ed6ee7405b
- Optimize enqueue for two task priority values by adding new tq_hint field, pointing to the last task inserted into the middle of the list. In case of more then two priority values it should halve average search. - Move tq_active insert/remove out of the taskqueue_run_locked loop. Instead of dirtying few shared cache lines per task introduce different mechanism to drain active tasks, based on task sequence number counter, that uses only cache lines already present in cache. Since the new mechanism does not need ordering, switch tq_active from TAILQ to LIST. - Move static and dynamic struct taskqueue fields into different cache lines. Move lock into its own cache line, so that heavy lock spinning by multiple waiting threads would not affect the running thread. - While there, correct some TQ_SLEEP() wait messages. This change fixes certain ZFS write workloads, causing huge congestion on taskqueue lock. Those workloads combine some large block writes to saturate the pool and trigger allocation throttling, which uses higher priority tasks to requeue the delayed I/Os, with many small blocks to generate deep queue of small tasks for taskqueue to sort. MFC after: 1 week Sponsored by: iXsystems, Inc.
871 lines
21 KiB
C
871 lines
21 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2000 Doug Rabson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpuset.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/unistd.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
|
|
static void *taskqueue_giant_ih;
|
|
static void *taskqueue_ih;
|
|
static void taskqueue_fast_enqueue(void *);
|
|
static void taskqueue_swi_enqueue(void *);
|
|
static void taskqueue_swi_giant_enqueue(void *);
|
|
|
|
struct taskqueue_busy {
|
|
struct task *tb_running;
|
|
u_int tb_seq;
|
|
LIST_ENTRY(taskqueue_busy) tb_link;
|
|
};
|
|
|
|
struct taskqueue {
|
|
STAILQ_HEAD(, task) tq_queue;
|
|
LIST_HEAD(, taskqueue_busy) tq_active;
|
|
struct task *tq_hint;
|
|
u_int tq_seq;
|
|
int tq_callouts;
|
|
struct mtx_padalign tq_mutex;
|
|
taskqueue_enqueue_fn tq_enqueue;
|
|
void *tq_context;
|
|
char *tq_name;
|
|
struct thread **tq_threads;
|
|
int tq_tcount;
|
|
int tq_spin;
|
|
int tq_flags;
|
|
taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
|
|
void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
|
|
};
|
|
|
|
#define TQ_FLAGS_ACTIVE (1 << 0)
|
|
#define TQ_FLAGS_BLOCKED (1 << 1)
|
|
#define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
|
|
|
|
#define DT_CALLOUT_ARMED (1 << 0)
|
|
#define DT_DRAIN_IN_PROGRESS (1 << 1)
|
|
|
|
#define TQ_LOCK(tq) \
|
|
do { \
|
|
if ((tq)->tq_spin) \
|
|
mtx_lock_spin(&(tq)->tq_mutex); \
|
|
else \
|
|
mtx_lock(&(tq)->tq_mutex); \
|
|
} while (0)
|
|
#define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
|
|
|
|
#define TQ_UNLOCK(tq) \
|
|
do { \
|
|
if ((tq)->tq_spin) \
|
|
mtx_unlock_spin(&(tq)->tq_mutex); \
|
|
else \
|
|
mtx_unlock(&(tq)->tq_mutex); \
|
|
} while (0)
|
|
#define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
|
|
|
|
void
|
|
_timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
|
|
int priority, task_fn_t func, void *context)
|
|
{
|
|
|
|
TASK_INIT(&timeout_task->t, priority, func, context);
|
|
callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
|
|
CALLOUT_RETURNUNLOCKED);
|
|
timeout_task->q = queue;
|
|
timeout_task->f = 0;
|
|
}
|
|
|
|
static __inline int
|
|
TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm)
