freebsd-skq/sys/dev/nvdimm/nvdimm_spa.c
kib ef94e64770 Initializer error variable in nvdimm_spa_uio().
Several code paths might result in returning uninitialized value.

Reported by:	coverity through cem
CID:	1396315
Sponsored by:	The FreeBSD Foundation
2018-10-23 17:53:35 +00:00

634 lines
16 KiB
C

/*-
* Copyright (c) 2017, 2018 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/devicestat.h>
#include <sys/disk.h>
#include <sys/efi.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rwlock.h>
#include <sys/sglist.h>
#include <sys/uio.h>
#include <sys/uuid.h>
#include <geom/geom.h>
#include <geom/geom_int.h>
#include <machine/vmparam.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <contrib/dev/acpica/include/acuuid.h>
#include <dev/acpica/acpivar.h>
#include <dev/nvdimm/nvdimm_var.h>
struct SPA_mapping *spa_mappings;
int spa_mappings_cnt;
static int
nvdimm_spa_count(void *nfitsubtbl __unused, void *arg)
{
int *cnt;
cnt = arg;
(*cnt)++;
return (0);
}
static struct nvdimm_SPA_uuid_list_elm {
const char *u_name;
const char *u_id_str;
struct uuid u_id;
const bool u_usr_acc;
} nvdimm_SPA_uuid_list[] = {
[SPA_TYPE_VOLATILE_MEMORY] = {
.u_name = "VOLA MEM ",
.u_id_str = UUID_VOLATILE_MEMORY,
.u_usr_acc = true,
},
[SPA_TYPE_PERSISTENT_MEMORY] = {
.u_name = "PERS MEM",
.u_id_str = UUID_PERSISTENT_MEMORY,
.u_usr_acc = true,
},
[SPA_TYPE_CONTROL_REGION] = {
.u_name = "CTRL RG ",
.u_id_str = UUID_CONTROL_REGION,
.u_usr_acc = false,
},
[SPA_TYPE_DATA_REGION] = {
.u_name = "DATA RG ",
.u_id_str = UUID_DATA_REGION,
.u_usr_acc = true,
},
[SPA_TYPE_VOLATILE_VIRTUAL_DISK] = {
.u_name = "VIRT DSK",
.u_id_str = UUID_VOLATILE_VIRTUAL_DISK,
.u_usr_acc = true,
},
[SPA_TYPE_VOLATILE_VIRTUAL_CD] = {
.u_name = "VIRT CD ",
.u_id_str = UUID_VOLATILE_VIRTUAL_CD,
.u_usr_acc = true,
},
[SPA_TYPE_PERSISTENT_VIRTUAL_DISK] = {
.u_name = "PV DSK ",
.u_id_str = UUID_PERSISTENT_VIRTUAL_DISK,
.u_usr_acc = true,
},
[SPA_TYPE_PERSISTENT_VIRTUAL_CD] = {
.u_name = "PV CD ",
.u_id_str = UUID_PERSISTENT_VIRTUAL_CD,
.u_usr_acc = true,
},
};
static vm_memattr_t
nvdimm_spa_memattr(struct SPA_mapping *spa)
{
vm_memattr_t mode;
if ((spa->spa_efi_mem_flags & EFI_MD_ATTR_WB) != 0)
mode = VM_MEMATTR_WRITE_BACK;
else if ((spa->spa_efi_mem_flags & EFI_MD_ATTR_WT) != 0)
mode = VM_MEMATTR_WRITE_THROUGH;
else if ((spa->spa_efi_mem_flags & EFI_MD_ATTR_WC) != 0)
mode = VM_MEMATTR_WRITE_COMBINING;
else if ((spa->spa_efi_mem_flags & EFI_MD_ATTR_WP) != 0)
mode = VM_MEMATTR_WRITE_PROTECTED;
else if ((spa->spa_efi_mem_flags & EFI_MD_ATTR_UC) != 0)
mode = VM_MEMATTR_UNCACHEABLE;
else {
if (bootverbose)
printf("SPA%d mapping attr unsupported\n",
spa->spa_nfit_idx);
mode = VM_MEMATTR_UNCACHEABLE;
}
return (mode);
}
static int
nvdimm_spa_uio(struct SPA_mapping *spa, struct uio *uio)
