3452c23db8
The #ifdef IPXIP in netipx/ipx_if.h is OK (used from ipx_usrreq.c and ifconfig.c only). I also fixed a typo IPXTUNNEL -> IPTUNNEL (and #ifdef'ed out the code inside, as it never could have compiled - doh.)
3150 lines
84 KiB
C
3150 lines
84 KiB
C
/*
|
|
* All Rights Reserved, Copyright (C) Fujitsu Limited 1995
|
|
*
|
|
* This software may be used, modified, copied, distributed, and sold, in
|
|
* both source and binary form provided that the above copyright, these
|
|
* terms and the following disclaimer are retained. The name of the author
|
|
* and/or the contributor may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* $Id: if_fe.c,v 1.35 1997/11/20 15:48:35 nate Exp $
|
|
*
|
|
* Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
|
|
* To be used with FreeBSD 2.x
|
|
* Contributed by M. Sekiguchi. <seki@sysrap.cs.fujitsu.co.jp>
|
|
*
|
|
* This version is intended to be a generic template for various
|
|
* MB86960A/MB86965A based Ethernet cards. It currently supports
|
|
* Fujitsu FMV-180 series for ISA and Allied-Telesis AT1700/RE2000
|
|
* series for ISA, as well as Fujitsu MBH10302 PC card.
|
|
* There are some currently-
|
|
* unused hooks embedded, which are primarily intended to support
|
|
* other types of Ethernet cards, but the author is not sure whether
|
|
* they are useful.
|
|
*
|
|
* This version also includes some alignments for
|
|
* RE1000/RE1000+/ME1500 support. It is incomplete, however, since the
|
|
* cards are not for AT-compatibles. (They are for PC98 bus -- a
|
|
* proprietary bus architecture available only in Japan.) Further
|
|
* work for PC98 version will be available as a part of FreeBSD(98)
|
|
* project.
|
|
*
|
|
* This software is a derivative work of if_ed.c version 1.56 by David
|
|
* Greenman available as a part of FreeBSD 2.0 RELEASE source distribution.
|
|
*
|
|
* The following lines are retained from the original if_ed.c:
|
|
*
|
|
* Copyright (C) 1993, David Greenman. This software may be used, modified,
|
|
* copied, distributed, and sold, in both source and binary form provided
|
|
* that the above copyright and these terms are retained. Under no
|
|
* circumstances is the author responsible for the proper functioning
|
|
* of this software, nor does the author assume any responsibility
|
|
* for damages incurred with its use.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
* o To support MBH10304 PC card. It is another MB8696x based
|
|
* PCMCIA Ethernet card by Fujitsu, which is not compatible with
|
|
* MBH10302.
|
|
* o To merge FreeBSD(98) efforts into a single source file.
|
|
* o To support ISA PnP auto configuration for FMV-183/184.
|
|
* o To reconsider mbuf usage.
|
|
* o To reconsider transmission buffer usage, including
|
|
* transmission buffer size (currently 4KB x 2) and pros-and-
|
|
* cons of multiple frame transmission.
|
|
* o To test IPX codes.
|
|
*/
|
|
|
|
#include "fe.h"
|
|
#include "bpfilter.h"
|
|
#include "opt_ipx.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/conf.h>
|
|
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
/* IPX code is not tested. FIXME. */
|
|
#ifdef IPX
|
|
#include <netipx/ipx.h>
|
|
#include <netipx/ipx_if.h>
|
|
#endif
|
|
|
|
/* To be used with IPv6 package of INRIA. */
|
|
#ifdef INET6
|
|
/* IPv6 added by shin 96.2.6 */
|
|
#include <netinet/if_ether6.h>
|
|
#endif
|
|
|
|
/* XNS code is not tested. FIXME. */
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
#endif
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <machine/clock.h>
|
|
|
|
#include <i386/isa/isa_device.h>
|
|
#include <i386/isa/icu.h>
|
|
|
|
/* PCCARD suport */
|
|
#include "card.h"
|
|
#if NCARD > 0
|
|
#include <sys/select.h>
|
|
#include <pccard/cardinfo.h>
|
|
#include <pccard/slot.h>
|
|
#include <pccard/driver.h>
|
|
#endif
|
|
|
|
#include <i386/isa/ic/mb86960.h>
|
|
#include <i386/isa/if_fereg.h>
|
|
|
|
/*
|
|
* This version of fe is an ISA device driver.
|
|
* Override the following macro to adapt it to another bus.
|
|
* (E.g., PC98.)
|
|
*/
|
|
#define DEVICE struct isa_device
|
|
|
|
/*
|
|
* Default settings for fe driver specific options.
|
|
* They can be set in config file by "options" statements.
|
|
*/
|
|
|
|
/*
|
|
* Debug control.
|
|
* 0: No debug at all. All debug specific codes are stripped off.
|
|
* 1: Silent. No debug messages are logged except emergent ones.
|
|
* 2: Brief. Lair events and/or important information are logged.
|
|
* 3: Detailed. Logs all information which *may* be useful for debugging.
|
|
* 4: Trace. All actions in the driver is logged. Super verbose.
|
|
*/
|
|
#ifndef FE_DEBUG
|
|
#define FE_DEBUG 1
|
|
#endif
|
|
|
|
/*
|
|
* Transmit just one packet per a "send" command to 86960.
|
|
* This option is intended for performance test. An EXPERIMENTAL option.
|
|
*/
|
|
#ifndef FE_SINGLE_TRANSMISSION
|
|
#define FE_SINGLE_TRANSMISSION 0
|
|
#endif
|
|
|
|
/*
|
|
* Device configuration flags.