|
|
{
|
|
if (tq->tq_spin)
|
|
return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
|
|
return (msleep(p, &tq->tq_mutex, 0, wm, 0));
|
|
}
|
|
|
|
static struct taskqueue *
|
|
_taskqueue_create(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context,
|
|
int mtxflags, const char *mtxname __unused)
|
|
{
|
|
struct taskqueue *queue;
|
|
char *tq_name;
|
|
|
|
tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
|
|
if (tq_name == NULL)
|
|
return (NULL);
|
|
|
|
queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
|
|
if (queue == NULL) {
|
|
free(tq_name, M_TASKQUEUE);
|
|
return (NULL);
|
|
}
|
|
|
|
snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
|
|
|
|
STAILQ_INIT(&queue->tq_queue);
|
|
LIST_INIT(&queue->tq_active);
|
|
queue->tq_enqueue = enqueue;
|
|
queue->tq_context = context;
|
|
queue->tq_name = tq_name;
|
|
queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
|
|
queue->tq_flags |= TQ_FLAGS_ACTIVE;
|
|
if (enqueue == taskqueue_fast_enqueue ||
|
|
enqueue == taskqueue_swi_enqueue ||
|
|
enqueue == taskqueue_swi_giant_enqueue ||
|
|
enqueue == taskqueue_thread_enqueue)
|
|
queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
|
|
mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
|
|
|
|
return (queue);
|
|
}
|
|
|
|
struct taskqueue *
|
|
taskqueue_create(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context)
|
|
{
|
|
|
|
return _taskqueue_create(name, mflags, enqueue, context,
|
|
MTX_DEF, name);
|
|
}
|
|
|
|
void
|
|
taskqueue_set_callback(struct taskqueue *queue,
|
|
enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
|
|
void *context)
|
|
{
|
|
|
|
KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
|
|
(cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
|
|
("Callback type %d not valid, must be %d-%d", cb_type,
|
|
TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
|
|
KASSERT((queue->tq_callbacks[cb_type] == NULL),
|
|
("Re-initialization of taskqueue callback?"));
|
|
|
|
queue->tq_callbacks[cb_type] = callback;
|
|
queue->tq_cb_contexts[cb_type] = context;
|
|
}
|
|
|
|
/*
|
|
* Signal a taskqueue thread to terminate.
|
|
*/
|
|
static void
|
|
taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
|
|
{
|
|
|
|
while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
|
|
wakeup(tq);
|
|
TQ_SLEEP(tq, pp, "tq_destroy");
|
|
}
|
|
}
|
|
|
|
void
|
|
taskqueue_free(struct taskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
|
|
taskqueue_terminate(queue->tq_threads, queue);
|
|
KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
|
|
KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
|
|
mtx_destroy(&queue->tq_mutex);
|
|
free(queue->tq_threads, M_TASKQUEUE);
|
|
free(queue->tq_name, M_TASKQUEUE);
|
|
free(queue, M_TASKQUEUE);
|
|
}
|
|
|
|
static int
|
|
taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
|
|
{
|
|
struct task *ins;
|
|
struct task *prev;
|
|
|
|
KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
|
|
/*
|
|
* Count multiple enqueues.
|
|
*/
|
|
if (task->ta_pending) {
|
|
if (task->ta_pending < USHRT_MAX)
|
|
task->ta_pending++;
|
|
TQ_UNLOCK(queue);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Optimise cases when all tasks use small set of priorities.
|
|
* In case of only one priority we always insert at the end.
|
|
* In case of two tq_hint typically gives the insertion point.
|
|
* In case of more then two tq_hint should halve the search.
