freebsd-skq/sys/ia64/include/bus.h
mux 4e543dc212 - Introduce a new busdma flag BUS_DMA_ZERO to request for zero'ed
memory in bus_dmamem_alloc().  This is possible now that
  contigmalloc() supports the M_ZERO flag.
- Remove the locking of Giant around calls to contigmalloc() since
  contigmalloc() now grabs Giant itself.
2003-07-27 13:52:10 +00:00

1037 lines
30 KiB
C

/* $NetBSD: bus.h,v 1.12 1997/10/01 08:25:15 fvdl Exp $ */
/*-
* Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1996 Charles M. Hannum. All rights reserved.
* Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christopher G. Demetriou
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* $FreeBSD$ */
#ifndef _MACHINE_BUS_H_
#define _MACHINE_BUS_H_
/*
* Platform notes:
* o We don't use the _MACHINE_BUS_PIO_H_ and _MACHINE_BUS_MEMIO_H_
* macros to conditionally compile for I/O port, memory mapped I/O
* or both. It's a micro-optimization that is not worth the pain
* because there is no I/O port space. I/O ports are emulated by
* doing memory mapped I/O in a special memory range. The address
* translation is slightly magic for I/O port accesses, but it does
* not warrant the overhead.
*
*/
#define _MACHINE_BUS_MEMIO_H_
#define _MACHINE_BUS_PIO_H_
#include <machine/cpufunc.h>
/*
* Values for the ia64 bus space tag, not to be used directly by MI code.
*/
#define IA64_BUS_SPACE_IO 0 /* space is i/o space */
#define IA64_BUS_SPACE_MEM 1 /* space is mem space */
/*
* Bus address and size types
*/
typedef u_long bus_addr_t;
typedef u_long bus_size_t;
#define BUS_SPACE_MAXSIZE_24BIT 0xFFFFFF
#define BUS_SPACE_MAXSIZE_32BIT 0xFFFFFFFF
#define BUS_SPACE_MAXSIZE 0xFFFFFFFFFFFFFFFF
#define BUS_SPACE_MAXADDR_24BIT 0xFFFFFF
#define BUS_SPACE_MAXADDR_32BIT 0xFFFFFFFF
#define BUS_SPACE_MAXADDR 0xFFFFFFFF
#define BUS_SPACE_UNRESTRICTED (~0)
/*
* Access methods for bus resources and address space.
*/
typedef int bus_space_tag_t;
typedef u_long bus_space_handle_t;
/*
* Map a region of device bus space into CPU virtual address space.
*/
#define BUS_SPACE_MAP_CACHEABLE 0x01
#define BUS_SPACE_MAP_LINEAR 0x02
int
bus_space_map(bus_space_tag_t bst, bus_addr_t addr, bus_size_t size, int flags,
bus_space_handle_t *bshp);
/*
* Unmap a region of device bus space.
*/
static __inline void
bus_space_unmap(bus_space_tag_t bst __unused, bus_space_handle_t bsh __unused,
bus_size_t size __unused)
{
}
/*
* Get a new handle for a subregion of an already-mapped area of bus space.
*/
static __inline int
bus_space_subregion(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, bus_size_t size, bus_space_handle_t *nbshp)
{
*nbshp = bsh + ofs;
return (0);
}
/*
* Allocate a region of memory that is accessible to devices in bus space.
*/
int
bus_space_alloc(bus_space_tag_t bst, bus_addr_t rstart, bus_addr_t rend,
bus_size_t size, bus_size_t align, bus_size_t boundary, int flags,
bus_addr_t *addrp, bus_space_handle_t *bshp);
/*
* Free a region of bus space accessible memory.
*/
void
bus_space_free(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t size);
/*
* Bus read/write barrier method.
*/
#define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */
#define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */
static __inline void
bus_space_barrier(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
bus_size_t size, int flags)
{
ia64_mf_a();
ia64_mf();
}
/*
* Read 1 unit of data from bus space described by the tag, handle and ofs
* tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is returned.
*/
static __inline uint8_t
bus_space_read_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
return (*bsp);
}
static __inline uint16_t
bus_space_read_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
return (*bsp);
}
static __inline uint32_t
bus_space_read_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
return (*bsp);
}
static __inline uint64_t
bus_space_read_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
return (*bsp);
}
/*
* Write 1 unit of data to bus space described by the tag, handle and ofs
* tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is passed by value.