|
|
*/
|
|
|
|
/* DLCR6 settings. */
|
|
#define FE_FLAGS_DLCR6_VALUE 0x007F
|
|
|
|
/* Force DLCR6 override. */
|
|
#define FE_FLAGS_OVERRIDE_DLCR6 0x0080
|
|
|
|
/* Shouldn't these be defined somewhere else such as isa_device.h? */
|
|
#define NO_IOADDR (-1)
|
|
#define NO_IRQ 0
|
|
|
|
/*
|
|
* Data type for a multicast address filter on 8696x.
|
|
*/
|
|
struct fe_filter { u_char data [ FE_FILTER_LEN ]; };
|
|
|
|
/*
|
|
* Special filter values.
|
|
*/
|
|
static struct fe_filter const fe_filter_nothing = { FE_FILTER_NOTHING };
|
|
static struct fe_filter const fe_filter_all = { FE_FILTER_ALL };
|
|
|
|
/* How many registers does an fe-supported adapter have at maximum? */
|
|
#define MAXREGISTERS 32
|
|
|
|
/*
|
|
* fe_softc: per line info and status
|
|
*/
|
|
static struct fe_softc {
|
|
|
|
/* Used by "common" codes. */
|
|
struct arpcom arpcom; /* Ethernet common */
|
|
|
|
/* Used by config codes. */
|
|
|
|
/* Set by probe() and not modified in later phases. */
|
|
char * typestr; /* printable name of the interface. */
|
|
u_short iobase; /* base I/O address of the adapter. */
|
|
u_short ioaddr [ MAXREGISTERS ]; /* I/O addresses of register. */
|
|
u_short txb_size; /* size of TX buffer, in bytes */
|
|
u_char proto_dlcr4; /* DLCR4 prototype. */
|
|
u_char proto_dlcr5; /* DLCR5 prototype. */
|
|
u_char proto_dlcr6; /* DLCR6 prototype. */
|
|
u_char proto_dlcr7; /* DLCR7 prototype. */
|
|
u_char proto_bmpr13; /* BMPR13 prototype. */
|
|
|
|
/* Vendor specific hooks. */
|
|
void ( * init )( struct fe_softc * ); /* Just before fe_init(). */
|
|
void ( * stop )( struct fe_softc * ); /* Just after fe_stop(). */
|
|
|
|
/* Transmission buffer management. */
|
|
u_short txb_free; /* free bytes in TX buffer */
|
|
u_char txb_count; /* number of packets in TX buffer */
|
|
u_char txb_sched; /* number of scheduled packets */
|
|
|
|
/* Excessive collision counter (see fe_tint() for details. */
|
|
u_char tx_excolls; /* # of excessive collisions. */
|
|
|
|
/* Multicast address filter management. */
|
|
u_char filter_change; /* MARs must be changed ASAP. */
|
|
struct fe_filter filter;/* new filter value. */
|
|
|
|
} fe_softc[NFE];
|
|
|
|
#define sc_if arpcom.ac_if
|
|
#define sc_unit arpcom.ac_if.if_unit
|
|
#define sc_enaddr arpcom.ac_enaddr
|
|
|
|
/* Standard driver entry points. These can be static. */
|
|
static int fe_probe ( struct isa_device * );
|
|
static int fe_attach ( struct isa_device * );
|
|
static void fe_init ( int );
|
|
static int fe_ioctl ( struct ifnet *, int, caddr_t );
|
|
static void fe_start ( struct ifnet * );
|
|
static void fe_reset ( int );
|
|
static void fe_watchdog ( struct ifnet * );
|
|
|
|
/* Local functions. Order of declaration is confused. FIXME. */
|
|
static int fe_probe_fmv ( DEVICE *, struct fe_softc * );
|
|
static int fe_probe_ati ( DEVICE *, struct fe_softc * );
|
|
static void fe_init_ati ( struct fe_softc * );
|
|
static int fe_probe_gwy ( DEVICE *, struct fe_softc * );
|
|
#if NCARD > 0
|
|
static int fe_probe_mbh ( DEVICE *, struct fe_softc * );
|
|
static void fe_init_mbh ( struct fe_softc * );
|
|
static int fe_probe_tdk ( DEVICE *, struct fe_softc * );
|
|
#endif
|
|
static int fe_get_packet ( struct fe_softc *, u_short );
|
|
static void fe_stop ( int );
|
|
static void fe_tint ( struct fe_softc *, u_char );
|
|
static void fe_rint ( struct fe_softc *, u_char );
|
|
static void fe_xmit ( struct fe_softc * );
|
|
static void fe_emptybuffer ( struct fe_softc * );
|
|
static void fe_write_mbufs ( struct fe_softc *, struct mbuf * );
|
|
static struct fe_filter
|
|
fe_mcaf ( struct fe_softc * );
|
|
static int fe_hash ( u_char * );
|
|
static void fe_setmode ( struct fe_softc * );
|
|
static void fe_loadmar ( struct fe_softc * );
|
|
#if FE_DEBUG >= 1
|
|
static void fe_dump ( int, struct fe_softc *, char * );
|
|
#endif
|
|
|
|
/* Driver struct used in the config code. This must be public (external.) */
|
|
struct isa_driver fedriver =
|
|
{
|
|
fe_probe,
|
|
fe_attach,
|
|
"fe",
|
|
1 /* It's safe to mark as "sensitive" */
|
|
};
|
|
|
|
/*
|
|
* Fe driver specific constants which relate to 86960/86965.
