710948de69
world. This should be considered highly experimental. Approved-by: re
1131 lines
40 KiB
C
1131 lines
40 KiB
C
/* $FreeBSD$ */
|
|
/* $NetBSD: rf_dagdegrd.c,v 1.7 2001/01/26 14:06:16 oster Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* rf_dagdegrd.c
|
|
*
|
|
* code for creating degraded read DAGs
|
|
*/
|
|
|
|
#include <dev/raidframe/rf_archs.h>
|
|
#include <dev/raidframe/rf_types.h>
|
|
#include <dev/raidframe/rf_raid.h>
|
|
#include <dev/raidframe/rf_dag.h>
|
|
#include <dev/raidframe/rf_dagutils.h>
|
|
#include <dev/raidframe/rf_dagfuncs.h>
|
|
#include <dev/raidframe/rf_debugMem.h>
|
|
#include <dev/raidframe/rf_memchunk.h>
|
|
#include <dev/raidframe/rf_general.h>
|
|
#include <dev/raidframe/rf_dagdegrd.h>
|
|
|
|
|
|
/******************************************************************************
|
|
*
|
|
* General comments on DAG creation:
|
|
*
|
|
* All DAGs in this file use roll-away error recovery. Each DAG has a single
|
|
* commit node, usually called "Cmt." If an error occurs before the Cmt node
|
|
* is reached, the execution engine will halt forward execution and work
|
|
* backward through the graph, executing the undo functions. Assuming that
|
|
* each node in the graph prior to the Cmt node are undoable and atomic - or -
|
|
* does not make changes to permanent state, the graph will fail atomically.
|
|
* If an error occurs after the Cmt node executes, the engine will roll-forward
|
|
* through the graph, blindly executing nodes until it reaches the end.
|
|
* If a graph reaches the end, it is assumed to have completed successfully.
|
|
*
|
|
* A graph has only 1 Cmt node.
|
|
*
|
|
*/
|
|
|
|
|
|
/******************************************************************************
|
|
*
|
|
* The following wrappers map the standard DAG creation interface to the
|
|
* DAG creation routines. Additionally, these wrappers enable experimentation
|
|
* with new DAG structures by providing an extra level of indirection, allowing
|
|
* the DAG creation routines to be replaced at this single point.
|
|
*/
|
|
|
|
void
|
|
rf_CreateRaidFiveDegradedReadDAG(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_DagHeader_t * dag_h,
|
|
void *bp,
|
|
RF_RaidAccessFlags_t flags,
|
|
RF_AllocListElem_t * allocList)
|
|
{
|
|
rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
|
|
&rf_xorRecoveryFuncs);
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
*
|
|
* DAG creation code begins here
|
|
*/
|
|
|
|
|
|
/******************************************************************************
|
|
* Create a degraded read DAG for RAID level 1
|
|
*
|
|
* Hdr -> Nil -> R(p/s)d -> Commit -> Trm
|
|
*
|
|
* The "Rd" node reads data from the surviving disk in the mirror pair
|
|
* Rpd - read of primary copy
|
|
* Rsd - read of secondary copy
|
|
*
|
|
* Parameters: raidPtr - description of the physical array
|
|
* asmap - logical & physical addresses for this access
|
|
* bp - buffer ptr (for holding write data)
|
|
* flags - general flags (e.g. disk locking)
|
|
* allocList - list of memory allocated in DAG creation
|
|
*****************************************************************************/
|
|
|
|
void
|
|
rf_CreateRaidOneDegradedReadDAG(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_DagHeader_t * dag_h,
|
|
void *bp,
|
|
RF_RaidAccessFlags_t flags,
|
|
RF_AllocListElem_t * allocList)
|
|
{
|
|
RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
|
|
RF_StripeNum_t parityStripeID;
|
|
RF_ReconUnitNum_t which_ru;
|
|
RF_PhysDiskAddr_t *pda;
|
|
int useMirror, i;
|
|
|
|
useMirror = 0;
|
|
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
|
|
asmap->raidAddress, &which_ru);
|
|
if (rf_dagDebug) {
|
|
printf("[Creating RAID level 1 degraded read DAG]\n");
|
|
}
|
|
dag_h->creator = "RaidOneDegradedReadDAG";
|
|
/* alloc the Wnd nodes and the Wmir node */
|
|
if (asmap->numDataFailed == 0)
|
|
useMirror = RF_FALSE;
|
|
else
|
|
useMirror = RF_TRUE;
|
|
|
|
/* total number of nodes = 1 + (block + commit + terminator) */
|
|
RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
|
|
i = 0;
|
|
rdNode = &nodes[i];
|
|
i++;
|
|
blockNode = &nodes[i];
|
|
i++;
|
|
commitNode = &nodes[i];
|
|
i++;
|
|
termNode = &nodes[i];
|
|
i++;
|
|
|
|
/* this dag can not commit until the commit node is reached. errors
|
|
* prior to the commit point imply the dag has failed and must be
|
|
* retried */
|
|
dag_h->numCommitNodes = 1;
|
|
dag_h->numCommits = 0;
|
|
dag_h->numSuccedents = 1;
|
|
|
|
/* initialize the block, commit, and terminator nodes */
|
|
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
|
|
NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
|
|
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
|
|
NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
|
|
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
|
|
NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
