPET device with same ID. */
child = NULL;
AcpiWalkNamespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
100, hpet_find, NULL, (void *)(uintptr_t)hpet->Sequence,
(void *)&child);
/* If found - let it be probed in normal way. */
if (child) {
if (bus_get_resource(child, SYS_RES_MEMORY, 0,
NULL, NULL) != 0)
bus_set_resource(child, SYS_RES_MEMORY, 0,
hpet->Address.Address, HPET_MEM_WIDTH);
continue;
}
/* If not - create it from table info. */
child = BUS_ADD_CHILD(parent, 2, "hpet", 0);
if (child == NULL) {
printf("%s: can't add child\n", __func__);
continue;
}
bus_set_resource(child, SYS_RES_MEMORY, 0, hpet->Address.Address,
HPET_MEM_WIDTH);
}
}
static int
hpet_probe(device_t dev)
{
int rv;
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
if (acpi_disabled("hpet") || acpi_hpet_disabled)
return (ENXIO);
if (acpi_get_handle(dev) != NULL)
rv = ACPI_ID_PROBE(device_get_parent(dev), dev, hpet_ids, NULL);
else
rv = 0;
if (rv <= 0)
device_set_desc(dev, "High Precision Event Timer");
return (rv);
}
static int
hpet_attach(device_t dev)
{
struct hpet_softc *sc;
struct hpet_timer *t;
struct make_dev_args mda;
int i, j, num_msi, num_timers, num_percpu_et, num_percpu_t, cur_cpu;
int pcpu_master, error;
static int maxhpetet = 0;
uint32_t val, val2, cvectors, dvectors;
uint16_t vendor, rev;
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
sc = device_get_softc(dev);
sc->dev = dev;
sc->handle = acpi_get_handle(dev);
sc->mem_rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem_res == NULL)
return (ENOMEM);
/* Validate that we can access the whole region. */
if (rman_get_size(sc->mem_res) < HPET_MEM_WIDTH) {
device_printf(dev, "memory region width %jd too small\n",
rman_get_size(sc->mem_res));
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
return (ENXIO);
}
/* Be sure timer is enabled. */
hpet_enable(sc);
/* Read basic statistics about the timer. */
val = bus_read_4(sc->mem_res, HPET_PERIOD);
if (val == 0) {
device_printf(dev, "invalid period\n");
hpet_disable(sc);
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
return (ENXIO);
}
sc->freq = (1000000000000000LL + val / 2) / val;
sc->caps = bus_read_4(sc->mem_res, HPET_CAPABILITIES);
vendor = (sc->caps & HPET_CAP_VENDOR_ID) >> 16;
rev = sc->caps & HPET_CAP_REV_ID;
num_timers = 1 + ((sc->caps & HPET_CAP_NUM_TIM) >> 8);
/*
* ATI/AMD violates IA-PC HPET (High Precision Event Timers)
* Specification and provides an off by one number
* of timers/comparators.
* Additionally, they use unregistered value in VENDOR_ID field.
*/
if (vendor == HPET_VENDID_AMD && rev < 0x10 && num_timers > 0)
num_timers--;
sc->num_timers = num_timers;
if (bootverbose) {
device_printf(dev,
"vendor 0x%x, rev 0x%x, %jdHz%s, %d timers,%s\n",
vendor, rev, sc->freq,
(sc->caps & HPET_CAP_COUNT_SIZE) ? " 64bit" : "",
num_timers,
(sc->caps & HPET_CAP_LEG_RT) ? " legacy route" : "");
}
for (i = 0; i < num_timers; i++) {
t = &sc->t[i];
t->sc = sc;
t->num = i;
t->mode = TIMER_STOPPED;
t->intr_rid = -1;
t->irq = -1;
t->pcpu_cpu = -1;
t->pcpu_misrouted = 0;
t->pcpu_master = -1;
t->caps = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i));
t->vectors = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i) + 4);
if (bootverbose) {
device_printf(dev,
" t%d: irqs 0x%08x (%d)%s%s%s\n", i,
t->vectors, (t->caps & HPET_TCNF_INT_ROUTE) >> 9,
(t->caps & HPET_TCAP_FSB_INT_DEL) ? ", MSI" : "",
(t->caps & HPET_TCAP_SIZE) ? ", 64bit" : "",
(t->caps & HPET_TCAP_PER_INT) ? ", periodic" : "");
}
}
if (testenv("debug.acpi.hpet_test"))
hpet_test(sc);
/*
* Don't attach if the timer never increments. Since the spec
* requires it to be at least 10 MHz, it has to change in 1 us.