*/
static __inline void
bus_space_write_1(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint8_t val)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
}
static __inline void
bus_space_write_2(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint16_t val)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
}
static __inline void
bus_space_write_4(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint32_t val)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
}
static __inline void
bus_space_write_8(bus_space_tag_t bst, bus_space_handle_t bsh, bus_size_t ofs,
uint64_t val)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
}
/*
* Read count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is returned in the buffer passed by reference.
*/
static __inline void
bus_space_read_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t *bufp, size_t count)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bufp++ = *bsp;
}
static __inline void
bus_space_read_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t *bufp, size_t count)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bufp++ = *bsp;
}
static __inline void
bus_space_read_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t *bufp, size_t count)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bufp++ = *bsp;
}
static __inline void
bus_space_read_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t *bufp, size_t count)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bufp++ = *bsp;
}
/*
* Write count units of data to bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is read from the buffer passed by reference.
*/
static __inline void
bus_space_write_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint8_t *bufp, size_t count)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = *bufp++;
}
static __inline void
bus_space_write_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint16_t *bufp, size_t count)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = *bufp++;
}
static __inline void
bus_space_write_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint32_t *bufp, size_t count)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = *bufp++;
}
static __inline void
bus_space_write_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint64_t *bufp, size_t count)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = *bufp++;
}
/*
* Read count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is written to the buffer passed by reference and read from successive
* bus space addresses. Access is unordered.
*/
static __inline void
bus_space_read_region_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t *bufp, size_t count)
{
uint8_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bufp++ = *bsp;
ofs += 1;
}
}
static __inline void
bus_space_read_region_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t *bufp, size_t count)
{
uint16_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bufp++ = *bsp;
ofs += 2;
}
}
static __inline void
bus_space_read_region_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t *bufp, size_t count)
{
uint32_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bufp++ = *bsp;
ofs += 4;
}
}
static __inline void
bus_space_read_region_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t *bufp, size_t count)
{
uint64_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bufp++ = *bsp;
ofs += 8;
}
}
/*
* Write count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is read from the buffer passed by reference and written to successive
* bus space addresses. Access is unordered.
*/
static __inline void
bus_space_write_region_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint8_t *bufp, size_t count)
{
uint8_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = *bufp++;
ofs += 1;
}
}
static __inline void
bus_space_write_region_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint16_t *bufp, size_t count)
{
uint16_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = *bufp++;
ofs += 2;
}
}
static __inline void
bus_space_write_region_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint32_t *bufp, size_t count)
{
uint32_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = *bufp++;
ofs += 4;
}
}
static __inline void
bus_space_write_region_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, const uint64_t *bufp, size_t count)
{
uint64_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = *bufp++;
ofs += 8;
}
}
/*
* Write count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is passed by value. Writes are unordered.
*/
static __inline void
bus_space_set_multi_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t val, size_t count)
{
uint8_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = val;
}
static __inline void
bus_space_set_multi_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t val, size_t count)
{
uint16_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = val;
}
static __inline void
bus_space_set_multi_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t val, size_t count)
{
uint32_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = val;
}
static __inline void
bus_space_set_multi_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t val, size_t count)
{
uint64_t __volatile *bsp;
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
while (count-- > 0)
*bsp = val;
}
/*
* Write count units of data from bus space described by the tag, handle and
* ofs tuple. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes. The
* data is passed by value and written to successive bus space addresses.
* Writes are unordered.
*/
static __inline void
bus_space_set_region_1(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint8_t val, size_t count)
{
uint8_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
ofs += 1;
}
}
static __inline void
bus_space_set_region_2(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint16_t val, size_t count)
{
uint16_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
ofs += 2;
}
}
static __inline void
bus_space_set_region_4(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint32_t val, size_t count)
{
uint32_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
ofs += 4;
}
}
static __inline void
bus_space_set_region_8(bus_space_tag_t bst, bus_space_handle_t bsh,
bus_size_t ofs, uint64_t val, size_t count)
{
uint64_t __volatile *bsp;
while (count-- > 0) {
bsp = (bst == IA64_BUS_SPACE_IO) ? __PIO_ADDR(bsh + ofs) :
__MEMIO_ADDR(bsh + ofs);
*bsp = val;
ofs += 8;
}
}
/*
* Copy count units of data from bus space described by the tag and the first
* handle and ofs pair to bus space described by the tag and the second handle
* and ofs pair. A unit of data can be 1 byte, 2 bytes, 4 bytes or 8 bytes.