|
|
*/
|
|
prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
|
|
if (!prev || prev->ta_priority >= task->ta_priority) {
|
|
STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
|
|
} else {
|
|
prev = queue->tq_hint;
|
|
if (prev && prev->ta_priority >= task->ta_priority) {
|
|
ins = STAILQ_NEXT(prev, ta_link);
|
|
} else {
|
|
prev = NULL;
|
|
ins = STAILQ_FIRST(&queue->tq_queue);
|
|
}
|
|
for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link))
|
|
if (ins->ta_priority < task->ta_priority)
|
|
break;
|
|
|
|
if (prev) {
|
|
STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
|
|
queue->tq_hint = task;
|
|
} else
|
|
STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
|
|
}
|
|
|
|
task->ta_pending = 1;
|
|
if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
|
|
TQ_UNLOCK(queue);
|
|
if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
|
|
queue->tq_enqueue(queue->tq_context);
|
|
if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
|
|
TQ_UNLOCK(queue);
|
|
|
|
/* Return with lock released. */
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
taskqueue_enqueue(struct taskqueue *queue, struct task *task)
|
|
{
|
|
int res;
|
|
|
|
TQ_LOCK(queue);
|
|
res = taskqueue_enqueue_locked(queue, task);
|
|
/* The lock is released inside. */
|
|
|
|
return (res);
|
|
}
|
|
|
|
static void
|
|
taskqueue_timeout_func(void *arg)
|
|
{
|
|
struct taskqueue *queue;
|
|
struct timeout_task *timeout_task;
|
|
|
|
timeout_task = arg;
|
|
queue = timeout_task->q;
|
|
KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
|
|
timeout_task->f &= ~DT_CALLOUT_ARMED;
|
|
queue->tq_callouts--;
|
|
taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
|
|
/* The lock is released inside. */
|
|
}
|
|
|
|
int
|
|
taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
|
|
struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
|
|
{
|
|
int res;
|
|
|
|
TQ_LOCK(queue);
|
|
KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
|
|
("Migrated queue"));
|
|
KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
|
|
timeout_task->q = queue;
|
|
res = timeout_task->t.ta_pending;
|
|
if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
|
|
/* Do nothing */
|
|
TQ_UNLOCK(queue);
|
|
res = -1;
|
|
} else if (sbt == 0) {
|
|
taskqueue_enqueue_locked(queue, &timeout_task->t);
|
|
/* The lock is released inside. */
|
|
} else {
|
|
if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
|
|
res++;
|
|
} else {
|
|
queue->tq_callouts++;
|
|
timeout_task->f |= DT_CALLOUT_ARMED;
|
|
if (sbt < 0)
|
|
sbt = -sbt; /* Ignore overflow. */
|
|
}
|
|
if (sbt > 0) {
|
|
callout_reset_sbt(&timeout_task->c, sbt, pr,
|
|
taskqueue_timeout_func, timeout_task, flags);
|
|
}
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
return (res);
|
|
}
|
|
|
|
int
|
|
taskqueue_enqueue_timeout(struct taskqueue *queue,
|
|
struct timeout_task *ttask, int ticks)
|
|
{
|
|
|
|
return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
|
|
0, 0));
|
|
}
|
|
|
|
static void
|
|
taskqueue_task_nop_fn(void *context, int pending)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Block until all currently queued tasks in this taskqueue
|
|
* have begun execution. Tasks queued during execution of
|
|
* this function are ignored.
|
|
*/
|
|
static int
|
|
taskqueue_drain_tq_queue(struct taskqueue *queue)
|
|
{
|
|
struct task t_barrier;
|
|
|
|
if (STAILQ_EMPTY(&queue->tq_queue))
|
|
return (0);
|
|
|
|
/*
|
|
* Enqueue our barrier after all current tasks, but with
|
|
* the highest priority so that newly queued tasks cannot
|
|
* pass it. Because of the high priority, we can not use
|
|
* taskqueue_enqueue_locked directly (which drops the lock
|
|
* anyway) so just insert it at tail while we have the
|
|
* queue lock.
|
|
*/
|
|
TASK_INIT(&t_barrier, USHRT_MAX, taskqueue_task_nop_fn, &t_barrier);
|
|
STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
|
|
queue->tq_hint = &t_barrier;
|
|
t_barrier.ta_pending = 1;
|
|
|
|
/*
|
|
* Once the barrier has executed, all previously queued tasks
|
|
* have completed or are currently executing.
|
|
*/
|
|
while (t_barrier.ta_pending != 0)
|
|
TQ_SLEEP(queue, &t_barrier, "tq_qdrain");
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Block until all currently executing tasks for this taskqueue
|
|
* complete. Tasks that begin execution during the execution
|
|
* of this function are ignored.