*/
val = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
DELAY(1);
val2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
if (val == val2) {
device_printf(dev, "HPET never increments, disabling\n");
hpet_disable(sc);
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
return (ENXIO);
}
/* Announce first HPET as timecounter. */
if (device_get_unit(dev) == 0) {
sc->tc.tc_get_timecount = hpet_get_timecount,
sc->tc.tc_counter_mask = ~0u,
sc->tc.tc_name = "HPET",
sc->tc.tc_quality = 950,
sc->tc.tc_frequency = sc->freq;
sc->tc.tc_priv = sc;
sc->tc.tc_fill_vdso_timehands = hpet_vdso_timehands;
#ifdef COMPAT_FREEBSD32
sc->tc.tc_fill_vdso_timehands32 = hpet_vdso_timehands32;
#endif
tc_init(&sc->tc);
}
/* If not disabled - setup and announce event timers. */
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"clock", &i) == 0 && i == 0)
return (0);
/* Check whether we can and want legacy routing. */
sc->legacy_route = 0;
resource_int_value(device_get_name(dev), device_get_unit(dev),
"legacy_route", &sc->legacy_route);
if ((sc->caps & HPET_CAP_LEG_RT) == 0)
sc->legacy_route = 0;
if (sc->legacy_route) {
sc->t[0].vectors = 0;
sc->t[1].vectors = 0;
}
/* Check what IRQs we want use. */
/* By default allow any PCI IRQs. */
sc->allowed_irqs = 0xffff0000;
/*
* HPETs in AMD chipsets before SB800 have problems with IRQs >= 16
* Lower are also not always working for different reasons.
* SB800 fixed it, but seems do not implements level triggering
* properly, that makes it very unreliable - it freezes after any
* interrupt loss. Avoid legacy IRQs for AMD.
*/
if (vendor == HPET_VENDID_AMD || vendor == HPET_VENDID_AMD2 ||
vendor == HPET_VENDID_HYGON)
sc->allowed_irqs = 0x00000000;
/*
* NVidia MCP5x chipsets have number of unexplained interrupt
* problems. For some reason, using HPET interrupts breaks HDA sound.
*/
if (vendor == HPET_VENDID_NVIDIA && rev <= 0x01)
sc->allowed_irqs = 0x00000000;
/*
* ServerWorks HT1000 reported to have problems with IRQs >= 16.
* Lower IRQs are working, but allowed mask is not set correctly.
* Legacy_route mode works fine.
*/
if (vendor == HPET_VENDID_SW && rev <= 0x01)
sc->allowed_irqs = 0x00000000;
/*
* Neither QEMU nor VirtualBox report supported IRQs correctly.
* The only way to use HPET there is to specify IRQs manually
* and/or use legacy_route. Legacy_route mode works on both.
