Jim Harris 3e0a9f1ff2 Fix/add support for SCSI UNMAP to ATA DSM translation.
This addresses kernel panic observed when sending SCSI UNMAP
commands to SATA disks attached to isci(4).

1) Flesh out callback routines to allocate/free buffers needed for
   translating SCSI UNMAP data to ATA DSM data.
2) Add controller-level pool for storing buffers previously allocated
   for UNMAP translation, to lessen chance of no buffer available
   under memory pressure.
3) Ensure driver properly handles case where buffer pool is empty
   and contigmalloc returns NULL.

Sponsored by: Intel
Reported by: Maksim Yevmenkin <max at netflix dot com>
Discussed with:  scottl
MFC after: 3 days
2012-08-21 22:28:14 +00:00

663 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/isci/isci.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <cam/cam_periph.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/isci/scil/scic_logger.h>
#include <dev/isci/scil/scic_library.h>
#include <dev/isci/scil/scic_user_callback.h>
#include <dev/isci/scil/scif_controller.h>
#include <dev/isci/scil/scif_library.h>
#include <dev/isci/scil/scif_logger.h>
#include <dev/isci/scil/scif_user_callback.h>
MALLOC_DEFINE(M_ISCI, "isci", "isci driver memory allocations");
struct isci_softc *g_isci;
uint32_t g_isci_debug_level = 0;
static int isci_probe(device_t);
static int isci_attach(device_t);
static int isci_detach(device_t);
int isci_initialize(struct isci_softc *isci);
void isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg,
int nseg, int error);
static devclass_t isci_devclass;
static device_method_t isci_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, isci_probe),
DEVMETHOD(device_attach, isci_attach),
DEVMETHOD(device_detach, isci_detach),
{ 0, 0 }
};
static driver_t isci_pci_driver = {
"isci",
isci_pci_methods,
sizeof(struct isci_softc),
};
DRIVER_MODULE(isci, pci, isci_pci_driver, isci_devclass, 0, 0);
static struct _pcsid
{
u_int32_t type;
const char *desc;
} pci_ids[] = {
{ 0x1d608086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d618086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
{ 0x1d628086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d638086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d648086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d658086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d668086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d678086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d688086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d698086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d6a8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
{ 0x1d6b8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
{ 0x1d6c8086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d6d8086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d6e8086, "Intel(R) C600 Series Chipset SAS Controller" },
{ 0x1d6f8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
{ 0x00000000, NULL }
};
static int
isci_probe (device_t device)
{
u_int32_t type = pci_get_devid(device);
struct _pcsid *ep = pci_ids;
while (ep->type && ep->type != type)
++ep;
if (ep->desc)
{
device_set_desc(device, ep->desc);
return (BUS_PROBE_DEFAULT);
}
else
return (ENXIO);
}
static int
isci_allocate_pci_memory(struct isci_softc *isci)
{
int i;
for (i = 0; i < ISCI_NUM_PCI_BARS; i++)
{
struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i];
pci_bar->resource_id = PCIR_BAR(i*2);
pci_bar->resource = bus_alloc_resource(isci->device,
SYS_RES_MEMORY, &pci_bar->resource_id, 0, ~0, 1,
RF_ACTIVE);
if(pci_bar->resource == NULL)
isci_log_message(0, "ISCI",
"unable to allocate pci resource\n");
else {
pci_bar->bus_tag = rman_get_bustag(pci_bar->resource);
pci_bar->bus_handle =
rman_get_bushandle(pci_bar->resource);
}
}
return (0);
}
static int
isci_attach(device_t device)
{
int error;
struct isci_softc *isci = DEVICE2SOFTC(device);
g_isci = isci;
isci->device = device;
isci_allocate_pci_memory(isci);
error = isci_initialize(isci);
if (error)
{
isci_detach(device);
return (error);
}
isci_interrupt_setup(isci);
isci_sysctl_initialize(isci);
return (0);
}
static int
isci_detach(device_t device)
{
struct isci_softc *isci = DEVICE2SOFTC(device);
int i;
for (i = 0; i < isci->controller_count; i++) {
struct ISCI_CONTROLLER *controller = &isci->controllers[i];
SCI_STATUS status;
void *unmap_buffer;
if (controller->scif_controller_handle != NULL) {
scic_controller_disable_interrupts(
scif_controller_get_scic_handle(controller->scif_controller_handle));
mtx_lock(&controller->lock);
status = scif_controller_stop(controller->scif_controller_handle, 0);
mtx_unlock(&controller->lock);
while (controller->is_started == TRUE) {
/* Now poll for interrupts until the controller stop complete
* callback is received.