{
struct vm_page m, *ma;
off_t off;
vm_memattr_t mattr;
int error, n;
error = 0;
if (spa->spa_kva == NULL) {
mattr = nvdimm_spa_memattr(spa);
vm_page_initfake(&m, 0, mattr);
ma = &m;
while (uio->uio_resid > 0) {
if (uio->uio_offset >= spa->spa_len)
break;
off = spa->spa_phys_base + uio->uio_offset;
vm_page_updatefake(&m, trunc_page(off), mattr);
n = PAGE_SIZE;
if (n > uio->uio_resid)
n = uio->uio_resid;
error = uiomove_fromphys(&ma, off & PAGE_MASK, n, uio);
if (error != 0)
break;
}
} else {
while (uio->uio_resid > 0) {
if (uio->uio_offset >= spa->spa_len)
break;
n = INT_MAX;
if (n > uio->uio_resid)
n = uio->uio_resid;
if (uio->uio_offset + n > spa->spa_len)
n = spa->spa_len - uio->uio_offset;
error = uiomove((char *)spa->spa_kva + uio->uio_offset,
n, uio);
if (error != 0)
break;
}
}
return (error);
}
static int
nvdimm_spa_rw(struct cdev *dev, struct uio *uio, int ioflag)
{
return (nvdimm_spa_uio(dev->si_drv1, uio));
}
static int
nvdimm_spa_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
struct SPA_mapping *spa;
int error;
spa = dev->si_drv1;
error = 0;
switch (cmd) {
case DIOCGSECTORSIZE:
*(u_int *)data = DEV_BSIZE;
break;
case DIOCGMEDIASIZE:
*(off_t *)data = spa->spa_len;
break;
default:
error = ENOTTY;
break;
}
return (error);
}
static int
nvdimm_spa_mmap_single(struct cdev *dev, vm_ooffset_t *offset, vm_size_t size,
vm_object_t *objp, int nprot)
{
struct SPA_mapping *spa;
spa = dev->si_drv1;
if (spa->spa_obj == NULL)
return (ENXIO);
if (*offset >= spa->spa_len || *offset + size < *offset ||
*offset + size > spa->spa_len)
return (EINVAL);
vm_object_reference(spa->spa_obj);
*objp = spa->spa_obj;
return (0);
}
static struct cdevsw spa_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_DISK,
.d_name = "nvdimm_spa",
.d_read = nvdimm_spa_rw,
.d_write = nvdimm_spa_rw,
.d_ioctl = nvdimm_spa_ioctl,
.d_mmap_single = nvdimm_spa_mmap_single,
};
static void
nvdimm_spa_g_all_unmapped(struct SPA_mapping *spa, struct bio *bp,
int rw)
{
struct vm_page maa[bp->bio_ma_n];
vm_page_t ma[bp->bio_ma_n];
vm_memattr_t mattr;
int i;
mattr = nvdimm_spa_memattr(spa);
for (i = 0; i < nitems(ma); i++) {
maa[i].flags = 0;
vm_page_initfake(&maa[i], spa->spa_phys_base +
trunc_page(bp->bio_offset) + PAGE_SIZE * i, mattr);
ma[i] = &maa[i];
}
if (rw == BIO_READ)
pmap_copy_pages(ma, bp->bio_offset & PAGE_MASK, bp->bio_ma,
bp->bio_ma_offset, bp->bio_length);
else
pmap_copy_pages(bp->bio_ma, bp->bio_ma_offset, ma,
bp->bio_offset & PAGE_MASK, bp->bio_length);
}
static void
nvdimm_spa_g_thread(void *arg)
{
struct SPA_mapping *spa;
struct bio *bp;
struct uio auio;
struct iovec aiovec;
int error;
spa = arg;
for (;;) {
mtx_lock(&spa->spa_g_mtx);
for (;;) {
bp = bioq_takefirst(&spa->spa_g_queue);
if (bp != NULL)
break;