|
|
*/
|
|
|
|
/* Interrupt masks */
|
|
#define FE_TMASK ( FE_D2_COLL16 | FE_D2_TXDONE )
|
|
#define FE_RMASK ( FE_D3_OVRFLO | FE_D3_CRCERR \
|
|
| FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY )
|
|
|
|
/* Maximum number of iterations for a receive interrupt. */
|
|
#define FE_MAX_RECV_COUNT ( ( 65536 - 2048 * 2 ) / 64 )
|
|
/*
|
|
* Maximum size of SRAM is 65536,
|
|
* minimum size of transmission buffer in fe is 2x2KB,
|
|
* and minimum amount of received packet including headers
|
|
* added by the chip is 64 bytes.
|
|
* Hence FE_MAX_RECV_COUNT is the upper limit for number
|
|
* of packets in the receive buffer.
|
|
*/
|
|
|
|
/*
|
|
* Routines to access contiguous I/O ports.
|
|
*/
|
|
|
|
static void
|
|
inblk ( struct fe_softc * sc, int offs, u_char * mem, int len )
|
|
{
|
|
while ( --len >= 0 ) {
|
|
*mem++ = inb( sc->ioaddr[ offs++ ] );
|
|
}
|
|
}
|
|
|
|
static void
|
|
outblk ( struct fe_softc * sc, int offs, u_char const * mem, int len )
|
|
{
|
|
while ( --len >= 0 ) {
|
|
outb( sc->ioaddr[ offs++ ], *mem++ );
|
|
}
|
|
}
|
|
|
|
/* PCCARD Support */
|
|
#if NCARD > 0
|
|
/*
|
|
* PC-Card (PCMCIA) specific code.
|
|
*/
|
|
static int feinit(struct pccard_devinfo *); /* init device */
|
|
static void feunload(struct pccard_devinfo *); /* Disable driver */
|
|
static int fe_card_intr(struct pccard_devinfo *); /* Interrupt handler */
|
|
|
|
static struct pccard_device fe_info = {
|
|
"fe",
|
|
feinit,
|
|
feunload,
|
|
fe_card_intr,
|
|
0, /* Attributes - presently unused */
|
|
&net_imask /* Interrupt mask for device */
|
|
/* XXX - Should this also include net_imask? */
|
|
};
|
|
|
|
DATA_SET(pccarddrv_set, fe_info);
|
|
|
|
/*
|
|
* Initialize the device - called from Slot manager.
|
|
*/
|
|
static int
|
|
feinit(struct pccard_devinfo *devi)
|
|
{
|
|
struct fe_softc *sc;
|
|
|
|
/* validate unit number. */
|
|
if (devi->isahd.id_unit >= NFE)
|
|
return (ENODEV);
|
|
/*
|
|
* Probe the device. If a value is returned,
|
|
* the device was found at the location.
|
|
*/
|
|
#if FE_DEBUG >= 2
|
|
printf("Start Probe\n");
|
|
#endif
|
|
/* Initialize "minimum" parts of our softc. */
|
|
sc = &fe_softc[devi->isahd.id_unit];
|
|
sc->sc_unit = devi->isahd.id_unit;
|
|
sc->iobase = devi->isahd.id_iobase;
|
|
|
|
/* Use Ethernet address got from CIS, if one is available. */
|
|
if ((devi->misc[0] & 0x03) == 0x00
|
|
&& (devi->misc[0] | devi->misc[1] | devi->misc[2]) != 0) {
|
|
/* Yes, it looks like a valid Ether address. */
|
|
bcopy(devi->misc, sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
} else {
|
|
/* Indicate we have no Ether address in CIS. */
|
|
bzero(sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
}
|
|
|
|
/* Probe supported PC card models. */
|
|
if (fe_probe_tdk(&devi->isahd, sc) == 0 &&
|
|
fe_probe_mbh(&devi->isahd, sc) == 0)
|
|
return (ENXIO);
|
|
#if FE_DEBUG >= 2
|
|
printf("Start attach\n");
|
|
#endif
|
|
if (fe_attach(&devi->isahd) == 0)
|
|
return (ENXIO);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* feunload - unload the driver and clear the table.
|
|
* XXX TODO:
|
|
* This is usually called when the card is ejected, but
|
|
* can be caused by a modunload of a controller driver.
|
|
* The idea is to reset the driver's view of the device
|
|
* and ensure that any driver entry points such as
|
|
* read and write do not hang.
|
|
*/
|
|
static void
|
|
feunload(struct pccard_devinfo *devi)
|
|
{
|
|
struct fe_softc *sc = &fe_softc[devi->isahd.id_unit];
|
|
printf("fe%d: unload\n", devi->isahd.id_unit);
|
|
fe_stop(devi->isahd.id_unit);
|
|
}
|
|
|
|
/*
|
|
* fe_card_intr - Shared interrupt called from
|
|
* front end of PC-Card handler.
|
|
*/
|
|
static int
|
|
fe_card_intr(struct pccard_devinfo *devi)
|
|
{
|
|
feintr(devi->isahd.id_unit);
|
|
return (1);
|
|
}
|
|
#endif /* NCARD > 0 */
|
|
|
|
|
|
/*
|
|
* Hardware probe routines.