*/
mtx_lock(&controller->lock);
isci_interrupt_poll_handler(controller);
mtx_unlock(&controller->lock);
pause("isci", 1);
}
if(controller->sim != NULL) {
mtx_lock(&controller->lock);
xpt_free_path(controller->path);
xpt_bus_deregister(cam_sim_path(controller->sim));
cam_sim_free(controller->sim, TRUE);
mtx_unlock(&controller->lock);
}
}
if (controller->timer_memory != NULL)
free(controller->timer_memory, M_ISCI);
if (controller->remote_device_memory != NULL)
free(controller->remote_device_memory, M_ISCI);
while (1) {
sci_pool_get(controller->unmap_buffer_pool, unmap_buffer);
if (unmap_buffer == NULL)
break;
contigfree(unmap_buffer, PAGE_SIZE, M_ISCI);
}
}
/* The SCIF controllers have been stopped, so we can now
* free the SCI library memory.
*/
if (isci->sci_library_memory != NULL)
free(isci->sci_library_memory, M_ISCI);
for (i = 0; i < ISCI_NUM_PCI_BARS; i++)
{
struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i];
if (pci_bar->resource != NULL)
bus_release_resource(device, SYS_RES_MEMORY,
pci_bar->resource_id, pci_bar->resource);
}
for (i = 0; i < isci->num_interrupts; i++)
{
struct ISCI_INTERRUPT_INFO *interrupt_info;
interrupt_info = &isci->interrupt_info[i];
if(interrupt_info->tag != NULL)
bus_teardown_intr(device, interrupt_info->res,
interrupt_info->tag);
if(interrupt_info->res != NULL)
bus_release_resource(device, SYS_RES_IRQ,
rman_get_rid(interrupt_info->res),
interrupt_info->res);
pci_release_msi(device);
}
return (0);
}
int
isci_initialize(struct isci_softc *isci)
{
int error;
uint32_t status = 0;
uint32_t library_object_size;
uint32_t verbosity_mask;
uint32_t scic_log_object_mask;
uint32_t scif_log_object_mask;
uint8_t *header_buffer;
library_object_size = scif_library_get_object_size(SCI_MAX_CONTROLLERS);
isci->sci_library_memory =
malloc(library_object_size, M_ISCI, M_NOWAIT | M_ZERO );
isci->sci_library_handle = scif_library_construct(
isci->sci_library_memory, SCI_MAX_CONTROLLERS);
sci_object_set_association( isci->sci_library_handle, (void *)isci);
verbosity_mask = (1<<SCI_LOG_VERBOSITY_ERROR) |
(1<<SCI_LOG_VERBOSITY_WARNING) | (1<<SCI_LOG_VERBOSITY_INFO) |
(1<<SCI_LOG_VERBOSITY_TRACE);
scic_log_object_mask = 0xFFFFFFFF;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_COMPLETION_QUEUE;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_SSP_IO_REQUEST;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_STP_IO_REQUEST;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_SMP_IO_REQUEST;
scic_log_object_mask &= ~SCIC_LOG_OBJECT_CONTROLLER;
scif_log_object_mask = 0xFFFFFFFF;
scif_log_object_mask &= ~SCIF_LOG_OBJECT_CONTROLLER;
scif_log_object_mask &= ~SCIF_LOG_OBJECT_IO_REQUEST;
TUNABLE_INT_FETCH("hw.isci.debug_level", &g_isci_debug_level);
sci_logger_enable(sci_object_get_logger(isci->sci_library_handle),
scif_log_object_mask, verbosity_mask);
sci_logger_enable(sci_object_get_logger(
scif_library_get_scic_handle(isci->sci_library_handle)),
scic_log_object_mask, verbosity_mask);
header_buffer = (uint8_t *)&isci->pci_common_header;
for (uint8_t i = 0; i < sizeof(isci->pci_common_header); i++)
header_buffer[i] = pci_read_config(isci->device, i, 1);
scic_library_set_pci_info(
scif_library_get_scic_handle(isci->sci_library_handle),
&isci->pci_common_header);
isci->oem_parameters_found = FALSE;
isci_get_oem_parameters(isci);
/* trigger interrupt if 32 completions occur before timeout expires */
isci->coalesce_number = 32;
/* trigger interrupt if 2 microseconds elapse after a completion occurs,
* regardless if "coalesce_number" completions have occurred
*/
isci->coalesce_timeout = 2;
isci->controller_count = scic_library_get_pci_device_controller_count(
scif_library_get_scic_handle(isci->sci_library_handle));
for (int index = 0; index < isci->controller_count; index++) {
struct ISCI_CONTROLLER *controller = &isci->controllers[index];
SCI_CONTROLLER_HANDLE_T scif_controller_handle;
controller->index = index;
isci_controller_construct(controller, isci);
scif_controller_handle = controller->scif_controller_handle;
status = isci_controller_initialize(controller);
if(status != SCI_SUCCESS) {
isci_log_message(0, "ISCI",
"isci_controller_initialize FAILED: %x\n",
status);
return (status);
}
error = isci_controller_allocate_memory(controller);
if (error != 0)
return (error);
scif_controller_set_interrupt_coalescence(
scif_controller_handle, isci->coalesce_number,
isci->coalesce_timeout);
}
/* FreeBSD provides us a hook to ensure we get a chance to start
* our controllers and complete initial domain discovery before
* it searches for the boot device. Once we're done, we'll
* disestablish the hook, signaling the kernel that is can proceed
* with the boot process.
