88d85c15ef
filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org> |
||
---|---|---|
.. | ||
ffs_alloc.c | ||
ffs_balloc.c | ||
ffs_extern.h | ||
ffs_inode.c | ||
ffs_snapshot.c | ||
ffs_softdep_stub.c | ||
ffs_softdep.c | ||
ffs_subr.c | ||
ffs_tables.c | ||
ffs_vfsops.c | ||
ffs_vnops.c | ||
fs.h | ||
README.snapshot | ||
README.softupdates | ||
softdep.h |
$FreeBSD$ Using Soft Updates To enable the soft updates feature in your kernel, add option SOFTUPDATES to your kernel configuration. Once you are running a kernel with soft update support, you need to enable it for whichever filesystems you wish to run with the soft update policy. This is done with the -n option to tunefs(8) on the UNMOUNTED filesystems, e.g. from single-user mode you'd do something like: tunefs -n enable /usr To permanently enable soft updates on the /usr filesystem (or at least until a corresponding ``tunefs -n disable'' is done). Soft Updates Copyright Restrictions As of June 2000 the restrictive copyright has been removed and replaced with a `Berkeley-style' copyright. The files implementing soft updates now reside in the sys/ufs/ffs directory and are compiled into the generic kernel by default. Soft Updates Status The soft updates code has been running in production on many systems for the past two years generally quite successfully. The two current sets of shortcomings are: 1) On filesystems that are chronically full, the two minute lag from the time a file is deleted until its free space shows up will result in premature filesystem full failures. This failure mode is most evident in small filesystems such as the root. For this reason, use of soft updates is not recommended on the root filesystem. 2) If your system routines runs parallel processes each of which remove many files, the kernel memory rate limiting code may not be able to slow removal operations to a level sustainable by the disk subsystem. The result is that the kernel runs out of memory and hangs. Both of these problems are being addressed, but have not yet been resolved. There are no other known problems at this time. How Soft Updates Work For more general information on soft updates, please see: http://www.mckusick.com/softdep/ http://www.ece.cmu.edu/~ganger/papers/CSE-TR-254-95/ -- Marshall Kirk McKusick <mckusick@mckusick.com> July 2000