|
|
|
|
pda = asmap->physInfo;
|
|
RF_ASSERT(pda != NULL);
|
|
/* parityInfo must describe entire parity unit */
|
|
RF_ASSERT(asmap->parityInfo->next == NULL);
|
|
|
|
/* initialize the data node */
|
|
if (!useMirror) {
|
|
/* read primary copy of data */
|
|
rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
|
|
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
|
|
rdNode->params[0].p = pda;
|
|
rdNode->params[1].p = pda->bufPtr;
|
|
rdNode->params[2].v = parityStripeID;
|
|
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
} else {
|
|
/* read secondary copy of data */
|
|
rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
|
|
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
|
|
rdNode->params[0].p = asmap->parityInfo;
|
|
rdNode->params[1].p = pda->bufPtr;
|
|
rdNode->params[2].v = parityStripeID;
|
|
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
}
|
|
|
|
/* connect header to block node */
|
|
RF_ASSERT(dag_h->numSuccedents == 1);
|
|
RF_ASSERT(blockNode->numAntecedents == 0);
|
|
dag_h->succedents[0] = blockNode;
|
|
|
|
/* connect block node to rdnode */
|
|
RF_ASSERT(blockNode->numSuccedents == 1);
|
|
RF_ASSERT(rdNode->numAntecedents == 1);
|
|
blockNode->succedents[0] = rdNode;
|
|
rdNode->antecedents[0] = blockNode;
|
|
rdNode->antType[0] = rf_control;
|
|
|
|
/* connect rdnode to commit node */
|
|
RF_ASSERT(rdNode->numSuccedents == 1);
|
|
RF_ASSERT(commitNode->numAntecedents == 1);
|
|
rdNode->succedents[0] = commitNode;
|
|
commitNode->antecedents[0] = rdNode;
|
|
commitNode->antType[0] = rf_control;
|
|
|
|
/* connect commit node to terminator */
|
|
RF_ASSERT(commitNode->numSuccedents == 1);
|
|
RF_ASSERT(termNode->numAntecedents == 1);
|
|
RF_ASSERT(termNode->numSuccedents == 0);
|
|
commitNode->succedents[0] = termNode;
|
|
termNode->antecedents[0] = commitNode;
|
|
termNode->antType[0] = rf_control;
|
|
}
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
*
|
|
* creates a DAG to perform a degraded-mode read of data within one stripe.
|
|
* This DAG is as follows:
|
|
*
|
|
* Hdr -> Block -> Rud -> Xor -> Cmt -> T
|
|
* -> Rrd ->
|
|
* -> Rp -->
|
|
*
|
|
* Each R node is a successor of the L node
|
|
* One successor arc from each R node goes to C, and the other to X
|
|
* There is one Rud for each chunk of surviving user data requested by the
|
|
* user, and one Rrd for each chunk of surviving user data _not_ being read by
|
|
* the user
|
|
* R = read, ud = user data, rd = recovery (surviving) data, p = parity
|
|
* X = XOR, C = Commit, T = terminate
|
|
*
|
|
* The block node guarantees a single source node.
|
|
*
|
|
* Note: The target buffer for the XOR node is set to the actual user buffer
|
|
* where the failed data is supposed to end up. This buffer is zero'd by the
|
|
* code here. Thus, if you create a degraded read dag, use it, and then
|
|
* re-use, you have to be sure to zero the target buffer prior to the re-use.
|
|
*
|
|
* The recfunc argument at the end specifies the name and function used for
|
|
* the redundancy
|
|
* recovery function.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
void
|
|
rf_CreateDegradedReadDAG(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_DagHeader_t * dag_h,
|
|
void *bp,
|
|
RF_RaidAccessFlags_t flags,
|
|
RF_AllocListElem_t * allocList,
|
|
RF_RedFuncs_t * recFunc)
|
|
{
|
|
RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
|
|
RF_DagNode_t *commitNode, *rpNode, *termNode;
|
|
int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
|
|
int j, paramNum;
|
|
RF_SectorCount_t sectorsPerSU;
|
|
RF_ReconUnitNum_t which_ru;
|
|
char *overlappingPDAs;/* a temporary array of flags */
|
|
RF_AccessStripeMapHeader_t *new_asm_h[2];
|
|
RF_PhysDiskAddr_t *pda, *parityPDA;
|
|
RF_StripeNum_t parityStripeID;
|
|
RF_PhysDiskAddr_t *failedPDA;
|
|
RF_RaidLayout_t *layoutPtr;
|
|
char *rpBuf;
|
|
|
|
layoutPtr = &(raidPtr->Layout);
|
|
/* failedPDA points to the pda within the asm that targets the failed
|
|
* disk */
|
|
failedPDA = asmap->failedPDAs[0];
|
|
parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
|
|
asmap->raidAddress, &which_ru);
|
|
sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
|
|
|
|
if (rf_dagDebug) {
|
|
printf("[Creating degraded read DAG]\n");
|
|
}
|
|
RF_ASSERT(asmap->numDataFailed == 1);
|
|
dag_h->creator = "DegradedReadDAG";
|
|
|
|
/*
|
|
* generate two ASMs identifying the surviving data we need
|
|
* in order to recover the lost data
|
|
*/
|
|
|
|
/* overlappingPDAs array must be zero'd */
|
|
RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
|
|
rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
|
|
&rpBuf, overlappingPDAs, allocList);
|
|
|
|
/*
|
|
* create all the nodes at once
|
|
*
|
|
* -1 because no access is generated for the failed pda
|
|
*/
|
|
nRudNodes = asmap->numStripeUnitsAccessed - 1;
|
|
nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
|
|
((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
|
|
nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
|
|
* Rrd */
|
|
RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
|
|
allocList);
|
|
i = 0;
|
|
blockNode = &nodes[i];
|
|
i++;
|
|
commitNode = &nodes[i];
|
|
i++;
|
|
xorNode = &nodes[i];
|
|
i++;
|
|
rpNode = &nodes[i];
|
|
i++;
|
|
termNode = &nodes[i];
|
|
i++;
|
|
rudNodes = &nodes[i];
|
|
i += nRudNodes;
|
|
rrdNodes = &nodes[i];
|
|
i += nRrdNodes;
|
|
RF_ASSERT(i == nNodes);
|
|
|
|
/* initialize nodes */
|
|
dag_h->numCommitNodes = 1;
|
|
dag_h->numCommits = 0;
|
|
/* this dag can not commit until the commit node is reached errors
|
|
* prior to the commit point imply the dag has failed */
|
|
dag_h->numSuccedents = 1;
|
|
|
|
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
|
|
NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
|
|
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
|
|
NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
|
|
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
|
|
NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
|
|
rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
|
|
NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
|
|
recFunc->SimpleName, allocList);
|
|
|
|
/* fill in the Rud nodes */
|
|
for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
|
|
if (pda == failedPDA) {
|
|
i--;
|
|
continue;
|
|
}
|
|
rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
|
|
rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
|
|
"Rud", allocList);
|
|
RF_ASSERT(pda);
|
|
rudNodes[i].params[0].p = pda;
|
|
rudNodes[i].params[1].p = pda->bufPtr;
|
|
rudNodes[i].params[2].v = parityStripeID;
|
|
rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
}
|
|
|
|
/* fill in the Rrd nodes */
|
|
i = 0;
|
|
if (new_asm_h[0]) {
|
|
for (pda = new_asm_h[0]->stripeMap->physInfo;
|
|
i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
|
|
i++, pda = pda->next) {
|
|
rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
|
|
rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
|
|
dag_h, "Rrd", allocList);
|
|
RF_ASSERT(pda);
|
|
rrdNodes[i].params[0].p = pda;
|
|
rrdNodes[i].params[1].p = pda->bufPtr;
|
|
rrdNodes[i].params[2].v = parityStripeID;
|
|
rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
}
|
|
}
|
|
if (new_asm_h[1]) {
|
|
for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
|
|
j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
|
|
j++, pda = pda->next) {
|
|
rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
|
|
rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
|
|
dag_h, "Rrd", allocList);
|
|
RF_ASSERT(pda);
|
|
rrdNodes[i + j].params[0].p = pda;
|
|
rrdNodes[i + j].params[1].p = pda->bufPtr;
|
|
rrdNodes[i + j].params[2].v = parityStripeID;
|
|
rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
}
|
|
}
|
|
/* make a PDA for the parity unit */
|
|
RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
|
|
parityPDA->row = asmap->parityInfo->row;
|
|
parityPDA->col = asmap->parityInfo->col;
|
|
parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
|
|
* sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
|
|
parityPDA->numSector = failedPDA->numSector;
|
|
|
|
/* initialize the Rp node */
|
|
rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
|
|
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
|
|
rpNode->params[0].p = parityPDA;
|
|
rpNode->params[1].p = rpBuf;
|
|
rpNode->params[2].v = parityStripeID;
|
|
rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
|
|
/*
|
|
* the last and nastiest step is to assign all
|
|
* the parameters of the Xor node
|
|
*/
|
|
paramNum = 0;
|
|
for (i = 0; i < nRrdNodes; i++) {
|
|
/* all the Rrd nodes need to be xored together */
|
|
xorNode->params[paramNum++] = rrdNodes[i].params[0];
|
|
xorNode->params[paramNum++] = rrdNodes[i].params[1];
|
|
}
|
|
for (i = 0; i < nRudNodes; i++) {
|
|
/* any Rud nodes that overlap the failed access need to be
|
|
* xored in */
|
|
if (overlappingPDAs[i]) {
|
|
RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
|
|
bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
|
|
rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
|
|
xorNode->params[paramNum++].p = pda;
|
|
xorNode->params[paramNum++].p = pda->bufPtr;
|
|
}
|
|
}
|
|
RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
|
|
|
|
/* install parity pda as last set of params to be xor'd */
|
|
xorNode->params[paramNum++].p = parityPDA;
|
|
xorNode->params[paramNum++].p = rpBuf;
|
|
|
|
/*
|
|
* the last 2 params to the recovery xor node are
|
|
* the failed PDA and the raidPtr
|
|
*/
|
|
xorNode->params[paramNum++].p = failedPDA;
|
|
xorNode->params[paramNum++].p = raidPtr;
|
|
RF_ASSERT(paramNum == 2 * nXorBufs + 2);
|
|
|
|
/*
|
|
* The xor node uses results[0] as the target buffer.