|
|
*/
|
|
static int
|
|
taskqueue_drain_tq_active(struct taskqueue *queue)
|
|
{
|
|
struct taskqueue_busy *tb;
|
|
u_int seq;
|
|
|
|
if (LIST_EMPTY(&queue->tq_active))
|
|
return (0);
|
|
|
|
/* Block taskq_terminate().*/
|
|
queue->tq_callouts++;
|
|
|
|
/* Wait for any active task with sequence from the past. */
|
|
seq = queue->tq_seq;
|
|
restart:
|
|
LIST_FOREACH(tb, &queue->tq_active, tb_link) {
|
|
if ((int)(tb->tb_seq - seq) <= 0) {
|
|
TQ_SLEEP(queue, tb->tb_running, "tq_adrain");
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
/* Release taskqueue_terminate(). */
|
|
queue->tq_callouts--;
|
|
if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
|
|
wakeup_one(queue->tq_threads);
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
taskqueue_block(struct taskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags |= TQ_FLAGS_BLOCKED;
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
taskqueue_unblock(struct taskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
|
|
if (!STAILQ_EMPTY(&queue->tq_queue))
|
|
queue->tq_enqueue(queue->tq_context);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static void
|
|
taskqueue_run_locked(struct taskqueue *queue)
|
|
{
|
|
struct taskqueue_busy tb;
|
|
struct task *task;
|
|
int pending;
|
|
|
|
KASSERT(queue != NULL, ("tq is NULL"));
|
|
TQ_ASSERT_LOCKED(queue);
|
|
tb.tb_running = NULL;
|
|
LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
|
|
|
|
while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
|
|
STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
|
|
if (queue->tq_hint == task)
|
|
queue->tq_hint = NULL;
|
|
pending = task->ta_pending;
|
|
task->ta_pending = 0;
|
|
tb.tb_running = task;
|
|
tb.tb_seq = ++queue->tq_seq;
|
|
TQ_UNLOCK(queue);
|
|
|
|
KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
|
|
task->ta_func(task->ta_context, pending);
|
|
|
|
TQ_LOCK(queue);
|
|
wakeup(task);
|
|
}
|
|
LIST_REMOVE(&tb, tb_link);
|
|
}
|
|
|
|
void
|
|
taskqueue_run(struct taskqueue *queue)
|
|
{
|
|
|
|
TQ_LOCK(queue);
|
|
taskqueue_run_locked(queue);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static int
|
|
task_is_running(struct taskqueue *queue, struct task *task)
|
|
{
|
|
struct taskqueue_busy *tb;
|
|
|
|
TQ_ASSERT_LOCKED(queue);
|
|
LIST_FOREACH(tb, &queue->tq_active, tb_link) {
|
|
if (tb->tb_running == task)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Only use this function in single threaded contexts. It returns
|
|
* non-zero if the given task is either pending or running. Else the
|
|
* task is idle and can be queued again or freed.
|
|
*/
|
|
int
|
|
taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
|
|
{
|
|
int retval;
|
|
|
|
TQ_LOCK(queue);
|
|
retval = task->ta_pending > 0 || task_is_running(queue, task);
|
|
TQ_UNLOCK(queue);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
|
|
u_int *pendp)
|
|
{
|
|
|
|
if (task->ta_pending > 0) {
|
|
STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
|
|
if (queue->tq_hint == task)
|
|
queue->tq_hint = NULL;
|
|
}
|
|
if (pendp != NULL)
|
|
*pendp = task->ta_pending;
|
|
task->ta_pending = 0;
|
|
return (task_is_running(queue, task) ? EBUSY : 0);
|
|
}
|
|
|
|
int
|
|
taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
|
|
{
|
|
int error;
|
|
|
|
TQ_LOCK(queue);
|
|
error = taskqueue_cancel_locked(queue, task, pendp);
|
|
TQ_UNLOCK(queue);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
taskqueue_cancel_timeout(struct taskqueue *queue,
|
|
struct timeout_task *timeout_task, u_int *pendp)
|
|
{
|
|
u_int pending, pending1;
|
|
int error;
|
|
|
|
TQ_LOCK(queue);
|
|
pending = !!(callout_stop(&timeout_task->c) > 0);
|
|
error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
|
|
if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
|
|
timeout_task->f &= ~DT_CALLOUT_ARMED;
|
|
queue->tq_callouts--;
|
|
}
|
|