*/
if (vm_guest)
sc->allowed_irqs = 0x00000000;
/* Let user override. */
resource_int_value(device_get_name(dev), device_get_unit(dev),
"allowed_irqs", &sc->allowed_irqs);
/* Get how much per-CPU timers we should try to provide. */
sc->per_cpu = 1;
resource_int_value(device_get_name(dev), device_get_unit(dev),
"per_cpu", &sc->per_cpu);
num_msi = 0;
sc->useirq = 0;
/* Find IRQ vectors for all timers. */
cvectors = sc->allowed_irqs & 0xffff0000;
dvectors = sc->allowed_irqs & 0x0000ffff;
if (sc->legacy_route)
dvectors &= 0x0000fefe;
for (i = 0; i < num_timers; i++) {
t = &sc->t[i];
if (sc->legacy_route && i < 2)
t->irq = (i == 0) ? 0 : 8;
#ifdef DEV_APIC
else if (t->caps & HPET_TCAP_FSB_INT_DEL) {
if ((j = PCIB_ALLOC_MSIX(
device_get_parent(device_get_parent(dev)), dev,
&t->irq))) {
device_printf(dev,
"Can't allocate interrupt for t%d: %d\n",
i, j);
}
}
#endif
else if (dvectors & t->vectors) {
t->irq = ffs(dvectors & t->vectors) - 1;
dvectors &= ~(1 << t->irq);
}
if (t->irq >= 0) {
t->intr_rid = hpet_find_irq_rid(dev, t->irq, t->irq);
t->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
&t->intr_rid, t->irq, t->irq, 1, RF_ACTIVE);
if (t->intr_res == NULL) {
t->irq = -1;
device_printf(dev,
"Can't map interrupt for t%d.\n", i);
} else if (bus_setup_intr(dev, t->intr_res,
INTR_TYPE_CLK, hpet_intr_single, NULL, t,
&t->intr_handle) != 0) {
t->irq = -1;
device_printf(dev,
"Can't setup interrupt for t%d.\n", i);
} else {
bus_describe_intr(dev, t->intr_res,
t->intr_handle, "t%d", i);
num_msi++;
}
}
if (t->irq < 0 && (cvectors & t->vectors) != 0) {
cvectors &= t->vectors;
sc->useirq |= (1 << i);
}
}
if (sc->legacy_route && sc->t[0].irq < 0 && sc->t[1].irq < 0)
sc->legacy_route = 0;
if (sc->legacy_route)
hpet_enable(sc);
/* Group timers for per-CPU operation. */
num_percpu_et = min(num_msi / mp_ncpus, sc->per_cpu);
num_percpu_t = num_percpu_et * mp_ncpus;
pcpu_master = 0;
cur_cpu = CPU_FIRST();
for (i = 0; i < num_timers; i++) {
t = &sc->t[i];
if (t->irq >= 0 && num_percpu_t > 0) {
if (cur_cpu == CPU_FIRST())
pcpu_master = i;
t->pcpu_cpu = cur_cpu;
t->pcpu_master = pcpu_master;
sc->t[pcpu_master].
pcpu_slaves[cur_cpu] = i;
bus_bind_intr(dev, t->intr_res, cur_cpu);
cur_cpu = CPU_NEXT(cur_cpu);
num_percpu_t--;
} else if (t->irq >= 0)
bus_bind_intr(dev, t->intr_res, CPU_FIRST());
}
bus_write_4(sc->mem_res, HPET_ISR, 0xffffffff);
sc->irq = -1;
/* If at least one timer needs legacy IRQ - set it up. */
if (sc->useirq) {
j = i = fls(cvectors) - 1;
while (j > 0 && (cvectors & (1 << (j - 1))) != 0)
j--;
sc->intr_rid = hpet_find_irq_rid(dev, j, i);
sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
&sc->intr_rid, j, i, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->intr_res == NULL)
device_printf(dev, "Can't map interrupt.\n");
else if (bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
hpet_intr, NULL, sc, &sc->intr_handle) != 0) {
device_printf(dev, "Can't setup interrupt.\n");
} else {
sc->irq = rman_get_start(sc->intr_res);
/* Bind IRQ to BSP to avoid live migration. */
bus_bind_intr(dev, sc->intr_res, CPU_FIRST());
}
}