|
|
* Set pointer and zero the buffer. In the kernel, this
|
|
* may be a user buffer in which case we have to remap it.
|
|
*/
|
|
xorNode->results[0] = failedPDA->bufPtr;
|
|
RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
|
|
failedPDA->numSector));
|
|
|
|
/* connect nodes to form graph */
|
|
/* connect the header to the block node */
|
|
RF_ASSERT(dag_h->numSuccedents == 1);
|
|
RF_ASSERT(blockNode->numAntecedents == 0);
|
|
dag_h->succedents[0] = blockNode;
|
|
|
|
/* connect the block node to the read nodes */
|
|
RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
|
|
RF_ASSERT(rpNode->numAntecedents == 1);
|
|
blockNode->succedents[0] = rpNode;
|
|
rpNode->antecedents[0] = blockNode;
|
|
rpNode->antType[0] = rf_control;
|
|
for (i = 0; i < nRrdNodes; i++) {
|
|
RF_ASSERT(rrdNodes[i].numSuccedents == 1);
|
|
blockNode->succedents[1 + i] = &rrdNodes[i];
|
|
rrdNodes[i].antecedents[0] = blockNode;
|
|
rrdNodes[i].antType[0] = rf_control;
|
|
}
|
|
for (i = 0; i < nRudNodes; i++) {
|
|
RF_ASSERT(rudNodes[i].numSuccedents == 1);
|
|
blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
|
|
rudNodes[i].antecedents[0] = blockNode;
|
|
rudNodes[i].antType[0] = rf_control;
|
|
}
|
|
|
|
/* connect the read nodes to the xor node */
|
|
RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
|
|
RF_ASSERT(rpNode->numSuccedents == 1);
|
|
rpNode->succedents[0] = xorNode;
|
|
xorNode->antecedents[0] = rpNode;
|
|
xorNode->antType[0] = rf_trueData;
|
|
for (i = 0; i < nRrdNodes; i++) {
|
|
RF_ASSERT(rrdNodes[i].numSuccedents == 1);
|
|
rrdNodes[i].succedents[0] = xorNode;
|
|
xorNode->antecedents[1 + i] = &rrdNodes[i];
|
|
xorNode->antType[1 + i] = rf_trueData;
|
|
}
|
|
for (i = 0; i < nRudNodes; i++) {
|
|
RF_ASSERT(rudNodes[i].numSuccedents == 1);
|
|
rudNodes[i].succedents[0] = xorNode;
|
|
xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
|
|
xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
|
|
}
|
|
|
|
/* connect the xor node to the commit node */
|
|
RF_ASSERT(xorNode->numSuccedents == 1);
|
|
RF_ASSERT(commitNode->numAntecedents == 1);
|
|
xorNode->succedents[0] = commitNode;
|
|
commitNode->antecedents[0] = xorNode;
|
|
commitNode->antType[0] = rf_control;
|
|
|
|
/* connect the termNode to the commit node */
|
|
RF_ASSERT(commitNode->numSuccedents == 1);
|
|
RF_ASSERT(termNode->numAntecedents == 1);
|
|
RF_ASSERT(termNode->numSuccedents == 0);
|
|
commitNode->succedents[0] = termNode;
|
|
termNode->antType[0] = rf_control;
|
|
termNode->antecedents[0] = commitNode;
|
|
}
|
|
|
|
#if (RF_INCLUDE_CHAINDECLUSTER > 0)
|
|
/******************************************************************************
|
|
* Create a degraded read DAG for Chained Declustering
|
|
*
|
|
* Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
|
|
*
|
|
* The "Rd" node reads data from the surviving disk in the mirror pair
|
|
* Rpd - read of primary copy
|
|
* Rsd - read of secondary copy
|
|
*
|
|
* Parameters: raidPtr - description of the physical array
|
|
* asmap - logical & physical addresses for this access
|
|
* bp - buffer ptr (for holding write data)
|
|
* flags - general flags (e.g. disk locking)
|
|
* allocList - list of memory allocated in DAG creation
|
|
*****************************************************************************/
|
|
|
|
void
|
|
rf_CreateRaidCDegradedReadDAG(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_DagHeader_t * dag_h,
|
|
void *bp,
|
|
RF_RaidAccessFlags_t flags,
|
|
RF_AllocListElem_t * allocList)
|
|
{
|
|
RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
|
|
RF_StripeNum_t parityStripeID;
|
|
int useMirror, i, shiftable;
|
|
RF_ReconUnitNum_t which_ru;
|
|
RF_PhysDiskAddr_t *pda;
|
|
|
|
if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
|
|
shiftable = RF_TRUE;
|
|
} else {
|
|
shiftable = RF_FALSE;
|
|
}
|
|
useMirror = 0;
|
|
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
|
|
asmap->raidAddress, &which_ru);
|
|
|
|
if (rf_dagDebug) {
|
|
printf("[Creating RAID C degraded read DAG]\n");
|
|
}
|
|
dag_h->creator = "RaidCDegradedReadDAG";
|
|
/* alloc the Wnd nodes and the Wmir node */
|
|
if (asmap->numDataFailed == 0)
|
|
useMirror = RF_FALSE;
|
|
else
|
|
useMirror = RF_TRUE;
|
|
|
|
/* total number of nodes = 1 + (block + commit + terminator) */
|
|
RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
|
|
i = 0;
|
|
rdNode = &nodes[i];
|
|
i++;
|
|
blockNode = &nodes[i];
|
|
i++;
|
|
commitNode = &nodes[i];
|
|
i++;
|
|
termNode = &nodes[i];
|
|
i++;
|
|
|
|
/*
|
|
* This dag can not commit until the commit node is reached.