msleep(&spa->spa_g_queue, &spa->spa_g_mtx, PRIBIO,
"spa_g", 0);
if (!spa->spa_g_proc_run) {
spa->spa_g_proc_exiting = true;
wakeup(&spa->spa_g_queue);
mtx_unlock(&spa->spa_g_mtx);
kproc_exit(0);
}
continue;
}
mtx_unlock(&spa->spa_g_mtx);
if (bp->bio_cmd != BIO_READ && bp->bio_cmd != BIO_WRITE &&
bp->bio_cmd != BIO_FLUSH) {
error = EOPNOTSUPP;
goto completed;
}
error = 0;
if (bp->bio_cmd == BIO_FLUSH) {
if (spa->spa_kva != NULL) {
pmap_large_map_wb(spa->spa_kva, spa->spa_len);
} else {
pmap_flush_cache_phys_range(
(vm_paddr_t)spa->spa_phys_base,
(vm_paddr_t)spa->spa_phys_base +
spa->spa_len, nvdimm_spa_memattr(spa));
}
/*
* XXX flush IMC
*/
goto completed;
}
if ((bp->bio_flags & BIO_UNMAPPED) != 0) {
if (spa->spa_kva != NULL) {
aiovec.iov_base = (char *)spa->spa_kva +
bp->bio_offset;
aiovec.iov_len = bp->bio_length;
auio.uio_iov = &aiovec;
auio.uio_iovcnt = 1;
auio.uio_resid = bp->bio_length;
auio.uio_offset = bp->bio_offset;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = bp->bio_cmd == BIO_READ ?
UIO_WRITE : UIO_READ;
auio.uio_td = curthread;
error = uiomove_fromphys(bp->bio_ma,
bp->bio_ma_offset, bp->bio_length, &auio);
} else {
nvdimm_spa_g_all_unmapped(spa, bp, bp->bio_cmd);
error = 0;
}
} else {
aiovec.iov_base = bp->bio_data;
aiovec.iov_len = bp->bio_length;
auio.uio_iov = &aiovec;
auio.uio_iovcnt = 1;
auio.uio_resid = bp->bio_length;
auio.uio_offset = bp->bio_offset;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = bp->bio_cmd == BIO_READ ? UIO_READ :
UIO_WRITE;
auio.uio_td = curthread;
error = nvdimm_spa_uio(spa, &auio);
}
devstat_end_transaction_bio(spa->spa_g_devstat, bp);
completed:
bp->bio_completed = bp->bio_length;
g_io_deliver(bp, error);
}
}
static void
nvdimm_spa_g_start(struct bio *bp)
{
struct SPA_mapping *spa;
spa = bp->bio_to->geom->softc;
if (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE) {
mtx_lock(&spa->spa_g_stat_mtx);
devstat_start_transaction_bio(spa->spa_g_devstat, bp);
mtx_unlock(&spa->spa_g_stat_mtx);
}
mtx_lock(&spa->spa_g_mtx);
bioq_disksort(&spa->spa_g_queue, bp);
wakeup(&spa->spa_g_queue);
mtx_unlock(&spa->spa_g_mtx);
}
static int
nvdimm_spa_g_access(struct g_provider *pp, int r, int w, int e)
{
return (0);
}
static g_init_t nvdimm_spa_g_init;
static g_fini_t nvdimm_spa_g_fini;
struct g_class nvdimm_spa_g_class = {
.name = "SPA",
.version = G_VERSION,
.start = nvdimm_spa_g_start,
.access = nvdimm_spa_g_access,
.init = nvdimm_spa_g_init,
.fini = nvdimm_spa_g_fini,
};
DECLARE_GEOM_CLASS(nvdimm_spa_g_class, g_spa);
static int
nvdimm_spa_init_one(struct SPA_mapping *spa, ACPI_NFIT_SYSTEM_ADDRESS *nfitaddr,
int spa_type)
{
struct make_dev_args mda;
struct sglist *spa_sg;
int error, error1;
spa->spa_type = spa_type;
spa->spa_domain = ((nfitaddr->Flags & ACPI_NFIT_PROXIMITY_VALID) != 0) ?