* The data is read from successive bus space addresses and also written to
* successive bus space addresses. Both reads and writes are unordered.
*/
static __inline void
bus_space_copy_region_1(bus_space_tag_t bst, bus_space_handle_t bsh1,
bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, size_t count)
{
bus_addr_t dst, src;
uint8_t __volatile *dstp, *srcp;
src = bsh1 + ofs1;
dst = bsh2 + ofs2;
if (dst > src) {
src += count - 1;
dst += count - 1;
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src -= 1;
dst -= 1;
}
} else {
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src += 1;
dst += 1;
}
}
}
static __inline void
bus_space_copy_region_2(bus_space_tag_t bst, bus_space_handle_t bsh1,
bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, size_t count)
{
bus_addr_t dst, src;
uint16_t __volatile *dstp, *srcp;
src = bsh1 + ofs1;
dst = bsh2 + ofs2;
if (dst > src) {
src += (count - 1) << 1;
dst += (count - 1) << 1;
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src -= 2;
dst -= 2;
}
} else {
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src += 2;
dst += 2;
}
}
}
static __inline void
bus_space_copy_region_4(bus_space_tag_t bst, bus_space_handle_t bsh1,
bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, size_t count)
{
bus_addr_t dst, src;
uint32_t __volatile *dstp, *srcp;
src = bsh1 + ofs1;
dst = bsh2 + ofs2;
if (dst > src) {
src += (count - 1) << 2;
dst += (count - 1) << 2;
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src -= 4;
dst -= 4;
}
} else {
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src += 4;
dst += 4;
}
}
}
static __inline void
bus_space_copy_region_8(bus_space_tag_t bst, bus_space_handle_t bsh1,
bus_size_t ofs1, bus_space_handle_t bsh2, bus_size_t ofs2, size_t count)
{
bus_addr_t dst, src;
uint64_t __volatile *dstp, *srcp;
src = bsh1 + ofs1;
dst = bsh2 + ofs2;
if (dst > src) {
src += (count - 1) << 3;
dst += (count - 1) << 3;
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src -= 8;
dst -= 8;
}
} else {
while (count-- > 0) {
if (bst == IA64_BUS_SPACE_IO) {
srcp = __PIO_ADDR(src);
dstp = __PIO_ADDR(dst);
} else {
srcp = __MEMIO_ADDR(src);
dstp = __MEMIO_ADDR(dst);
}
*dstp = *srcp;
src += 8;
dst += 8;
}
}
}
/*
* Stream accesses are the same as normal accesses on ia64; there are no
* supported bus systems with an endianess different from the host one.
*/
#define bus_space_read_stream_1(t, h, o) \
bus_space_read_1(t, h, o)
#define bus_space_read_stream_2(t, h, o) \
bus_space_read_2(t, h, o)
#define bus_space_read_stream_4(t, h, o) \
bus_space_read_4(t, h, o)
#define bus_space_read_stream_8(t, h, o) \
bus_space_read_8(t, h, o)
#define bus_space_read_multi_stream_1(t, h, o, a, c) \
bus_space_read_multi_1(t, h, o, a, c)
#define bus_space_read_multi_stream_2(t, h, o, a, c) \
bus_space_read_multi_2(t, h, o, a, c)
#define bus_space_read_multi_stream_4(t, h, o, a, c) \
bus_space_read_multi_4(t, h, o, a, c)
#define bus_space_read_multi_stream_8(t, h, o, a, c) \
bus_space_read_multi_8(t, h, o, a, c)
#define bus_space_write_stream_1(t, h, o, v) \
bus_space_write_1(t, h, o, v)
#define bus_space_write_stream_2(t, h, o, v) \
bus_space_write_2(t, h, o, v)
#define bus_space_write_stream_4(t, h, o, v) \
bus_space_write_4(t, h, o, v)
#define bus_space_write_stream_8(t, h, o, v) \
bus_space_write_8(t, h, o, v)
#define bus_space_write_multi_stream_1(t, h, o, a, c) \
bus_space_write_multi_1(t, h, o, a, c)