TQ_UNLOCK(queue);
|
|
|
|
if (pendp != NULL)
|
|
*pendp = pending + pending1;
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
taskqueue_drain(struct taskqueue *queue, struct task *task)
|
|
{
|
|
|
|
if (!queue->tq_spin)
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
|
|
|
|
TQ_LOCK(queue);
|
|
while (task->ta_pending != 0 || task_is_running(queue, task))
|
|
TQ_SLEEP(queue, task, "tq_drain");
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
taskqueue_drain_all(struct taskqueue *queue)
|
|
{
|
|
|
|
if (!queue->tq_spin)
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
|
|
|
|
TQ_LOCK(queue);
|
|
(void)taskqueue_drain_tq_queue(queue);
|
|
(void)taskqueue_drain_tq_active(queue);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
taskqueue_drain_timeout(struct taskqueue *queue,
|
|
struct timeout_task *timeout_task)
|
|
{
|
|
|
|
/*
|
|
* Set flag to prevent timer from re-starting during drain:
|
|
*/
|
|
TQ_LOCK(queue);
|
|
KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
|
|
("Drain already in progress"));
|
|
timeout_task->f |= DT_DRAIN_IN_PROGRESS;
|
|
TQ_UNLOCK(queue);
|
|
|
|
callout_drain(&timeout_task->c);
|
|
taskqueue_drain(queue, &timeout_task->t);
|
|
|
|
/*
|
|
* Clear flag to allow timer to re-start:
|
|
*/
|
|
TQ_LOCK(queue);
|
|
timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
void
|
|
taskqueue_quiesce(struct taskqueue *queue)
|
|
{
|
|
int ret;
|
|
|
|
TQ_LOCK(queue);
|
|
do {
|
|
ret = taskqueue_drain_tq_queue(queue);
|
|
if (ret == 0)
|
|
ret = taskqueue_drain_tq_active(queue);
|
|
} while (ret != 0);
|
|
TQ_UNLOCK(queue);
|
|
}
|
|
|
|
static void
|
|
taskqueue_swi_enqueue(void *context)
|
|
{
|
|
swi_sched(taskqueue_ih, 0);
|
|
}
|
|
|
|
static void
|
|
taskqueue_swi_run(void *dummy)
|
|
{
|
|
taskqueue_run(taskqueue_swi);
|
|
}
|
|
|
|
static void
|
|
taskqueue_swi_giant_enqueue(void *context)
|
|
{
|
|
swi_sched(taskqueue_giant_ih, 0);
|
|
}
|
|
|
|
static void
|
|
taskqueue_swi_giant_run(void *dummy)
|
|
{
|
|
taskqueue_run(taskqueue_swi_giant);
|
|
}
|
|
|
|
static int
|
|
_taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
|
|
cpuset_t *mask, struct proc *p, const char *name, va_list ap)
|
|
{
|
|
char ktname[MAXCOMLEN + 1];
|
|
struct thread *td;
|
|
struct taskqueue *tq;
|
|
int i, error;
|
|
|
|
if (count <= 0)
|
|
return (EINVAL);
|
|
|
|
vsnprintf(ktname, sizeof(ktname), name, ap);
|
|
tq = *tqp;
|
|
|
|
tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
|
|
M_NOWAIT | M_ZERO);
|
|
if (tq->tq_threads == NULL) {
|
|
printf("%s: no memory for %s threads\n", __func__, ktname);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (count == 1)
|
|
error = kthread_add(taskqueue_thread_loop, tqp, p,
|
|
&tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
|
|
else
|
|
error = kthread_add(taskqueue_thread_loop, tqp, p,
|
|
&tq->tq_threads[i], RFSTOPPED, 0,
|
|
"%s_%d", ktname, i);
|
|
if (error) {
|
|
/* should be ok to continue, taskqueue_free will dtrt */
|
|
printf("%s: kthread_add(%s): error %d", __func__,
|
|
ktname, error);
|
|
tq->tq_threads[i] = NULL; /* paranoid */
|
|
} else
|
|
tq->tq_tcount++;
|
|
}
|
|
if (tq->tq_tcount == 0) {
|
|
free(tq->tq_threads, M_TASKQUEUE);
|
|
tq->tq_threads = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
for (i = 0; i < count; i++) {
|
|
if (tq->tq_threads[i] == NULL)
|
|
continue;
|
|
td = tq->tq_threads[i];
|
|
if (mask) {
|
|
error = cpuset_setthread(td->td_tid, mask);
|
|
/*
|
|
* Failing to pin is rarely an actual fatal error;
|
|
* it'll just affect performance.
|
|
*/
|
|
if (error)
|
|
printf("%s: curthread=%llu: can't pin; "
|
|
"error=%d\n",
|
|
__func__,
|
|
(unsigned long long) td->td_tid,
|
|
error);
|
|
}
|
|
thread_lock(td);
|
|
sched_prio(td, pri);
|
|
sched_add(td, SRQ_BORING);
|
|
thread_unlock(td);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
|
|
const char *name, ...)