|
|
*/
|
|
|
|
/* How and where to probe; to support automatic I/O address detection. */
|
|
struct fe_probe_list
|
|
{
|
|
int ( * probe ) ( DEVICE *, struct fe_softc * );
|
|
u_short const * addresses;
|
|
};
|
|
|
|
/* Lists of possible addresses. */
|
|
static u_short const fe_fmv_addr [] =
|
|
{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340, 0 };
|
|
static u_short const fe_ati_addr [] =
|
|
{ 0x240, 0x260, 0x280, 0x2A0, 0x300, 0x320, 0x340, 0x380, 0 };
|
|
|
|
static struct fe_probe_list const fe_probe_list [] =
|
|
{
|
|
{ fe_probe_fmv, fe_fmv_addr },
|
|
{ fe_probe_ati, fe_ati_addr },
|
|
{ fe_probe_gwy, NULL }, /* GWYs cannot be auto detected. */
|
|
{ NULL, NULL }
|
|
};
|
|
|
|
|
|
/*
|
|
* Determine if the device is present
|
|
*
|
|
* on entry:
|
|
* a pointer to an isa_device struct
|
|
* on exit:
|
|
* zero if device not found
|
|
* or number of i/o addresses used (if found)
|
|
*/
|
|
|
|
static int
|
|
fe_probe ( DEVICE * dev )
|
|
{
|
|
struct fe_softc * sc;
|
|
int u;
|
|
int nports;
|
|
struct fe_probe_list const * list;
|
|
u_short const * addr;
|
|
u_short single [ 2 ];
|
|
|
|
/* Initialize "minimum" parts of our softc. */
|
|
sc = &fe_softc[ dev->id_unit ];
|
|
sc->sc_unit = dev->id_unit;
|
|
|
|
/* Probe each possibility, one at a time. */
|
|
for ( list = fe_probe_list; list->probe != NULL; list++ ) {
|
|
|
|
if ( dev->id_iobase != NO_IOADDR ) {
|
|
/* Probe one specific address. */
|
|
single[ 0 ] = dev->id_iobase;
|
|
single[ 1 ] = 0;
|
|
addr = single;
|
|
} else if ( list->addresses != NULL ) {
|
|
/* Auto detect. */
|
|
addr = list->addresses;
|
|
} else {
|
|
/* We need a list of addresses to do auto detect. */
|
|
continue;
|
|
}
|
|
|
|
/* Probe all possible addresses for the board. */
|
|
while ( *addr != 0 ) {
|
|
|
|
/* See if the address is already in use. */
|
|
for ( u = 0; u < NFE; u++ ) {
|
|
if ( fe_softc[u].iobase == *addr ) break;
|
|
}
|
|
|
|
#if FE_DEBUG >= 3
|
|
if ( u == NFE ) {
|
|
log( LOG_INFO, "fe%d: probing %d at 0x%x\n",
|
|
sc->sc_unit, list - fe_probe_list, *addr );
|
|
} else if ( u == sc->sc_unit ) {
|
|
log( LOG_INFO, "fe%d: re-probing %d at 0x%x?\n",
|
|
sc->sc_unit, list - fe_probe_list, *addr );
|
|
} else {
|
|
log( LOG_INFO, "fe%d: skipping %d at 0x%x\n",
|
|
sc->sc_unit, list - fe_probe_list, *addr );
|
|
}
|
|
#endif
|
|
|
|
/* Probe the address if it is free. */
|
|
if ( u == NFE || u == sc->sc_unit ) {
|
|
|
|
/* Probe an address. */
|
|
sc->iobase = *addr;
|
|
nports = list->probe( dev, sc );
|
|
if ( nports > 0 ) {
|
|
/* Found. */
|
|
dev->id_iobase = *addr;
|
|
return ( nports );
|
|
}
|
|
sc->iobase = 0;
|
|
}
|
|
|
|
/* Try next. */
|
|
addr++;
|
|
}
|
|
}
|
|
|
|
/* Probe failed. */
|
|
return ( 0 );
|
|
}
|
|
|
|
/*
|
|
* Check for specific bits in specific registers have specific values.
|
|
*/
|
|
struct fe_simple_probe_struct
|
|
{
|
|
u_char port; /* Offset from the base I/O address. */
|
|
u_char mask; /* Bits to be checked. */
|
|
u_char bits; /* Values to be compared against. */
|
|
};
|
|
|
|
static int
|
|
fe_simple_probe ( struct fe_softc const * sc,
|
|
struct fe_simple_probe_struct const * sp )
|
|
{
|
|
struct fe_simple_probe_struct const * p;
|
|
|
|
for ( p = sp; p->mask != 0; p++ ) {
|
|
#if FE_DEBUG >=2
|
|
printf("Probe Port:%x,Value:%x,Mask:%x.Bits:%x\n",
|
|
p->port,inb(sc->ioaddr[ p->port]),p->mask,p->bits);
|
|
#endif
|
|
if ( ( inb( sc->ioaddr[ p->port ] ) & p->mask ) != p->bits )
|
|
{
|
|
return ( 0 );
|
|
}
|
|
}
|
|
return ( 1 );
|
|
}
|
|
|
|
/*
|
|
* Routines to read all bytes from the config EEPROM through MB86965A.
|
|
* I'm not sure what exactly I'm doing here... I was told just to follow
|
|
* the steps, and it worked. Could someone tell me why the following
|
|
* code works? (Or, why all similar codes I tried previously doesn't
|
|
* work.) FIXME.
|
|
*/
|
|
|
|
static void
|
|
fe_strobe_eeprom ( u_short bmpr16 )
|
|
{
|
|
/*
|
|
* We must guarantee 800ns (or more) interval to access slow
|
|
* EEPROMs. The following redundant code provides enough
|
|
* delay with ISA timing. (Even if the bus clock is "tuned.")
|
|
* Some modification will be needed on faster busses.