|
|
* Errors prior to the commit point imply the dag has failed
|
|
* and must be retried.
|
|
*/
|
|
dag_h->numCommitNodes = 1;
|
|
dag_h->numCommits = 0;
|
|
dag_h->numSuccedents = 1;
|
|
|
|
/* initialize the block, commit, and terminator nodes */
|
|
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
|
|
NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
|
|
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
|
|
NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
|
|
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
|
|
NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
|
|
|
|
pda = asmap->physInfo;
|
|
RF_ASSERT(pda != NULL);
|
|
/* parityInfo must describe entire parity unit */
|
|
RF_ASSERT(asmap->parityInfo->next == NULL);
|
|
|
|
/* initialize the data node */
|
|
if (!useMirror) {
|
|
rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
|
|
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
|
|
if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
|
|
/* shift this read to the next disk in line */
|
|
rdNode->params[0].p = asmap->parityInfo;
|
|
rdNode->params[1].p = pda->bufPtr;
|
|
rdNode->params[2].v = parityStripeID;
|
|
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
} else {
|
|
/* read primary copy */
|
|
rdNode->params[0].p = pda;
|
|
rdNode->params[1].p = pda->bufPtr;
|
|
rdNode->params[2].v = parityStripeID;
|
|
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
}
|
|
} else {
|
|
/* read secondary copy of data */
|
|
rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
|
|
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
|
|
rdNode->params[0].p = asmap->parityInfo;
|
|
rdNode->params[1].p = pda->bufPtr;
|
|
rdNode->params[2].v = parityStripeID;
|
|
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
}
|
|
|
|
/* connect header to block node */
|
|
RF_ASSERT(dag_h->numSuccedents == 1);
|
|
RF_ASSERT(blockNode->numAntecedents == 0);
|
|
dag_h->succedents[0] = blockNode;
|
|
|
|
/* connect block node to rdnode */
|
|
RF_ASSERT(blockNode->numSuccedents == 1);
|
|
RF_ASSERT(rdNode->numAntecedents == 1);
|
|
blockNode->succedents[0] = rdNode;
|
|
rdNode->antecedents[0] = blockNode;
|
|
rdNode->antType[0] = rf_control;
|
|
|
|
/* connect rdnode to commit node */
|
|
RF_ASSERT(rdNode->numSuccedents == 1);
|
|
RF_ASSERT(commitNode->numAntecedents == 1);
|
|
rdNode->succedents[0] = commitNode;
|
|
commitNode->antecedents[0] = rdNode;
|
|
commitNode->antType[0] = rf_control;
|
|
|
|
/* connect commit node to terminator */
|
|
RF_ASSERT(commitNode->numSuccedents == 1);
|
|
RF_ASSERT(termNode->numAntecedents == 1);
|
|
RF_ASSERT(termNode->numSuccedents == 0);
|
|
commitNode->succedents[0] = termNode;
|
|
termNode->antecedents[0] = commitNode;
|
|
termNode->antType[0] = rf_control;
|
|
}
|
|
#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
|
|
|
|
#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
|
|
/*
|
|
* XXX move this elsewhere?