#define bus_space_write_multi_stream_2(t, h, o, a, c) \
bus_space_write_multi_2(t, h, o, a, c)
#define bus_space_write_multi_stream_4(t, h, o, a, c) \
bus_space_write_multi_4(t, h, o, a, c)
#define bus_space_write_multi_stream_8(t, h, o, a, c) \
bus_space_write_multi_8(t, h, o, a, c)
#define bus_space_set_multi_stream_1(t, h, o, v, c) \
bus_space_set_multi_1(t, h, o, v, c)
#define bus_space_set_multi_stream_2(t, h, o, v, c) \
bus_space_set_multi_2(t, h, o, v, c)
#define bus_space_set_multi_stream_4(t, h, o, v, c) \
bus_space_set_multi_4(t, h, o, v, c)
#define bus_space_set_multi_stream_8(t, h, o, v, c) \
bus_space_set_multi_8(t, h, o, v, c)
#define bus_space_read_region_stream_1(t, h, o, a, c) \
bus_space_read_region_1(t, h, o, a, c)
#define bus_space_read_region_stream_2(t, h, o, a, c) \
bus_space_read_region_2(t, h, o, a, c)
#define bus_space_read_region_stream_4(t, h, o, a, c) \
bus_space_read_region_4(t, h, o, a, c)
#define bus_space_read_region_stream_8(t, h, o, a, c) \
bus_space_read_region_8(t, h, o, a, c)
#define bus_space_write_region_stream_1(t, h, o, a, c) \
bus_space_write_region_1(t, h, o, a, c)
#define bus_space_write_region_stream_2(t, h, o, a, c) \
bus_space_write_region_2(t, h, o, a, c)
#define bus_space_write_region_stream_4(t, h, o, a, c) \
bus_space_write_region_4(t, h, o, a, c)
#define bus_space_write_region_stream_8(t, h, o, a, c) \
bus_space_write_region_8(t, h, o, a, c)
#define bus_space_set_region_stream_1(t, h, o, v, c) \
bus_space_set_region_1(t, h, o, v, c)
#define bus_space_set_region_stream_2(t, h, o, v, c) \
bus_space_set_region_2(t, h, o, v, c)
#define bus_space_set_region_stream_4(t, h, o, v, c) \
bus_space_set_region_4(t, h, o, v, c)
#define bus_space_set_region_stream_8(t, h, o, v, c) \
bus_space_set_region_8(t, h, o, v, c)
#define bus_space_copy_region_stream_1(t, h1, o1, h2, o2, c) \
bus_space_copy_region_1(t, h1, o1, h2, o2, c)
#define bus_space_copy_region_stream_2(t, h1, o1, h2, o2, c) \
bus_space_copy_region_2(t, h1, o1, h2, o2, c)
#define bus_space_copy_region_stream_4(t, h1, o1, h2, o2, c) \
bus_space_copy_region_4(t, h1, o1, h2, o2, c)
#define bus_space_copy_region_stream_8(t, h1, o1, h2, o2, c) \
bus_space_copy_region_8(t, h1, o1, h2, o2, c)
/*
* Flags used in various bus DMA methods.
*/
#define BUS_DMA_WAITOK 0x00 /* safe to sleep (pseudo-flag) */
#define BUS_DMA_NOWAIT 0x01 /* not safe to sleep */
#define BUS_DMA_ALLOCNOW 0x02 /* perform resource allocation now */
#define BUS_DMA_COHERENT 0x04 /* hint: map memory in a coherent way */
#define BUS_DMA_ZERO 0x08 /* allocate zero'ed memory */
#define BUS_DMA_ISA 0x10 /* map memory for ISA dma */
#define BUS_DMA_BUS2 0x20 /* placeholders for bus functions... */
#define BUS_DMA_BUS3 0x40
#define BUS_DMA_BUS4 0x80
/* Forwards needed by prototypes below. */
struct mbuf;
struct uio;
/*
* Operations performed by bus_dmamap_sync().
*/
typedef int bus_dmasync_op_t;
#define BUS_DMASYNC_PREREAD 1
#define BUS_DMASYNC_POSTREAD 2
#define BUS_DMASYNC_PREWRITE 4
#define BUS_DMASYNC_POSTWRITE 8
/*
* bus_dma_tag_t
*
* A machine-dependent opaque type describing the characteristics
* of how to perform DMA mappings. This structure encapsultes
* information concerning address and alignment restrictions, number
* of S/G segments, amount of data per S/G segment, etc.
*/
typedef struct bus_dma_tag *bus_dma_tag_t;
/*
* bus_dmamap_t
*
* DMA mapping instance information.