|
|
*/
|
|
outb( bmpr16, FE_B16_SELECT );
|
|
outb( bmpr16, FE_B16_SELECT );
|
|
outb( bmpr16, FE_B16_SELECT | FE_B16_CLOCK );
|
|
outb( bmpr16, FE_B16_SELECT | FE_B16_CLOCK );
|
|
outb( bmpr16, FE_B16_SELECT );
|
|
outb( bmpr16, FE_B16_SELECT );
|
|
}
|
|
|
|
static void
|
|
fe_read_eeprom ( struct fe_softc * sc, u_char * data )
|
|
{
|
|
u_short bmpr16 = sc->ioaddr[ FE_BMPR16 ];
|
|
u_short bmpr17 = sc->ioaddr[ FE_BMPR17 ];
|
|
u_char n, val, bit;
|
|
|
|
/* Read bytes from EEPROM; two bytes per an iteration. */
|
|
for ( n = 0; n < FE_EEPROM_SIZE / 2; n++ ) {
|
|
|
|
/* Reset the EEPROM interface. */
|
|
outb( bmpr16, 0x00 );
|
|
outb( bmpr17, 0x00 );
|
|
|
|
/* Start EEPROM access. */
|
|
outb( bmpr16, FE_B16_SELECT );
|
|
outb( bmpr17, FE_B17_DATA );
|
|
fe_strobe_eeprom( bmpr16 );
|
|
|
|
/* Pass the iteration count to the chip. */
|
|
val = 0x80 | n;
|
|
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
|
|
outb( bmpr17, ( val & bit ) ? FE_B17_DATA : 0 );
|
|
fe_strobe_eeprom( bmpr16 );
|
|
}
|
|
outb( bmpr17, 0x00 );
|
|
|
|
/* Read a byte. */
|
|
val = 0;
|
|
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
|
|
fe_strobe_eeprom( bmpr16 );
|
|
if ( inb( bmpr17 ) & FE_B17_DATA ) {
|
|
val |= bit;
|
|
}
|
|
}
|
|
*data++ = val;
|
|
|
|
/* Read one more byte. */
|
|
val = 0;
|
|
for ( bit = 0x80; bit != 0x00; bit >>= 1 ) {
|
|
fe_strobe_eeprom( bmpr16 );
|
|
if ( inb( bmpr17 ) & FE_B17_DATA ) {
|
|
val |= bit;
|
|
}
|
|
}
|
|
*data++ = val;
|
|
}
|
|
|
|
/* Reset the EEPROM interface, again. */
|
|
outb( bmpr16, 0x00 );
|
|
outb( bmpr17, 0x00 );
|
|
|
|
#if FE_DEBUG >= 3
|
|
/* Report what we got. */
|
|
data -= FE_EEPROM_SIZE;
|
|
log( LOG_INFO, "fe%d: EEPROM:"
|
|
" %02x%02x%02x%02x %02x%02x%02x%02x -"
|
|
" %02x%02x%02x%02x %02x%02x%02x%02x -"
|
|
" %02x%02x%02x%02x %02x%02x%02x%02x -"
|
|
" %02x%02x%02x%02x %02x%02x%02x%02x\n",
|
|
sc->sc_unit,
|
|
data[ 0], data[ 1], data[ 2], data[ 3],
|
|
data[ 4], data[ 5], data[ 6], data[ 7],
|
|
data[ 8], data[ 9], data[10], data[11],
|
|
data[12], data[13], data[14], data[15],
|
|
data[16], data[17], data[18], data[19],
|
|
data[20], data[21], data[22], data[23],
|
|
data[24], data[25], data[26], data[27],
|
|
data[28], data[29], data[30], data[31] );
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Hardware (vendor) specific probe routines.
|
|
*/
|
|
|
|
/*
|
|
* Probe and initialization for Fujitsu FMV-180 series boards
|
|
*/
|
|
static int
|
|
fe_probe_fmv ( DEVICE * dev, struct fe_softc * sc )
|
|
{
|
|
int i, n;
|
|
|
|
static u_short const baseaddr [ 8 ] =
|
|
{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
|
|
static u_short const irqmap [ 4 ] =
|
|
{ IRQ3, IRQ7, IRQ10, IRQ15 };
|
|
|
|
static struct fe_simple_probe_struct const probe_table [] = {
|
|
{ FE_DLCR2, 0x70, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
/* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
|
|
|
|
{ FE_FMV0, 0x78, 0x50 }, /* ERRDY+PRRDY */
|
|
{ FE_FMV1, 0xB0, 0x00 }, /* FMV-183/184 has 0x48 bits. */
|
|
{ FE_FMV3, 0x7F, 0x00 },
|
|
#if 1
|
|
/*
|
|
* Test *vendor* part of the station address for Fujitsu.
|
|
* The test will gain reliability of probe process, but
|
|
* it rejects FMV-180 clone boards manufactured by other vendors.
|
|
* We have to turn the test off when such cards are made available.
|
|
*/
|
|
{ FE_FMV4, 0xFF, 0x00 },
|
|
{ FE_FMV5, 0xFF, 0x00 },
|
|
{ FE_FMV6, 0xFF, 0x0E },
|
|
#else
|
|
/*
|
|
* We can always verify the *first* 2 bits (in Ethernet
|
|
* bit order) are "no multicast" and "no local" even for
|
|
* unknown vendors.
|
|
*/
|
|
{ FE_FMV4, 0x03, 0x00 },
|
|
#endif
|
|
{ 0 }
|
|
};
|
|
|
|
/* "Hardware revision ID" */
|
|
int revision;
|
|
|
|
/*
|
|
* See if the specified address is possible for FMV-180 series.