/* Program and announce event timers. */
for (i = 0; i < num_timers; i++) {
t = &sc->t[i];
t->caps &= ~(HPET_TCNF_FSB_EN | HPET_TCNF_INT_ROUTE);
t->caps &= ~(HPET_TCNF_VAL_SET | HPET_TCNF_INT_ENB);
t->caps &= ~(HPET_TCNF_INT_TYPE);
t->caps |= HPET_TCNF_32MODE;
if (t->irq >= 0 && sc->legacy_route && i < 2) {
/* Legacy route doesn't need more configuration. */
} else
#ifdef DEV_APIC
if ((t->caps & HPET_TCAP_FSB_INT_DEL) && t->irq >= 0) {
uint64_t addr;
uint32_t data;
if (PCIB_MAP_MSI(
device_get_parent(device_get_parent(dev)), dev,
t->irq, &addr, &data) == 0) {
bus_write_4(sc->mem_res,
HPET_TIMER_FSB_ADDR(i), addr);
bus_write_4(sc->mem_res,
HPET_TIMER_FSB_VAL(i), data);
t->caps |= HPET_TCNF_FSB_EN;
} else
t->irq = -2;
} else
#endif
if (t->irq >= 0)
t->caps |= (t->irq << 9);
else if (sc->irq >= 0 && (t->vectors & (1 << sc->irq)))
t->caps |= (sc->irq << 9) | HPET_TCNF_INT_TYPE;
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(i), t->caps);
/* Skip event timers without set up IRQ. */
if (t->irq < 0 &&
(sc->irq < 0 || (t->vectors & (1 << sc->irq)) == 0))
continue;
/* Announce the reset. */
if (maxhpetet == 0)
t->et.et_name = "HPET";
else {
sprintf(t->name, "HPET%d", maxhpetet);
t->et.et_name = t->name;
}
t->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
t->et.et_quality = 450;
if (t->pcpu_master >= 0) {
t->et.et_flags |= ET_FLAGS_PERCPU;
t->et.et_quality += 100;
} else if (mp_ncpus >= 8)
t->et.et_quality -= 100;
if ((t->caps & HPET_TCAP_PER_INT) == 0)
t->et.et_quality -= 10;
t->et.et_frequency = sc->freq;
t->et.et_min_period =
((uint64_t)(HPET_MIN_CYCLES * 2) << 32) / sc->freq;
t->et.et_max_period = (0xfffffffeLLU << 32) / sc->freq;
t->et.et_start = hpet_start;
t->et.et_stop = hpet_stop;
t->et.et_priv = &sc->t[i];
if (t->pcpu_master < 0 || t->pcpu_master == i) {
et_register(&t->et);
maxhpetet++;
}
}
acpi_GetInteger(sc->handle, "_UID", &sc->acpi_uid);
make_dev_args_init(&mda);
mda.mda_devsw = &hpet_cdevsw;
mda.mda_uid = UID_ROOT;
mda.mda_gid = GID_WHEEL;
mda.mda_mode = 0644;
mda.mda_si_drv1 = sc;
error = make_dev_s(&mda, &sc->pdev, "hpet%d", device_get_unit(dev));
if (error == 0) {
sc->mmap_allow = 1;
TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow",
&sc->mmap_allow);
sc->mmap_allow_write = 0;
TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow_write",
&sc->mmap_allow_write);
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "mmap_allow",
CTLFLAG_RW, &sc->mmap_allow, 0,
"Allow userland to memory map HPET");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "mmap_allow_write",
CTLFLAG_RW, &sc->mmap_allow_write, 0,
"Allow userland write to the HPET register space");
} else {
device_printf(dev, "could not create /dev/hpet%d, error %d\n",
device_get_unit(dev), error);
}
return (0);
}
static int
hpet_detach(device_t dev)
{
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
/* XXX Without a tc_remove() function, we can't detach. */
return (EBUSY);
}
static int
hpet_suspend(device_t dev)
{
// struct hpet_softc *sc;
/*
* Disable the timer during suspend. The timer will not lose
* its state in S1 or S2, but we are required to disable
* it.