nfitaddr->ProximityDomain : -1;
spa->spa_nfit_idx = nfitaddr->RangeIndex;
spa->spa_phys_base = nfitaddr->Address;
spa->spa_len = nfitaddr->Length;
spa->spa_efi_mem_flags = nfitaddr->MemoryMapping;
if (bootverbose) {
printf("NVDIMM SPA%d base %#016jx len %#016jx %s fl %#jx\n",
spa->spa_nfit_idx,
(uintmax_t)spa->spa_phys_base, (uintmax_t)spa->spa_len,
nvdimm_SPA_uuid_list[spa_type].u_name,
spa->spa_efi_mem_flags);
}
if (!nvdimm_SPA_uuid_list[spa_type].u_usr_acc)
return (0);
error1 = pmap_large_map(spa->spa_phys_base, spa->spa_len,
&spa->spa_kva, nvdimm_spa_memattr(spa));
if (error1 != 0) {
printf("NVDIMM SPA%d cannot map into KVA, error %d\n",
spa->spa_nfit_idx, error1);
spa->spa_kva = NULL;
}
spa_sg = sglist_alloc(1, M_WAITOK);
error = sglist_append_phys(spa_sg, spa->spa_phys_base,
spa->spa_len);
if (error == 0) {
spa->spa_obj = vm_pager_allocate(OBJT_SG, spa_sg, spa->spa_len,
VM_PROT_ALL, 0, NULL);
if (spa->spa_obj == NULL) {
printf("NVDIMM SPA%d failed to alloc vm object",
spa->spa_nfit_idx);
sglist_free(spa_sg);
}
} else {
printf("NVDIMM SPA%d failed to init sglist, error %d",
spa->spa_nfit_idx, error);
sglist_free(spa_sg);
}
make_dev_args_init(&mda);
mda.mda_flags = MAKEDEV_WAITOK | MAKEDEV_CHECKNAME;
mda.mda_devsw = &spa_cdevsw;
mda.mda_cr = NULL;
mda.mda_uid = UID_ROOT;
mda.mda_gid = GID_OPERATOR;
mda.mda_mode = 0660;
mda.mda_si_drv1 = spa;
error = make_dev_s(&mda, &spa->spa_dev, "nvdimm_spa%d",
spa->spa_nfit_idx);
if (error != 0) {
printf("NVDIMM SPA%d cannot create devfs node, error %d\n",
spa->spa_nfit_idx, error);
if (error1 == 0)
error1 = error;
}
bioq_init(&spa->spa_g_queue);
mtx_init(&spa->spa_g_mtx, "spag", NULL, MTX_DEF);
mtx_init(&spa->spa_g_stat_mtx, "spagst", NULL, MTX_DEF);
spa->spa_g_proc_run = true;
spa->spa_g_proc_exiting = false;
error = kproc_create(nvdimm_spa_g_thread, spa, &spa->spa_g_proc, 0, 0,
"g_spa%d", spa->spa_nfit_idx);
if (error != 0) {
printf("NVDIMM SPA%d cannot create geom worker, error %d\n",
spa->spa_nfit_idx, error);
if (error1 == 0)
error1 = error;
} else {
g_topology_assert();
spa->spa_g = g_new_geomf(&nvdimm_spa_g_class, "spa%d",
spa->spa_nfit_idx);
spa->spa_g->softc = spa;
spa->spa_p = g_new_providerf(spa->spa_g, "spa%d",
spa->spa_nfit_idx);
spa->spa_p->mediasize = spa->spa_len;
spa->spa_p->sectorsize = DEV_BSIZE;
spa->spa_p->flags |= G_PF_DIRECT_SEND | G_PF_DIRECT_RECEIVE |
G_PF_ACCEPT_UNMAPPED;
g_error_provider(spa->spa_p, 0);
spa->spa_g_devstat = devstat_new_entry("spa", spa->spa_nfit_idx,
DEV_BSIZE, DEVSTAT_ALL_SUPPORTED, DEVSTAT_TYPE_DIRECT,
DEVSTAT_PRIORITY_MAX);
}
return (error1);
}
static void
nvdimm_spa_fini_one(struct SPA_mapping *spa)
{
mtx_lock(&spa->spa_g_mtx);
spa->spa_g_proc_run = false;
wakeup(&spa->spa_g_queue);
while (!spa->spa_g_proc_exiting)
msleep(&spa->spa_g_queue, &spa->spa_g_mtx, PRIBIO, "spa_e", 0);