|
|
*/
|
|
for ( i = 0; i < 8; i++ ) {
|
|
if ( baseaddr[ i ] == sc->iobase ) break;
|
|
}
|
|
if ( i == 8 ) return 0;
|
|
|
|
/* Setup an I/O address mapping table. */
|
|
for ( i = 0; i < MAXREGISTERS; i++ ) {
|
|
sc->ioaddr[ i ] = sc->iobase + i;
|
|
}
|
|
|
|
/* Simple probe. */
|
|
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
|
|
|
|
/* Check if our I/O address matches config info. on EEPROM. */
|
|
n = ( inb( sc->ioaddr[ FE_FMV2 ] ) & FE_FMV2_IOS )
|
|
>> FE_FMV2_IOS_SHIFT;
|
|
if ( baseaddr[ n ] != sc->iobase ) {
|
|
#if 0
|
|
/* May not work on some revisions of the cards... FIXME. */
|
|
return 0;
|
|
#else
|
|
/* Just log the fact and see what happens... FIXME. */
|
|
log( LOG_WARNING, "fe%d: strange I/O config?\n", sc->sc_unit );
|
|
#endif
|
|
}
|
|
|
|
/* Find the "hardware revision." */
|
|
revision = inb( sc->ioaddr[ FE_FMV1 ] ) & FE_FMV1_REV;
|
|
|
|
/* Determine the card type. */
|
|
sc->typestr = NULL;
|
|
switch ( inb( sc->ioaddr[ FE_FMV0 ] ) & FE_FMV0_MEDIA ) {
|
|
case 0:
|
|
/* No interface? This doesn't seem to be an FMV-180... */
|
|
return 0;
|
|
case FE_FMV0_MEDIUM_T:
|
|
switch ( revision ) {
|
|
case 8:
|
|
sc->typestr = "FMV-183";
|
|
break;
|
|
case 12:
|
|
sc->typestr = "FMV-183 (on-board)";
|
|
break;
|
|
}
|
|
break;
|
|
case FE_FMV0_MEDIUM_T | FE_FMV0_MEDIUM_5:
|
|
switch ( revision ) {
|
|
case 0:
|
|
sc->typestr = "FMV-181";
|
|
break;
|
|
case 1:
|
|
sc->typestr = "FMV-181A";
|
|
break;
|
|
}
|
|
break;
|
|
case FE_FMV0_MEDIUM_2:
|
|
switch ( revision ) {
|
|
case 8:
|
|
sc->typestr = "FMV-184 (CSR = 2)";
|
|
break;
|
|
}
|
|
break;
|
|
case FE_FMV0_MEDIUM_5:
|
|
switch ( revision ) {
|
|
case 8:
|
|
sc->typestr = "FMV-184 (CSR = 1)";
|
|
break;
|
|
}
|
|
break;
|
|
case FE_FMV0_MEDIUM_2 | FE_FMV0_MEDIUM_5:
|
|
switch ( revision ) {
|
|
case 0:
|
|
sc->typestr = "FMV-182";
|
|
break;
|
|
case 1:
|
|
sc->typestr = "FMV-182A";
|
|
break;
|
|
case 8:
|
|
sc->typestr = "FMV-184 (CSR = 3)";
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
if ( sc->typestr == NULL ) {
|
|
/* Unknown card type... Hope the driver works. */
|
|
sc->typestr = "unknown FMV-180 version";
|
|
log( LOG_WARNING, "fe%d: %s: %x-%x-%x-%x\n",
|
|
sc->sc_unit, sc->typestr,
|
|
inb( sc->ioaddr[ FE_FMV0 ] ),
|
|
inb( sc->ioaddr[ FE_FMV1 ] ),
|
|
inb( sc->ioaddr[ FE_FMV2 ] ),
|
|
inb( sc->ioaddr[ FE_FMV3 ] ) );
|
|
}
|
|
|
|
/*
|
|
* An FMV-180 has been proved.
|
|
* Determine which IRQ to be used.
|
|
*
|
|
* In this version, we give a priority to the kernel config file.
|
|
* If the EEPROM and config don't match, say it to the user for
|
|
* an attention.
|
|
*/
|
|
n = ( inb( sc->ioaddr[ FE_FMV2 ] ) & FE_FMV2_IRS )
|
|
>> FE_FMV2_IRS_SHIFT;
|
|
if ( dev->id_irq == NO_IRQ ) {
|
|
/* Just use the probed value. */
|
|
dev->id_irq = irqmap[ n ];
|
|
} else if ( dev->id_irq != irqmap[ n ] ) {
|
|
/* Don't match. */
|
|
log( LOG_WARNING,
|
|
"fe%d: check IRQ in config; it may be incorrect\n",
|
|
sc->sc_unit );
|
|
}
|
|
|
|
/*
|
|
* Initialize constants in the per-line structure.
|
|
*/
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk( sc, FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN );
|
|
|
|
/* Make sure we got a valid station address. */
|
|
if ( ( sc->sc_enaddr[ 0 ] & 0x03 ) != 0x00
|
|
|| ( sc->sc_enaddr[ 0 ] == 0x00
|
|
&& sc->sc_enaddr[ 1 ] == 0x00
|
|
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) return 0;
|
|
|
|
/*
|
|
* Register values which (may) depend on board design.
|
|
*
|
|
* Program the 86960 as follows:
|
|
* SRAM: 32KB, 100ns, byte-wide access.
|
|
* Transmission buffer: 4KB x 2.
|
|
* System bus interface: 16 bits.