|
|
*/
|
|
void
|
|
rf_DD_GenerateFailedAccessASMs(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_PhysDiskAddr_t ** pdap,
|
|
int *nNodep,
|
|
RF_PhysDiskAddr_t ** pqpdap,
|
|
int *nPQNodep,
|
|
RF_AllocListElem_t * allocList)
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
|
|
int PDAPerDisk, i;
|
|
RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
|
|
int numDataCol = layoutPtr->numDataCol;
|
|
int state;
|
|
RF_SectorNum_t suoff, suend;
|
|
unsigned firstDataCol, napdas, count;
|
|
RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
|
|
RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
|
|
RF_PhysDiskAddr_t *pda_p;
|
|
RF_PhysDiskAddr_t *phys_p;
|
|
RF_RaidAddr_t sosAddr;
|
|
|
|
/* determine how many pda's we will have to generate per unaccess
|
|
* stripe. If there is only one failed data unit, it is one; if two,
|
|
* possibly two, depending wether they overlap. */
|
|
|
|
fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
|
|
fone_end = fone_start + fone->numSector;
|
|
|
|
#define CONS_PDA(if,start,num) \
|
|
pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
|
|
pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
|
|
pda_p->numSector = num; \
|
|
pda_p->next = NULL; \
|
|
RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
|
|
|
|
if (asmap->numDataFailed == 1) {
|
|
PDAPerDisk = 1;
|
|
state = 1;
|
|
RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
|
|
pda_p = *pqpdap;
|
|
/* build p */
|
|
CONS_PDA(parityInfo, fone_start, fone->numSector);
|
|
pda_p->type = RF_PDA_TYPE_PARITY;
|
|
pda_p++;
|
|
/* build q */
|
|
CONS_PDA(qInfo, fone_start, fone->numSector);
|
|
pda_p->type = RF_PDA_TYPE_Q;
|
|
} else {
|
|
ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
|
|
ftwo_end = ftwo_start + ftwo->numSector;
|
|
if (fone->numSector + ftwo->numSector > secPerSU) {
|
|
PDAPerDisk = 1;
|
|
state = 2;
|
|
RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
|
|
pda_p = *pqpdap;
|
|
CONS_PDA(parityInfo, 0, secPerSU);
|
|
pda_p->type = RF_PDA_TYPE_PARITY;
|
|
pda_p++;
|
|
CONS_PDA(qInfo, 0, secPerSU);
|
|
pda_p->type = RF_PDA_TYPE_Q;
|
|
} else {
|
|
PDAPerDisk = 2;
|
|
state = 3;
|
|
/* four of them, fone, then ftwo */
|
|
RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
|
|
pda_p = *pqpdap;
|
|
CONS_PDA(parityInfo, fone_start, fone->numSector);
|
|
pda_p->type = RF_PDA_TYPE_PARITY;
|
|
pda_p++;
|
|
CONS_PDA(qInfo, fone_start, fone->numSector);
|
|
pda_p->type = RF_PDA_TYPE_Q;
|
|
pda_p++;
|
|
CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
|
|
pda_p->type = RF_PDA_TYPE_PARITY;
|
|
pda_p++;
|
|
CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
|
|
pda_p->type = RF_PDA_TYPE_Q;
|
|
}
|
|
}
|
|
/* figure out number of nonaccessed pda */
|
|
napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
|
|
*nPQNodep = PDAPerDisk;
|
|
|
|
/* sweep over the over accessed pda's, figuring out the number of
|
|
* additional pda's to generate. Of course, skip the failed ones */
|
|
|
|
count = 0;
|
|
for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
|
|
if ((pda_p == fone) || (pda_p == ftwo))
|
|
continue;
|
|
suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
|
|
suend = suoff + pda_p->numSector;
|
|
switch (state) {
|
|
case 1: /* one failed PDA to overlap */
|
|
/* if a PDA doesn't contain the failed unit, it can
|
|
* only miss the start or end, not both */
|
|
if ((suoff > fone_start) || (suend < fone_end))
|
|
count++;
|
|
break;
|
|
case 2: /* whole stripe */
|
|
if (suoff) /* leak at begining */
|
|
count++;
|
|
if (suend < numDataCol) /* leak at end */
|
|
count++;
|
|
break;
|
|
case 3: /* two disjoint units */
|
|
if ((suoff > fone_start) || (suend < fone_end))
|
|
count++;
|
|
if ((suoff > ftwo_start) || (suend < ftwo_end))
|
|
count++;
|
|
break;
|
|
default:
|
|
RF_PANIC();
|
|
}
|
|
}
|
|
|
|
napdas += count;
|
|
*nNodep = napdas;
|
|
if (napdas == 0)
|
|
return; /* short circuit */
|
|
|
|
/* allocate up our list of pda's */
|
|
|
|
RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
|
|
*pdap = pda_p;
|
|
|
|
/* linkem together */
|
|
for (i = 0; i < (napdas - 1); i++)
|
|
pda_p[i].next = pda_p + (i + 1);
|
|
|
|
/* march through the one's up to the first accessed disk */
|
|
firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
|
|
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
|
|
for (i = 0; i < firstDataCol; i++) {
|
|
if ((pda_p - (*pdap)) == napdas)
|
|
continue;
|
|
pda_p->type = RF_PDA_TYPE_DATA;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU);
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
/* skip over dead disks */
|
|
if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
|
|
continue;
|
|
switch (state) {
|
|
case 1: /* fone */
|
|
pda_p->numSector = fone->numSector;
|
|
pda_p->raidAddress += fone_start;
|
|
pda_p->startSector += fone_start;