*/
typedef struct bus_dmamap *bus_dmamap_t;
/*
* bus_dma_segment_t
*
* Describes a single contiguous DMA transaction. Values
* are suitable for programming into DMA registers.
*/
typedef struct bus_dma_segment {
bus_addr_t ds_addr; /* DMA address */
bus_size_t ds_len; /* length of transfer */
} bus_dma_segment_t;
/*
* A function that returns 1 if the address cannot be accessed by
* a device and 0 if it can be.
*/
typedef int bus_dma_filter_t(void *, bus_addr_t);
/*
* A function that performs driver-specific syncronization on behalf of
* busdma.
*/
typedef enum {
BUS_DMA_LOCK = 0x01,
BUS_DMA_UNLOCK = 0x02,
} bus_dma_lock_op_t;
typedef void bus_dma_lock_t(void *, bus_dma_lock_op_t);
/*
* Allocate a device specific dma_tag encapsulating the constraints of
* the parent tag in addition to other restrictions specified:
*
* alignment: alignment for segments.
* boundary: Boundary that segments cannot cross.
* lowaddr: Low restricted address that cannot appear in a mapping.
* highaddr: High restricted addr. that cannot appear in a mapping.
* filtfunc: An optional function to further test if an address
* within the range of lowaddr and highaddr cannot appear
* in a mapping.
* filtfuncarg: An argument that will be passed to filtfunc in addition
* to the address to test.
* maxsize: Maximum mapping size supported by this tag.
* nsegments: Number of discontinuities allowed in maps.
* maxsegsz: Maximum size of a segment in the map.
* flags: Bus DMA flags.
* dmat: A pointer to set to a valid dma tag should the return
* value of this function indicate success.
*/
/* XXX Should probably allow specification of alignment */
int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignemnt,
bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
bus_dma_filter_t *filtfunc, void *filtfuncarg, bus_size_t maxsize,
int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
void *lockfuncarg, bus_dma_tag_t *dmat);
int bus_dma_tag_destroy(bus_dma_tag_t dmat);
/*
* Allocate a handle for mapping from kva/uva/physical
* address space into bus device space.
*/
int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp);
/*
* Destroy a handle for mapping from kva/uva/physical
* address space into bus device space.
*/
int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map);
/*
* Allocate a piece of memory that can be efficiently mapped into
* bus device space based on the constraints lited in the dma tag.
* A dmamap to for use with dmamap_load is also allocated.
*/
int bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
bus_dmamap_t *mapp);
/*
* Free a piece of memory and it's allociated dmamap, that was allocated
* via bus_dmamem_alloc.
*/
void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map);
/*
* A function that processes a successfully loaded dma map or an error
* from a delayed load map.
*/
typedef void bus_dmamap_callback_t(void *, bus_dma_segment_t *, int, int);
/*
* Map the buffer buf into bus space using the dmamap map.
*/
int bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
bus_size_t buflen, bus_dmamap_callback_t *callback, void *callback_arg,
int flags);
/*
* Like bus_dmamap_callback but includes map size in bytes. This is
* defined as a separate interface to maintain compatiiblity for users
* of bus_dmamap_callback_t--at some point these interfaces should be merged.
*/
typedef void bus_dmamap_callback2_t(void *, bus_dma_segment_t *, int,
bus_size_t, int);
/*
* Like bus_dmamap_load but for mbufs. Note the use of the
* bus_dmamap_callback2_t interface.
*/
int bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *mbuf, bus_dmamap_callback2_t *callback, void *callback_arg,
int flags);
/*
* Like bus_dmamap_load but for uios. Note the use of the
* bus_dmamap_callback2_t interface.
*/
int bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *ui,
bus_dmamap_callback2_t *callback, void *callback_arg, int flags);
/*
* Perform a syncronization operation on the given map.
*/
void _bus_dmamap_sync(bus_dma_tag_t, bus_dmamap_t, int);
static __inline void
bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t dmamap, bus_dmasync_op_t op)
{
if ((dmamap) != NULL)
_bus_dmamap_sync(dmat, dmamap, op);
}
/*
* Release the mapping held by map.
*/
void _bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map);
static __inline void
bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t dmamap)
{
if ((dmamap) != NULL)
_bus_dmamap_unload(dmat, dmamap);
}
/*
* Generic helper function for manipulating mutexes.
*/
void busdma_lock_mutex(void *arg, bus_dma_lock_op_t op);
#endif /* _MACHINE_BUS_H_ */