*/
// sc = device_get_softc(dev);
// hpet_disable(sc);
return (0);
}
static int
hpet_resume(device_t dev)
{
struct hpet_softc *sc;
struct hpet_timer *t;
int i;
/* Re-enable the timer after a resume to keep the clock advancing. */
sc = device_get_softc(dev);
hpet_enable(sc);
/* Restart event timers that were running on suspend. */
for (i = 0; i < sc->num_timers; i++) {
t = &sc->t[i];
#ifdef DEV_APIC
if (t->irq >= 0 && (sc->legacy_route == 0 || i >= 2)) {
uint64_t addr;
uint32_t data;
if (PCIB_MAP_MSI(
device_get_parent(device_get_parent(dev)), dev,
t->irq, &addr, &data) == 0) {
bus_write_4(sc->mem_res,
HPET_TIMER_FSB_ADDR(i), addr);
bus_write_4(sc->mem_res,
HPET_TIMER_FSB_VAL(i), data);
}
}
#endif
if (t->mode == TIMER_STOPPED)
continue;
t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
if (t->mode == TIMER_PERIODIC &&
(t->caps & HPET_TCAP_PER_INT) != 0) {
t->caps |= HPET_TCNF_TYPE;
t->next += t->div;
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
t->caps | HPET_TCNF_VAL_SET);
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
bus_read_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num));
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->div);
} else {
t->next += sc->freq / 1024;
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
t->next);
}
bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
}
return (0);
}
/* Print some basic latency/rate information to assist in debugging. */
static void
hpet_test(struct hpet_softc *sc)
{
int i;
uint32_t u1, u2;
struct bintime b0, b1, b2;
struct timespec ts;
binuptime(&b0);
binuptime(&b0);
binuptime(&b1);
u1 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
for (i = 1; i < 1000; i++)
u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
binuptime(&b2);
u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
bintime_sub(&b2, &b1);
bintime_sub(&b1, &b0);
bintime_sub(&b2, &b1);
bintime2timespec(&b2, &ts);
device_printf(sc->dev, "%ld.%09ld: %u ... %u = %u\n",
(long)ts.tv_sec, ts.tv_nsec, u1, u2, u2 - u1);
device_printf(sc->dev, "time per call: %ld ns\n", ts.tv_nsec / 1000);
}
#ifdef DEV_APIC
static int
hpet_remap_intr(device_t dev, device_t child, u_int irq)
{
struct hpet_softc *sc = device_get_softc(dev);
struct hpet_timer *t;
uint64_t addr;
uint32_t data;
int error, i;
for (i = 0; i < sc->num_timers; i++) {
t = &sc->t[i];
if (t->irq != irq)
continue;
error = PCIB_MAP_MSI(
device_get_parent(device_get_parent(dev)), dev,
irq, &addr, &data);
if (error)
return (error);
hpet_disable(sc); /* Stop timer to avoid interrupt loss. */
bus_write_4(sc->mem_res, HPET_TIMER_FSB_ADDR(i), addr);
bus_write_4(sc->mem_res, HPET_TIMER_FSB_VAL(i), data);
hpet_enable(sc);
return (0);
}
return (ENOENT);
}
#endif
static device_method_t hpet_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, hpet_identify),
DEVMETHOD(device_probe, hpet_probe),
DEVMETHOD(device_attach, hpet_attach),
DEVMETHOD(device_detach, hpet_detach),
DEVMETHOD(device_suspend, hpet_suspend),
DEVMETHOD(device_resume, hpet_resume),
#ifdef DEV_APIC
DEVMETHOD(bus_remap_intr, hpet_remap_intr),
#endif
DEVMETHOD_END
};
static driver_t hpet_driver = {
"hpet",
hpet_methods,
sizeof(struct hpet_softc),
};
DRIVER_MODULE(hpet, acpi, hpet_driver, hpet_devclass, 0, 0);
MODULE_DEPEND(hpet, acpi, 1, 1, 1);