freebsd-skq/sys/vm/vm_radix.c
Jeff Roberson 8d6fbbb867 Replace manyinstances of VM_WAIT with blocking page allocation flags
similar to the kernel memory allocator.

This simplifies NUMA allocation because the domain will be known at wait
time and races between failure and sleeping are eliminated.  This also
reduces boilerplate code and simplifies callers.

A wait primitive is supplied for uma zones for similar reasons.  This
eliminates some non-specific VM_WAIT calls in favor of more explicit
sleeps that may be satisfied without new pages.

Reviewed by:	alc, kib, markj
Tested by:	pho
Sponsored by:	Netflix, Dell/EMC Isilon
2017-11-08 02:39:37 +00:00

808 lines
21 KiB
C

/*
* Copyright (c) 2013 EMC Corp.
* Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
* Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Path-compressed radix trie implementation.
* The following code is not generalized into a general purpose library
* because there are way too many parameters embedded that should really
* be decided by the library consumers. At the same time, consumers
* of this code must achieve highest possible performance.
*
* The implementation takes into account the following rationale:
* - Size of the nodes should be as small as possible but still big enough
* to avoid a large maximum depth for the trie. This is a balance
* between the necessity to not wire too much physical memory for the nodes
* and the necessity to avoid too much cache pollution during the trie
* operations.
* - There is not a huge bias toward the number of lookup operations over
* the number of insert and remove operations. This basically implies
* that optimizations supposedly helping one operation but hurting the
* other might be carefully evaluated.
* - On average not many nodes are expected to be fully populated, hence
* level compression may just complicate things.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/vmmeter.h>
#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_page.h>
#include <vm/vm_radix.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
/*
* These widths should allow the pointers to a node's children to fit within
* a single cache line. The extra levels from a narrow width should not be
* a problem thanks to path compression.
*/
#ifdef __LP64__
#define VM_RADIX_WIDTH 4
#else
#define VM_RADIX_WIDTH 3
#endif
#define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH)
#define VM_RADIX_MASK (VM_RADIX_COUNT - 1)
#define VM_RADIX_LIMIT \
(howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
/* Flag bits stored in node pointers. */
#define VM_RADIX_ISLEAF 0x1
#define VM_RADIX_FLAGS 0x1
#define VM_RADIX_PAD VM_RADIX_FLAGS
/* Returns one unit associated with specified level. */
#define VM_RADIX_UNITLEVEL(lev) \
((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
struct vm_radix_node {
vm_pindex_t rn_owner; /* Owner of record. */
uint16_t rn_count; /* Valid children. */
uint16_t rn_clev; /* Current level. */
void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */
};
static uma_zone_t vm_radix_node_zone;
/*
* Allocate a radix node.
*/
static __inline struct vm_radix_node *
vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
{
struct vm_radix_node *rnode;
rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
if (rnode == NULL)
return (NULL);
rnode->rn_owner = owner;
rnode->rn_count = count;
rnode->rn_clev = clevel;
return (rnode);
}
/*
* Free radix node.
*/
static __inline void
vm_radix_node_put(struct vm_radix_node *rnode)
{
uma_zfree(vm_radix_node_zone, rnode);
}
/*
* Return the position in the array for a given level.
*/
static __inline int
vm_radix_slot(vm_pindex_t index, uint16_t level)
{
return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
}
/* Trims the key after the specified level. */
static __inline vm_pindex_t
vm_radix_trimkey(vm_pindex_t index, uint16_t level)
{
vm_pindex_t ret;
ret = index;
if (level > 0) {
ret >>= level * VM_RADIX_WIDTH;
ret <<= level * VM_RADIX_WIDTH;
}
return (ret);
}
/*
* Get the root node for a radix tree.
*/
static __inline struct vm_radix_node *
vm_radix_getroot(struct vm_radix *rtree)
{
return ((struct vm_radix_node *)rtree->rt_root);
}
/*
* Set the root node for a radix tree.