|
|
{
|
|
va_list ap;
|
|
int error;
|
|
|
|
va_start(ap, name);
|
|
error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
|
|
va_end(ap);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
|
|
struct proc *proc, const char *name, ...)
|
|
{
|
|
va_list ap;
|
|
int error;
|
|
|
|
va_start(ap, name);
|
|
error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
|
|
va_end(ap);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
|
|
cpuset_t *mask, const char *name, ...)
|
|
{
|
|
va_list ap;
|
|
int error;
|
|
|
|
va_start(ap, name);
|
|
error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
|
|
va_end(ap);
|
|
return (error);
|
|
}
|
|
|
|
static inline void
|
|
taskqueue_run_callback(struct taskqueue *tq,
|
|
enum taskqueue_callback_type cb_type)
|
|
{
|
|
taskqueue_callback_fn tq_callback;
|
|
|
|
TQ_ASSERT_UNLOCKED(tq);
|
|
tq_callback = tq->tq_callbacks[cb_type];
|
|
if (tq_callback != NULL)
|
|
tq_callback(tq->tq_cb_contexts[cb_type]);
|
|
}
|
|
|
|
void
|
|
taskqueue_thread_loop(void *arg)
|
|
{
|
|
struct taskqueue **tqp, *tq;
|
|
|
|
tqp = arg;
|
|
tq = *tqp;
|
|
taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
|
|
TQ_LOCK(tq);
|
|
while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
|
|
/* XXX ? */
|
|
taskqueue_run_locked(tq);
|
|
/*
|
|
* Because taskqueue_run() can drop tq_mutex, we need to
|
|
* check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
|
|
* meantime, which means we missed a wakeup.
|
|
*/
|
|
if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
|
|
break;
|
|
TQ_SLEEP(tq, tq, "-");
|
|
}
|
|
taskqueue_run_locked(tq);
|
|
/*
|
|
* This thread is on its way out, so just drop the lock temporarily
|
|
* in order to call the shutdown callback. This allows the callback
|
|
* to look at the taskqueue, even just before it dies.
|
|
*/
|
|
TQ_UNLOCK(tq);
|
|
taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
|
|
TQ_LOCK(tq);
|
|
|
|
/* rendezvous with thread that asked us to terminate */
|
|
tq->tq_tcount--;
|
|
wakeup_one(tq->tq_threads);
|
|
TQ_UNLOCK(tq);
|
|
kthread_exit();
|
|
}
|
|
|
|
void
|
|
taskqueue_thread_enqueue(void *context)
|
|
{
|
|
struct taskqueue **tqp, *tq;
|
|
|
|
tqp = context;
|
|
tq = *tqp;
|
|
wakeup_any(tq);
|
|
}
|
|
|
|
TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
|
|
swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
|
|
INTR_MPSAFE, &taskqueue_ih));
|
|
|
|
TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
|
|
swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
|
|
NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
|
|
|
|
TASKQUEUE_DEFINE_THREAD(thread);
|
|
|
|
struct taskqueue *
|
|
taskqueue_create_fast(const char *name, int mflags,
|
|
taskqueue_enqueue_fn enqueue, void *context)
|
|
{
|
|
return _taskqueue_create(name, mflags, enqueue, context,
|
|
MTX_SPIN, "fast_taskqueue");
|
|
}
|
|
|
|
static void *taskqueue_fast_ih;
|
|
|
|
static void
|
|
taskqueue_fast_enqueue(void *context)
|
|
{
|
|
swi_sched(taskqueue_fast_ih, 0);
|
|
}
|
|
|
|
static void
|
|
taskqueue_fast_run(void *dummy)
|
|
{
|
|
taskqueue_run(taskqueue_fast);
|
|
}
|
|
|
|
TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
|
|
swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
|
|
SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
|
|
|
|
int
|
|
taskqueue_member(struct taskqueue *queue, struct thread *td)
|
|
{
|
|
int i, j, ret = 0;
|
|
|
|
for (i = 0, j = 0; ; i++) {
|
|
if (queue->tq_threads[i] == NULL)
|
|
continue;
|
|
if (queue->tq_threads[i] == td) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
if (++j >= queue->tq_tcount)
|
|
break;
|
|
}
|
|
return (ret);
|
|
}
|