*/
isci->config_hook.ich_func = &isci_controller_start;
isci->config_hook.ich_arg = &isci->controllers[0];
if (config_intrhook_establish(&isci->config_hook) != 0)
isci_log_message(0, "ISCI",
"config_intrhook_establish failed!\n");
return (status);
}
void
isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg,
int nseg, int error)
{
struct ISCI_MEMORY *memory = (struct ISCI_MEMORY *)arg;
memory->error = error;
if (nseg != 1 || error != 0)
isci_log_message(0, "ISCI",
"Failed to allocate physically contiguous memory!\n");
else
memory->physical_address = seg->ds_addr;
}
int
isci_allocate_dma_buffer(device_t device, struct ISCI_MEMORY *memory)
{
uint32_t status;
status = bus_dma_tag_create(bus_get_dma_tag(device),
0x40 /* cacheline alignment */, 0x0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, memory->size,
0x1 /* we want physically contiguous */,
memory->size, 0, NULL, NULL, &memory->dma_tag);
if(status == ENOMEM) {
isci_log_message(0, "ISCI", "bus_dma_tag_create failed\n");
return (status);
}
status = bus_dmamem_alloc(memory->dma_tag,
(void **)&memory->virtual_address, BUS_DMA_ZERO, &memory->dma_map);
if(status == ENOMEM)
{
isci_log_message(0, "ISCI", "bus_dmamem_alloc failed\n");
return (status);
}
status = bus_dmamap_load(memory->dma_tag, memory->dma_map,
(void *)memory->virtual_address, memory->size,
isci_allocate_dma_buffer_callback, memory, 0);
if(status == EINVAL)
{
isci_log_message(0, "ISCI", "bus_dmamap_load failed\n");
return (status);
}
return (0);
}
/**
* @brief This callback method asks the user to associate the supplied
* lock with an operating environment specific locking construct.
*
* @param[in] controller This parameter specifies the controller with
* which this lock is to be associated.
* @param[in] lock This parameter specifies the lock for which the
* user should associate an operating environment specific
* locking object.
*
* @see The SCI_LOCK_LEVEL enumeration for more information.
*
* @return none.
*/
void
scif_cb_lock_associate(SCI_CONTROLLER_HANDLE_T controller,
SCI_LOCK_HANDLE_T lock)
{
}
/**
* @brief This callback method asks the user to de-associate the supplied
* lock with an operating environment specific locking construct.
*
* @param[in] controller This parameter specifies the controller with
* which this lock is to be de-associated.
* @param[in] lock This parameter specifies the lock for which the
* user should de-associate an operating environment specific
* locking object.
*
* @see The SCI_LOCK_LEVEL enumeration for more information.
*
* @return none.
*/
void
scif_cb_lock_disassociate(SCI_CONTROLLER_HANDLE_T controller,
SCI_LOCK_HANDLE_T lock)
{
}
/**
* @brief This callback method asks the user to acquire/get the lock.
* This method should pend until the lock has been acquired.
*
* @param[in] controller This parameter specifies the controller with
* which this lock is associated.
* @param[in] lock This parameter specifies the lock to be acquired.
*
* @return none
*/
void
scif_cb_lock_acquire(SCI_CONTROLLER_HANDLE_T controller,
SCI_LOCK_HANDLE_T lock)
{
}
/**
* @brief This callback method asks the user to release a lock.
*
* @param[in] controller This parameter specifies the controller with
* which this lock is associated.
* @param[in] lock This parameter specifies the lock to be released.
*
* @return none
*/
void
scif_cb_lock_release(SCI_CONTROLLER_HANDLE_T controller,
SCI_LOCK_HANDLE_T lock)
{
}
/**
* @brief This callback method creates an OS specific deferred task
* for internal usage. The handler to deferred task is stored by OS
* driver.
*
* @param[in] controller This parameter specifies the controller object
* with which this callback is associated.
*
* @return none
*/
void
scif_cb_start_internal_io_task_create(SCI_CONTROLLER_HANDLE_T controller)
{
}
/**
* @brief This callback method schedules a OS specific deferred task.