*/
static __inline void
vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
{
rtree->rt_root = (uintptr_t)rnode;
}
/*
* Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
*/
static __inline boolean_t
vm_radix_isleaf(struct vm_radix_node *rnode)
{
return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
}
/*
* Returns the associated page extracted from rnode.
*/
static __inline vm_page_t
vm_radix_topage(struct vm_radix_node *rnode)
{
return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
}
/*
* Adds the page as a child of the provided node.
*/
static __inline void
vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
vm_page_t page)
{
int slot;
slot = vm_radix_slot(index, clev);
rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
}
/*
* Returns the slot where two keys differ.
* It cannot accept 2 equal keys.
*/
static __inline uint16_t
vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
{
uint16_t clev;
KASSERT(index1 != index2, ("%s: passing the same key value %jx",
__func__, (uintmax_t)index1));
index1 ^= index2;
for (clev = VM_RADIX_LIMIT;; clev--)
if (vm_radix_slot(index1, clev) != 0)
return (clev);
}
/*
* Returns TRUE if it can be determined that key does not belong to the
* specified rnode. Otherwise, returns FALSE.
*/
static __inline boolean_t
vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
{
if (rnode->rn_clev < VM_RADIX_LIMIT) {
idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
return (idx != rnode->rn_owner);
}
return (FALSE);
}
/*
* Internal helper for vm_radix_reclaim_allnodes().
* This function is recursive.
*/
static void
vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
{
int slot;
KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
for (slot = 0; rnode->rn_count != 0; slot++) {
if (rnode->rn_child[slot] == NULL)
continue;
if (!vm_radix_isleaf(rnode->rn_child[slot]))
vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
rnode->rn_child[slot] = NULL;
rnode->rn_count--;
}
vm_radix_node_put(rnode);
}
#ifdef INVARIANTS
/*
* Radix node zone destructor.
*/
static void
vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
{
struct vm_radix_node *rnode;
int slot;
rnode = mem;
KASSERT(rnode->rn_count == 0,
("vm_radix_node_put: rnode %p has %d children", rnode,
rnode->rn_count));
for (slot = 0; slot < VM_RADIX_COUNT; slot++)
KASSERT(rnode->rn_child[slot] == NULL,
("vm_radix_node_put: rnode %p has a child", rnode));
}
#endif
#ifndef UMA_MD_SMALL_ALLOC
/*
* Reserve the KVA necessary to satisfy the node allocation.
* This is mandatory in architectures not supporting direct
* mapping as they will need otherwise to carve into the kernel maps for
* every node allocation, resulting into deadlocks for consumers already
* working with kernel maps.
*/
static void
vm_radix_reserve_kva(void *arg __unused)
{
/*
* Calculate the number of reserved nodes, discounting the pages that
* are needed to store them.
*/
if (!uma_zone_reserve_kva(vm_radix_node_zone,
((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
sizeof(struct vm_radix_node))))
panic("%s: unable to reserve KVA", __func__);
}
SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_THIRD,
vm_radix_reserve_kva, NULL);
#endif
/*
* Initialize the UMA slab zone.
*/
void
vm_radix_zinit(void)
{
vm_radix_node_zone = uma_zcreate("RADIX NODE",
sizeof(struct vm_radix_node), NULL,
#ifdef INVARIANTS
vm_radix_node_zone_dtor,
#else
NULL,
#endif
NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
}
/*
* Inserts the key-value pair into the trie.
* Panics if the key already exists.
*/
int
vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
{
vm_pindex_t index, newind;
void **parentp;
struct vm_radix_node *rnode, *tmp;
vm_page_t m;
int slot;
uint16_t clev;
index = page->pindex;
/*
* The owner of record for root is not really important because it
* will never be used.