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
break;
|
|
case 2: /* full stripe */
|
|
pda_p->numSector = secPerSU;
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
|
|
break;
|
|
case 3: /* two slabs */
|
|
pda_p->numSector = fone->numSector;
|
|
pda_p->raidAddress += fone_start;
|
|
pda_p->startSector += fone_start;
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
pda_p->type = RF_PDA_TYPE_DATA;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU);
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
pda_p->numSector = ftwo->numSector;
|
|
pda_p->raidAddress += ftwo_start;
|
|
pda_p->startSector += ftwo_start;
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
break;
|
|
default:
|
|
RF_PANIC();
|
|
}
|
|
pda_p++;
|
|
}
|
|
|
|
/* march through the touched stripe units */
|
|
for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
|
|
if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
|
|
continue;
|
|
suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
|
|
suend = suoff + phys_p->numSector;
|
|
switch (state) {
|
|
case 1: /* single buffer */
|
|
if (suoff > fone_start) {
|
|
RF_ASSERT(suend >= fone_end);
|
|
/* The data read starts after the mapped
|
|
* access, snip off the begining */
|
|
pda_p->numSector = suoff - fone_start;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
}
|
|
if (suend < fone_end) {
|
|
RF_ASSERT(suoff <= fone_start);
|
|
/* The data read stops before the end of the
|
|
* failed access, extend */
|
|
pda_p->numSector = fone_end - suend;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
}
|
|
break;
|
|
case 2: /* whole stripe unit */
|
|
RF_ASSERT((suoff == 0) || (suend == secPerSU));
|
|
if (suend < secPerSU) { /* short read, snip from end
|
|
* on */
|
|
pda_p->numSector = secPerSU - suend;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
} else
|
|
if (suoff > 0) { /* short at front */
|
|
pda_p->numSector = suoff;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU);
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
}
|
|
break;
|
|
case 3: /* two nonoverlapping failures */
|
|
if ((suoff > fone_start) || (suend < fone_end)) {
|
|
if (suoff > fone_start) {
|
|
RF_ASSERT(suend >= fone_end);
|
|
/* The data read starts after the
|
|
* mapped access, snip off the
|
|
* begining */
|
|
pda_p->numSector = suoff - fone_start;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
}
|
|
if (suend < fone_end) {
|
|
RF_ASSERT(suoff <= fone_start);
|
|
/* The data read stops before the end
|
|
* of the failed access, extend */
|
|
pda_p->numSector = fone_end - suend;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
}
|
|
}
|
|
if ((suoff > ftwo_start) || (suend < ftwo_end)) {
|
|
if (suoff > ftwo_start) {
|
|
RF_ASSERT(suend >= ftwo_end);
|
|
/* The data read starts after the
|
|
* mapped access, snip off the
|
|
* begining */
|
|
pda_p->numSector = suoff - ftwo_start;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
}
|
|
if (suend < ftwo_end) {
|
|
RF_ASSERT(suoff <= ftwo_start);
|
|
/* The data read stops before the end
|
|
* of the failed access, extend */
|
|
pda_p->numSector = ftwo_end - suend;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
RF_PANIC();
|
|
}
|
|
}
|
|
|
|
/* after the last accessed disk */
|
|
for (; i < numDataCol; i++) {
|
|
if ((pda_p - (*pdap)) == napdas)
|
|
continue;
|
|
pda_p->type = RF_PDA_TYPE_DATA;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU);
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
/* skip over dead disks */
|
|
if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
|
|
continue;
|
|
switch (state) {
|
|
case 1: /* fone */
|
|
pda_p->numSector = fone->numSector;
|
|
pda_p->raidAddress += fone_start;
|
|
pda_p->startSector += fone_start;
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
break;
|
|
case 2: /* full stripe */
|
|
pda_p->numSector = secPerSU;
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
|
|
break;
|
|
case 3: /* two slabs */
|
|
pda_p->numSector = fone->numSector;
|
|
pda_p->raidAddress += fone_start;
|
|
pda_p->startSector += fone_start;
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
pda_p++;
|
|
pda_p->type = RF_PDA_TYPE_DATA;
|
|
pda_p->raidAddress = sosAddr + (i * secPerSU);
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
|
|
pda_p->numSector = ftwo->numSector;
|
|
pda_p->raidAddress += ftwo_start;
|
|
pda_p->startSector += ftwo_start;
|
|
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
|
|
break;
|
|
default:
|
|
RF_PANIC();
|
|
}
|
|
pda_p++;
|
|
}
|
|
|
|
RF_ASSERT(pda_p - *pdap == napdas);
|
|
return;
|
|
}
|
|
#define INIT_DISK_NODE(node,name) \
|
|
rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
|
|
(node)->succedents[0] = unblockNode; \
|
|
(node)->succedents[1] = recoveryNode; \
|
|
(node)->antecedents[0] = blockNode; \
|
|
(node)->antType[0] = rf_control
|
|
|
|
#define DISK_NODE_PARAMS(_node_,_p_) \
|
|