|
|
*/
|
|
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
|
|
sc->proto_dlcr5 = 0;
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
|
|
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
|
|
|
|
/*
|
|
* Minimum initialization of the hardware.
|
|
* We write into registers; hope I/O ports have no
|
|
* overlap with other boards.
|
|
*/
|
|
|
|
/* Initialize ASIC. */
|
|
outb( sc->ioaddr[ FE_FMV3 ], 0 );
|
|
outb( sc->ioaddr[ FE_FMV10 ], 0 );
|
|
|
|
/* Initialize 86960. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Disable all interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
|
|
|
|
/* "Refresh" hardware configuration. FIXME. */
|
|
outb( sc->ioaddr[ FE_FMV2 ], inb( sc->ioaddr[ FE_FMV2 ] ) );
|
|
|
|
/* Turn the "master interrupt control" flag of ASIC on. */
|
|
outb( sc->ioaddr[ FE_FMV3 ], FE_FMV3_IRQENB );
|
|
|
|
/*
|
|
* That's all. FMV-180 occupies 32 I/O addresses, by the way.
|
|
*/
|
|
return 32;
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for Allied-Telesis AT1700/RE2000 series.
|
|
*/
|
|
static int
|
|
fe_probe_ati ( DEVICE * dev, struct fe_softc * sc )
|
|
{
|
|
int i, n;
|
|
u_char eeprom [ FE_EEPROM_SIZE ];
|
|
u_char save16, save17;
|
|
|
|
static u_short const baseaddr [ 8 ] =
|
|
{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
|
|
static u_short const irqmaps [ 4 ][ 4 ] =
|
|
{
|
|
{ IRQ3, IRQ4, IRQ5, IRQ9 },
|
|
{ IRQ10, IRQ11, IRQ12, IRQ15 },
|
|
{ IRQ3, IRQ11, IRQ5, IRQ15 },
|
|
{ IRQ10, IRQ11, IRQ14, IRQ15 },
|
|
};
|
|
static struct fe_simple_probe_struct const probe_table [] = {
|
|
{ FE_DLCR2, 0x70, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ FE_DLCR5, 0x80, 0x00 },
|
|
#if 0
|
|
{ FE_BMPR16, 0x1B, 0x00 },
|
|
{ FE_BMPR17, 0x7F, 0x00 },
|
|
#endif
|
|
{ 0 }
|
|
};
|
|
|
|
/* Assume we have 86965 and no need to restore these. */
|
|
save16 = 0;
|
|
save17 = 0;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log( LOG_INFO, "fe%d: probe (0x%x) for ATI\n",
|
|
sc->sc_unit, sc->iobase );
|
|
fe_dump( LOG_INFO, sc, NULL );
|
|
#endif
|
|
|
|
/*
|
|
* See if the specified address is possible for MB86965A JLI mode.
|
|
*/
|
|
for ( i = 0; i < 8; i++ ) {
|
|
if ( baseaddr[ i ] == sc->iobase ) break;
|
|
}
|
|
if ( i == 8 ) goto NOTFOUND;
|
|
|
|
/* Setup an I/O address mapping table. */
|
|
for ( i = 0; i < MAXREGISTERS; i++ ) {
|
|
sc->ioaddr[ i ] = sc->iobase + i;
|
|
}
|
|
|
|
/*
|
|
* We should test if MB86965A is on the base address now.
|
|
* Unfortunately, it is very hard to probe it reliably, since
|
|
* we have no way to reset the chip under software control.
|
|
* On cold boot, we could check the "signature" bit patterns
|
|
* described in the Fujitsu document. On warm boot, however,
|
|
* we can predict almost nothing about register values.
|
|
*/
|
|
if ( !fe_simple_probe( sc, probe_table ) ) goto NOTFOUND;
|
|
|
|
/* Check if our I/O address matches config info on 86965. */
|
|
n = ( inb( sc->ioaddr[ FE_BMPR19 ] ) & FE_B19_ADDR )
|
|
>> FE_B19_ADDR_SHIFT;
|
|
if ( baseaddr[ n ] != sc->iobase ) goto NOTFOUND;
|
|
|
|
/*
|
|
* We are now almost sure we have an AT1700 at the given
|
|
* address. So, read EEPROM through 86965. We have to write
|
|
* into LSI registers to read from EEPROM. I want to avoid it
|
|
* at this stage, but I cannot test the presence of the chip
|
|
* any further without reading EEPROM. FIXME.
|
|
*/
|
|
save16 = inb( sc->ioaddr[ FE_BMPR16 ] );
|
|
save17 = inb( sc->ioaddr[ FE_BMPR17 ] );
|
|
fe_read_eeprom( sc, eeprom );
|
|
|
|
/* Make sure the EEPROM is turned off. */
|
|
outb( sc->ioaddr[ FE_BMPR16 ], 0 );
|
|
outb( sc->ioaddr[ FE_BMPR17 ], 0 );
|
|
|
|
/* Make sure that config info in EEPROM and 86965 agree. */
|
|
if ( eeprom[ FE_EEPROM_CONF ] != inb( sc->ioaddr[ FE_BMPR19 ] ) ) {
|
|
goto NOTFOUND;
|
|
}
|
|
|
|
/*
|
|
* The following model identification codes are stolen from
|
|
* from the NetBSD port of the fe driver. My reviewers
|
|
* suggested minor revision.