*/
rnode = vm_radix_getroot(rtree);
if (rnode == NULL) {
rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
return (0);
}
parentp = (void **)&rtree->rt_root;
for (;;) {
if (vm_radix_isleaf(rnode)) {
m = vm_radix_topage(rnode);
if (m->pindex == index)
panic("%s: key %jx is already present",
__func__, (uintmax_t)index);
clev = vm_radix_keydiff(m->pindex, index);
tmp = vm_radix_node_get(vm_radix_trimkey(index,
clev + 1), 2, clev);
if (tmp == NULL)
return (ENOMEM);
*parentp = tmp;
vm_radix_addpage(tmp, index, clev, page);
vm_radix_addpage(tmp, m->pindex, clev, m);
return (0);
} else if (vm_radix_keybarr(rnode, index))
break;
slot = vm_radix_slot(index, rnode->rn_clev);
if (rnode->rn_child[slot] == NULL) {
rnode->rn_count++;
vm_radix_addpage(rnode, index, rnode->rn_clev, page);
return (0);
}
parentp = &rnode->rn_child[slot];
rnode = rnode->rn_child[slot];
}
/*
* A new node is needed because the right insertion level is reached.
* Setup the new intermediate node and add the 2 children: the
* new object and the older edge.
*/
newind = rnode->rn_owner;
clev = vm_radix_keydiff(newind, index);
tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
if (tmp == NULL)
return (ENOMEM);
*parentp = tmp;
vm_radix_addpage(tmp, index, clev, page);
slot = vm_radix_slot(newind, clev);
tmp->rn_child[slot] = rnode;
return (0);
}
/*
* Returns TRUE if the specified radix tree contains a single leaf and FALSE
* otherwise.
*/
boolean_t
vm_radix_is_singleton(struct vm_radix *rtree)
{
struct vm_radix_node *rnode;
rnode = vm_radix_getroot(rtree);
if (rnode == NULL)
return (FALSE);
return (vm_radix_isleaf(rnode));
}
/*
* Returns the value stored at the index. If the index is not present,
* NULL is returned.
*/
vm_page_t
vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *rnode;
vm_page_t m;
int slot;
rnode = vm_radix_getroot(rtree);
while (rnode != NULL) {
if (vm_radix_isleaf(rnode)) {
m = vm_radix_topage(rnode);
if (m->pindex == index)
return (m);
else
break;
} else if (vm_radix_keybarr(rnode, index))
break;
slot = vm_radix_slot(index, rnode->rn_clev);
rnode = rnode->rn_child[slot];
}
return (NULL);
}
/*
* Look up the nearest entry at a position bigger than or equal to index.
*/
vm_page_t
vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *stack[VM_RADIX_LIMIT];
vm_pindex_t inc;
vm_page_t m;
struct vm_radix_node *child, *rnode;
#ifdef INVARIANTS
int loops = 0;
#endif
int slot, tos;
rnode = vm_radix_getroot(rtree);
if (rnode == NULL)
return (NULL);
else if (vm_radix_isleaf(rnode)) {
m = vm_radix_topage(rnode);
if (m->pindex >= index)
return (m);
else
return (NULL);
}
tos = 0;
for (;;) {
/*
* If the keys differ before the current bisection node,
* then the search key might rollback to the earliest
* available bisection node or to the smallest key
* in the current node (if the owner is bigger than the
* search key).
*/
if (vm_radix_keybarr(rnode, index)) {
if (index > rnode->rn_owner) {
ascend:
KASSERT(++loops < 1000,
("vm_radix_lookup_ge: too many loops"));
/*
* Pop nodes from the stack until either the
* stack is empty or a node that could have a
* matching descendant is found.
*/
do {
if (tos == 0)
return (NULL);
rnode = stack[--tos];
} while (vm_radix_slot(index,
rnode->rn_clev) == (VM_RADIX_COUNT - 1));
/*
* The following computation cannot overflow
* because index's slot at the current level
* is less than VM_RADIX_COUNT - 1.
*/
index = vm_radix_trimkey(index,
rnode->rn_clev);
index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
} else
index = rnode->rn_owner;
KASSERT(!vm_radix_keybarr(rnode, index),
("vm_radix_lookup_ge: keybarr failed"));
}
slot = vm_radix_slot(index, rnode->rn_clev);
child = rnode->rn_child[slot];
if (vm_radix_isleaf(child)) {
m = vm_radix_topage(child);
if (m->pindex >= index)
return (m);
} else if (child != NULL)
goto descend;
/*
* Look for an available edge or page within the current
* bisection node.