*
* @param[in] controller This parameter specifies the controller
* object with which this callback is associated.
* @param[in] start_internal_io_task_routine This parameter specifies the
* sci start_internal_io routine.
* @param[in] context This parameter specifies a handle to a parameter
* that will be passed into the "start_internal_io_task_routine"
* when it is invoked.
*
* @return none
*/
void
scif_cb_start_internal_io_task_schedule(SCI_CONTROLLER_HANDLE_T scif_controller,
FUNCPTR start_internal_io_task_routine, void *context)
{
/** @todo Use FreeBSD tasklet to defer this routine to a later time,
* rather than calling the routine inline.
*/
SCI_START_INTERNAL_IO_ROUTINE sci_start_internal_io_routine =
(SCI_START_INTERNAL_IO_ROUTINE)start_internal_io_task_routine;
sci_start_internal_io_routine(context);
}
/**
* @brief In this method the user must write to PCI memory via access.
* This method is used for access to memory space and IO space.
*
* @param[in] controller The controller for which to read a DWORD.
* @param[in] address This parameter depicts the address into
* which to write.
* @param[out] write_value This parameter depicts the value being written
* into the PCI memory location.
*
* @todo These PCI memory access calls likely needs to be optimized into macros?
*/
void
scic_cb_pci_write_dword(SCI_CONTROLLER_HANDLE_T scic_controller,
void *address, uint32_t write_value)
{
SCI_CONTROLLER_HANDLE_T scif_controller =
(SCI_CONTROLLER_HANDLE_T) sci_object_get_association(scic_controller);
struct ISCI_CONTROLLER *isci_controller =
(struct ISCI_CONTROLLER *) sci_object_get_association(scif_controller);
struct isci_softc *isci = isci_controller->isci;
uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28);
bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF);
bus_space_write_4(isci->pci_bar[bar].bus_tag,
isci->pci_bar[bar].bus_handle, offset, write_value);
}
/**
* @brief In this method the user must read from PCI memory via access.
* This method is used for access to memory space and IO space.
*
* @param[in] controller The controller for which to read a DWORD.
* @param[in] address This parameter depicts the address from
* which to read.
*
* @return The value being returned from the PCI memory location.
*
* @todo This PCI memory access calls likely need to be optimized into macro?
*/
uint32_t
scic_cb_pci_read_dword(SCI_CONTROLLER_HANDLE_T scic_controller, void *address)
{
SCI_CONTROLLER_HANDLE_T scif_controller =
(SCI_CONTROLLER_HANDLE_T)sci_object_get_association(scic_controller);
struct ISCI_CONTROLLER *isci_controller =
(struct ISCI_CONTROLLER *)sci_object_get_association(scif_controller);
struct isci_softc *isci = isci_controller->isci;
uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28);
bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF);
return (bus_space_read_4(isci->pci_bar[bar].bus_tag,
isci->pci_bar[bar].bus_handle, offset));
}
/**
* @brief This method is called when the core requires the OS driver
* to stall execution. This method is utilized during initialization
* or non-performance paths only.
*
* @param[in] microseconds This parameter specifies the number of
* microseconds for which to stall. The operating system driver
* is allowed to round this value up where necessary.
*
* @return none.
*/
void
scic_cb_stall_execution(uint32_t microseconds)
{
DELAY(microseconds);
}
/**
* @brief In this method the user must return the base address register (BAR)
* value for the supplied base address register number.
*
* @param[in] controller The controller for which to retrieve the bar number.
* @param[in] bar_number This parameter depicts the BAR index/number to be read.
*
* @return Return a pointer value indicating the contents of the BAR.
* @retval NULL indicates an invalid BAR index/number was specified.
* @retval All other values indicate a valid VIRTUAL address from the BAR.
*/
void *
scic_cb_pci_get_bar(SCI_CONTROLLER_HANDLE_T controller,
uint16_t bar_number)
{
return ((void *)(POINTER_UINT)((uint32_t)bar_number << 28));
}
/**
* @brief This method informs the SCI Core user that a phy/link became
* ready, but the phy is not allowed in the port. In some
* situations the underlying hardware only allows for certain phy
* to port mappings. If these mappings are violated, then this
* API is invoked.
*
* @param[in] controller This parameter represents the controller which
* contains the port.
* @param[in] port This parameter specifies the SCI port object for which
* the callback is being invoked.
* @param[in] phy This parameter specifies the phy that came ready, but the
* phy can't be a valid member of the port.
*
* @return none
*/
void
scic_cb_port_invalid_link_up(SCI_CONTROLLER_HANDLE_T controller,
SCI_PORT_HANDLE_T port, SCI_PHY_HANDLE_T phy)
{
}