mtx_unlock(&spa->spa_g_mtx);
if (spa->spa_g != NULL) {
g_topology_lock();
g_wither_geom(spa->spa_g, ENXIO);
g_topology_unlock();
spa->spa_g = NULL;
spa->spa_p = NULL;
}
if (spa->spa_g_devstat != NULL) {
devstat_remove_entry(spa->spa_g_devstat);
spa->spa_g_devstat = NULL;
}
if (spa->spa_dev != NULL) {
destroy_dev(spa->spa_dev);
spa->spa_dev = NULL;
}
vm_object_deallocate(spa->spa_obj);
if (spa->spa_kva != NULL) {
pmap_large_unmap(spa->spa_kva, spa->spa_len);
spa->spa_kva = NULL;
}
mtx_destroy(&spa->spa_g_mtx);
mtx_destroy(&spa->spa_g_stat_mtx);
}
static int
nvdimm_spa_parse(void *nfitsubtbl, void *arg)
{
ACPI_NFIT_SYSTEM_ADDRESS *nfitaddr;
struct SPA_mapping *spa;
int error, *i, j;
i = arg;
spa = &spa_mappings[*i];
nfitaddr = nfitsubtbl;
for (j = 0; j < nitems(nvdimm_SPA_uuid_list); j++) {
/* XXXKIB: is ACPI UUID representation compatible ? */
if (uuidcmp((struct uuid *)&nfitaddr->RangeGuid,
&nvdimm_SPA_uuid_list[j].u_id) != 0)
continue;
error = nvdimm_spa_init_one(spa, nfitaddr, j);
if (error != 0)
nvdimm_spa_fini_one(spa);
break;
}
if (j == nitems(nvdimm_SPA_uuid_list) && bootverbose) {
printf("Unknown SPA UUID %d ", nfitaddr->RangeIndex);
printf_uuid((struct uuid *)&nfitaddr->RangeGuid);
printf("\n");
}
(*i)++;
return (0);
}
static int
nvdimm_spa_init1(ACPI_TABLE_NFIT *nfitbl)
{
struct nvdimm_SPA_uuid_list_elm *sle;
int error, i;
for (i = 0; i < nitems(nvdimm_SPA_uuid_list); i++) {
sle = &nvdimm_SPA_uuid_list[i];
error = parse_uuid(sle->u_id_str, &sle->u_id);
if (error != 0) {
if (bootverbose)
printf("nvdimm_identify: error %d parsing "
"known SPA UUID %d %s\n", error, i,
sle->u_id_str);
return (error);
}
}
error = nvdimm_iterate_nfit(nfitbl, ACPI_NFIT_TYPE_SYSTEM_ADDRESS,
nvdimm_spa_count, &spa_mappings_cnt);
if (error != 0)
return (error);
spa_mappings = malloc(sizeof(struct SPA_mapping) * spa_mappings_cnt,
M_NVDIMM, M_WAITOK | M_ZERO);
i = 0;
error = nvdimm_iterate_nfit(nfitbl, ACPI_NFIT_TYPE_SYSTEM_ADDRESS,
nvdimm_spa_parse, &i);
if (error != 0) {
free(spa_mappings, M_NVDIMM);
spa_mappings = NULL;
return (error);
}
return (0);
}
static void
nvdimm_spa_g_init(struct g_class *mp __unused)
{
ACPI_TABLE_NFIT *nfitbl;
ACPI_STATUS status;
int error;
spa_mappings_cnt = 0;
spa_mappings = NULL;
if (acpi_disabled("nvdimm"))
return;
status = AcpiGetTable(ACPI_SIG_NFIT, 1, (ACPI_TABLE_HEADER **)&nfitbl);
if (ACPI_FAILURE(status)) {
if (bootverbose)
printf("nvdimm_spa_g_init: cannot find NFIT\n");
return;
}
error = nvdimm_spa_init1(nfitbl);
if (error != 0)
printf("nvdimm_spa_g_init: error %d\n", error);
AcpiPutTable(&nfitbl->Header);
}
static void
nvdimm_spa_g_fini(struct g_class *mp __unused)
{
int i;
if (spa_mappings == NULL)
return;
for (i = 0; i < spa_mappings_cnt; i++)
nvdimm_spa_fini_one(&spa_mappings[i]);
free(spa_mappings, M_NVDIMM);
spa_mappings = NULL;
spa_mappings_cnt = 0;
}