*/
if (slot < (VM_RADIX_COUNT - 1)) {
inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
index = vm_radix_trimkey(index, rnode->rn_clev);
do {
index += inc;
slot++;
child = rnode->rn_child[slot];
if (vm_radix_isleaf(child)) {
m = vm_radix_topage(child);
if (m->pindex >= index)
return (m);
} else if (child != NULL)
goto descend;
} while (slot < (VM_RADIX_COUNT - 1));
}
KASSERT(child == NULL || vm_radix_isleaf(child),
("vm_radix_lookup_ge: child is radix node"));
/*
* If a page or edge bigger than the search slot is not found
* in the current node, ascend to the next higher-level node.
*/
goto ascend;
descend:
KASSERT(rnode->rn_clev > 0,
("vm_radix_lookup_ge: pushing leaf's parent"));
KASSERT(tos < VM_RADIX_LIMIT,
("vm_radix_lookup_ge: stack overflow"));
stack[tos++] = rnode;
rnode = child;
}
}
/*
* Look up the nearest entry at a position less than or equal to index.
*/
vm_page_t
vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *stack[VM_RADIX_LIMIT];
vm_pindex_t inc;
vm_page_t m;
struct vm_radix_node *child, *rnode;
#ifdef INVARIANTS
int loops = 0;
#endif
int slot, tos;
rnode = vm_radix_getroot(rtree);
if (rnode == NULL)
return (NULL);
else if (vm_radix_isleaf(rnode)) {
m = vm_radix_topage(rnode);
if (m->pindex <= index)
return (m);
else
return (NULL);
}
tos = 0;
for (;;) {
/*
* If the keys differ before the current bisection node,
* then the search key might rollback to the earliest
* available bisection node or to the largest key
* in the current node (if the owner is smaller than the
* search key).
*/
if (vm_radix_keybarr(rnode, index)) {
if (index > rnode->rn_owner) {
index = rnode->rn_owner + VM_RADIX_COUNT *
VM_RADIX_UNITLEVEL(rnode->rn_clev);
} else {
ascend:
KASSERT(++loops < 1000,
("vm_radix_lookup_le: too many loops"));
/*
* Pop nodes from the stack until either the
* stack is empty or a node that could have a
* matching descendant is found.
*/
do {
if (tos == 0)
return (NULL);
rnode = stack[--tos];
} while (vm_radix_slot(index,
rnode->rn_clev) == 0);
/*
* The following computation cannot overflow
* because index's slot at the current level
* is greater than 0.
*/
index = vm_radix_trimkey(index,
rnode->rn_clev);
}
index--;
KASSERT(!vm_radix_keybarr(rnode, index),
("vm_radix_lookup_le: keybarr failed"));
}
slot = vm_radix_slot(index, rnode->rn_clev);
child = rnode->rn_child[slot];
if (vm_radix_isleaf(child)) {
m = vm_radix_topage(child);
if (m->pindex <= index)
return (m);
} else if (child != NULL)
goto descend;
/*
* Look for an available edge or page within the current
* bisection node.
*/
if (slot > 0) {
inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
index |= inc - 1;
do {
index -= inc;
slot--;
child = rnode->rn_child[slot];
if (vm_radix_isleaf(child)) {
m = vm_radix_topage(child);
if (m->pindex <= index)
return (m);
} else if (child != NULL)
goto descend;
} while (slot > 0);
}
KASSERT(child == NULL || vm_radix_isleaf(child),
("vm_radix_lookup_le: child is radix node"));
/*
* If a page or edge smaller than the search slot is not found
* in the current node, ascend to the next higher-level node.
*/
goto ascend;
descend:
KASSERT(rnode->rn_clev > 0,
("vm_radix_lookup_le: pushing leaf's parent"));
KASSERT(tos < VM_RADIX_LIMIT,
("vm_radix_lookup_le: stack overflow"));
stack[tos++] = rnode;
rnode = child;
}
}
/*
* Remove the specified index from the trie, and return the value stored at
* that index. If the index is not present, return NULL.