(_node_).params[0].p = _p_ ; \
|
|
(_node_).params[1].p = (_p_)->bufPtr; \
|
|
(_node_).params[2].v = parityStripeID; \
|
|
(_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
|
|
|
|
void
|
|
rf_DoubleDegRead(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_DagHeader_t * dag_h,
|
|
void *bp,
|
|
RF_RaidAccessFlags_t flags,
|
|
RF_AllocListElem_t * allocList,
|
|
char *redundantReadNodeName,
|
|
char *recoveryNodeName,
|
|
int (*recovFunc) (RF_DagNode_t *))
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
|
|
RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
|
|
*unblockNode, *rpNodes, *rqNodes, *termNode;
|
|
RF_PhysDiskAddr_t *pda, *pqPDAs;
|
|
RF_PhysDiskAddr_t *npdas;
|
|
int nNodes, nRrdNodes, nRudNodes, i;
|
|
RF_ReconUnitNum_t which_ru;
|
|
int nReadNodes, nPQNodes;
|
|
RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
|
|
RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
|
|
RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
|
|
|
|
if (rf_dagDebug)
|
|
printf("[Creating Double Degraded Read DAG]\n");
|
|
rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
|
|
|
|
nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
|
|
nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
|
|
nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
|
|
|
|
RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
|
|
i = 0;
|
|
blockNode = &nodes[i];
|
|
i += 1;
|
|
unblockNode = &nodes[i];
|
|
i += 1;
|
|
recoveryNode = &nodes[i];
|
|
i += 1;
|
|
termNode = &nodes[i];
|
|
i += 1;
|
|
rudNodes = &nodes[i];
|
|
i += nRudNodes;
|
|
rrdNodes = &nodes[i];
|
|
i += nRrdNodes;
|
|
rpNodes = &nodes[i];
|
|
i += nPQNodes;
|
|
rqNodes = &nodes[i];
|
|
i += nPQNodes;
|
|
RF_ASSERT(i == nNodes);
|
|
|
|
dag_h->numSuccedents = 1;
|
|
dag_h->succedents[0] = blockNode;
|
|
dag_h->creator = "DoubleDegRead";
|
|
dag_h->numCommits = 0;
|
|
dag_h->numCommitNodes = 1; /* unblock */
|
|
|
|
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
|
|
termNode->antecedents[0] = unblockNode;
|
|
termNode->antType[0] = rf_control;
|
|
termNode->antecedents[1] = recoveryNode;
|
|
termNode->antType[1] = rf_control;
|
|
|
|
/* init the block and unblock nodes */
|
|
/* The block node has all nodes except itself, unblock and recovery as
|
|
* successors. Similarly for predecessors of the unblock. */
|
|
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
|
|
rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
|
|
|
|
for (i = 0; i < nReadNodes; i++) {
|
|
blockNode->succedents[i] = rudNodes + i;
|
|
unblockNode->antecedents[i] = rudNodes + i;
|
|
unblockNode->antType[i] = rf_control;
|
|
}
|
|
unblockNode->succedents[0] = termNode;
|
|
|
|
/* The recovery node has all the reads as predecessors, and the term
|
|
* node as successors. It gets a pda as a param from each of the read
|
|
* nodes plus the raidPtr. For each failed unit is has a result pda. */
|
|
rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
|
|
1, /* succesors */
|
|
nReadNodes, /* preds */
|
|
nReadNodes + 2, /* params */
|
|
asmap->numDataFailed, /* results */
|
|
dag_h, recoveryNodeName, allocList);
|
|
|
|
recoveryNode->succedents[0] = termNode;
|
|
for (i = 0; i < nReadNodes; i++) {
|
|
recoveryNode->antecedents[i] = rudNodes + i;
|
|
recoveryNode->antType[i] = rf_trueData;
|
|
}
|
|
|
|
/* build the read nodes, then come back and fill in recovery params
|
|
* and results */
|
|
pda = asmap->physInfo;
|
|
for (i = 0; i < nRudNodes; pda = pda->next) {
|
|
if ((pda == failedPDA) || (pda == failedPDAtwo))
|
|
continue;
|
|
INIT_DISK_NODE(rudNodes + i, "Rud");
|
|
RF_ASSERT(pda);
|
|
DISK_NODE_PARAMS(rudNodes[i], pda);
|
|
i++;
|
|
}
|
|
|
|
pda = npdas;
|
|
for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
|
|
INIT_DISK_NODE(rrdNodes + i, "Rrd");
|
|
RF_ASSERT(pda);
|
|
DISK_NODE_PARAMS(rrdNodes[i], pda);
|
|
}
|
|
|
|
/* redundancy pdas */
|
|
pda = pqPDAs;
|
|
INIT_DISK_NODE(rpNodes, "Rp");
|
|
RF_ASSERT(pda);
|
|
DISK_NODE_PARAMS(rpNodes[0], pda);
|
|
pda++;
|
|
INIT_DISK_NODE(rqNodes, redundantReadNodeName);
|
|
RF_ASSERT(pda);
|
|
DISK_NODE_PARAMS(rqNodes[0], pda);
|
|
if (nPQNodes == 2) {
|
|
pda++;
|
|
INIT_DISK_NODE(rpNodes + 1, "Rp");
|
|
RF_ASSERT(pda);
|
|
DISK_NODE_PARAMS(rpNodes[1], pda);
|
|
pda++;
|
|
INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
|
|
RF_ASSERT(pda);
|
|
DISK_NODE_PARAMS(rqNodes[1], pda);
|
|
}
|
|
/* fill in recovery node params */
|
|
for (i = 0; i < nReadNodes; i++)
|
|
recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
|
|
recoveryNode->params[i++].p = (void *) raidPtr;
|
|
recoveryNode->params[i++].p = (void *) asmap;
|
|
recoveryNode->results[0] = failedPDA;
|
|
if (asmap->numDataFailed == 2)
|
|
recoveryNode->results[1] = failedPDAtwo;
|
|
|
|
/* zero fill the target data buffers? */
|
|
}
|
|
|
|
#endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
|