*/
vm_page_t
vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *rnode, *parent;
vm_page_t m;
int i, slot;
rnode = vm_radix_getroot(rtree);
if (vm_radix_isleaf(rnode)) {
m = vm_radix_topage(rnode);
if (m->pindex != index)
return (NULL);
vm_radix_setroot(rtree, NULL);
return (m);
}
parent = NULL;
for (;;) {
if (rnode == NULL)
return (NULL);
slot = vm_radix_slot(index, rnode->rn_clev);
if (vm_radix_isleaf(rnode->rn_child[slot])) {
m = vm_radix_topage(rnode->rn_child[slot]);
if (m->pindex != index)
return (NULL);
rnode->rn_child[slot] = NULL;
rnode->rn_count--;
if (rnode->rn_count > 1)
return (m);
for (i = 0; i < VM_RADIX_COUNT; i++)
if (rnode->rn_child[i] != NULL)
break;
KASSERT(i != VM_RADIX_COUNT,
("%s: invalid node configuration", __func__));
if (parent == NULL)
vm_radix_setroot(rtree, rnode->rn_child[i]);
else {
slot = vm_radix_slot(index, parent->rn_clev);
KASSERT(parent->rn_child[slot] == rnode,
("%s: invalid child value", __func__));
parent->rn_child[slot] = rnode->rn_child[i];
}
rnode->rn_count--;
rnode->rn_child[i] = NULL;
vm_radix_node_put(rnode);
return (m);
}
parent = rnode;
rnode = rnode->rn_child[slot];
}
}
/*
* Remove and free all the nodes from the radix tree.
* This function is recursive but there is a tight control on it as the
* maximum depth of the tree is fixed.
*/
void
vm_radix_reclaim_allnodes(struct vm_radix *rtree)
{
struct vm_radix_node *root;
root = vm_radix_getroot(rtree);
if (root == NULL)
return;
vm_radix_setroot(rtree, NULL);
if (!vm_radix_isleaf(root))
vm_radix_reclaim_allnodes_int(root);
}
/*
* Replace an existing page in the trie with another one.
* Panics if there is not an old page in the trie at the new page's index.
*/
vm_page_t
vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
{
struct vm_radix_node *rnode;
vm_page_t m;
vm_pindex_t index;
int slot;
index = newpage->pindex;
rnode = vm_radix_getroot(rtree);
if (rnode == NULL)
panic("%s: replacing page on an empty trie", __func__);
if (vm_radix_isleaf(rnode)) {
m = vm_radix_topage(rnode);
if (m->pindex != index)
panic("%s: original replacing root key not found",
__func__);
rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
return (m);
}
for (;;) {
slot = vm_radix_slot(index, rnode->rn_clev);
if (vm_radix_isleaf(rnode->rn_child[slot])) {
m = vm_radix_topage(rnode->rn_child[slot]);
if (m->pindex == index) {
rnode->rn_child[slot] =
(void *)((uintptr_t)newpage |
VM_RADIX_ISLEAF);
return (m);
} else
break;
} else if (rnode->rn_child[slot] == NULL ||
vm_radix_keybarr(rnode->rn_child[slot], index))
break;
rnode = rnode->rn_child[slot];
}
panic("%s: original replacing page not found", __func__);
}
void
vm_radix_wait(void)
{
uma_zwait(vm_radix_node_zone);
}
#ifdef DDB
/*
* Show details about the given radix node.
*/
DB_SHOW_COMMAND(radixnode, db_show_radixnode)
{
struct vm_radix_node *rnode;
int i;
if (!have_addr)
return;
rnode = (struct vm_radix_node *)addr;
db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
(void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
rnode->rn_clev);
for (i = 0; i < VM_RADIX_COUNT; i++)
if (rnode->rn_child[i] != NULL)
db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
i, (void *)rnode->rn_child[i],
vm_radix_isleaf(rnode->rn_child[i]) ?
vm_radix_topage(rnode->rn_child[i]) : NULL,
rnode->rn_clev);
}
#endif /* DDB */