|
|
*/
|
|
|
|
/* Determine the card type. */
|
|
switch (eeprom[FE_ATI_EEP_MODEL]) {
|
|
case FE_ATI_MODEL_AT1700T:
|
|
sc->typestr = "AT-1700T/RE2001";
|
|
break;
|
|
case FE_ATI_MODEL_AT1700BT:
|
|
sc->typestr = "AT-1700BT/RE2003";
|
|
break;
|
|
case FE_ATI_MODEL_AT1700FT:
|
|
sc->typestr = "AT-1700FT/RE2009";
|
|
break;
|
|
case FE_ATI_MODEL_AT1700AT:
|
|
sc->typestr = "AT-1700AT/RE2005";
|
|
break;
|
|
default:
|
|
sc->typestr = "unknown AT-1700/RE2000 ?";
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Try to determine IRQ settings.
|
|
* Different models use different ranges of IRQs.
|
|
*/
|
|
if ( dev->id_irq == NO_IRQ ) {
|
|
n = ( inb( sc->ioaddr[ FE_BMPR19 ] ) & FE_B19_IRQ )
|
|
>> FE_B19_IRQ_SHIFT;
|
|
switch ( eeprom[ FE_ATI_EEP_REVISION ] & 0xf0 ) {
|
|
case 0x30:
|
|
dev->id_irq = irqmaps[ 3 ][ n ];
|
|
break;
|
|
case 0x10:
|
|
case 0x50:
|
|
dev->id_irq = irqmaps[ 2 ][ n ];
|
|
break;
|
|
case 0x40:
|
|
case 0x60:
|
|
if ( eeprom[ FE_ATI_EEP_MAGIC ] & 0x04 ) {
|
|
dev->id_irq = irqmaps[ 1 ][ n ];
|
|
} else {
|
|
dev->id_irq = irqmaps[ 0 ][ n ];
|
|
}
|
|
break;
|
|
default:
|
|
dev->id_irq = irqmaps[ 0 ][ n ];
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize constants in the per-line structure.
|
|
*/
|
|
|
|
/* Get our station address from EEPROM. */
|
|
bcopy( eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN );
|
|
|
|
#if 1
|
|
/*
|
|
* This test doesn't work well for AT1700 look-alike by
|
|
* other vendors.
|
|
*/
|
|
/* Make sure the vendor part is for Allied-Telesis. */
|
|
if ( sc->sc_enaddr[ 0 ] != 0x00
|
|
|| sc->sc_enaddr[ 1 ] != 0x00
|
|
|| sc->sc_enaddr[ 2 ] != 0xF4 ) return 0;
|
|
|
|
#else
|
|
/* Make sure we got a valid station address. */
|
|
if ( ( sc->sc_enaddr[ 0 ] & 0x03 ) != 0x00
|
|
|| ( sc->sc_enaddr[ 0 ] == 0x00
|
|
&& sc->sc_enaddr[ 1 ] == 0x00
|
|
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) return 0;
|
|
#endif
|
|
|
|
/*
|
|
* Program the 86960 as follows:
|
|
* SRAM: 32KB, 100ns, byte-wide access.
|
|
* Transmission buffer: 4KB x 2.
|
|
* System bus interface: 16 bits.
|
|
*/
|
|
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; /* FIXME */
|
|
sc->proto_dlcr5 = 0;
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
|
|
#if 0 /* XXXX Should we use this? FIXME. */
|
|
sc->proto_bmpr13 = eeprom[ FE_ATI_EEP_MEDIA ];
|
|
#else
|
|
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "ATI found" );
|
|
#endif
|
|
|
|
/* Setup hooks. This may solves a nasty bug. FIXME. */
|
|
sc->init = fe_init_ati;
|
|
|
|
/* Initialize 86965. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Disable all interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "end of fe_probe_ati()" );
|
|
#endif
|
|
|
|
/*
|
|
* That's all. AT1700 occupies 32 I/O addresses, by the way.
|
|
*/
|
|
return 32;
|
|
|
|
NOTFOUND:
|
|
/*
|
|
* We have no AT1700 at a given address.
|
|
* Restore BMPR16 and BMPR17 if we have destroyed them,
|
|
* hoping that the hardware on the address didn't get
|
|
* bad side effect.
|
|
*/
|
|
if ( save16 != 0 | save17 != 0 ) {
|
|
outb( sc->ioaddr[ FE_BMPR16 ], save16 );
|
|
outb( sc->ioaddr[ FE_BMPR17 ], save17 );
|
|
}
|
|
return ( 0 );
|
|
}
|
|
|
|
/* ATI specific initialization routine. */
|
|
static void
|
|
fe_init_ati ( struct fe_softc * sc )
|
|
{
|
|
/*
|
|
* I've told that the following operation "Resets" the chip.
|
|
* Hope this solve a bug which hangs up the driver under
|
|
* heavy load... FIXME.
|
|
*/
|
|
|
|
/* Minimal initialization of 86965. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* "Reset" by wrting into an undocument register location. */
|
|
outb( sc->ioaddr[ 0x1F ], 0 );
|
|
|
|
/* How long do we have to wait after the reset? FIXME. */
|
|
DELAY( 300 );
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for Gateway Communications' old cards.
|
|
*/
|
|
static int
|
|
fe_probe_gwy ( DEVICE * dev, struct fe_softc * sc )
|
|
{
|
|
int i;
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x70, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ FE_DLCR7, 0xC0, 0x00 },
|
|
/*
|
|
* Test *vendor* part of the address for Gateway.
|
|
* This test is essential to identify Gateway's cards.
|
|
* We shuld define some symbolic names for the
|
|
* following offsets. FIXME.
|
|
*/
|
|
{ 0x18, 0xFF, 0x00 },
|
|
{ 0x19, 0xFF, 0x00 },
|
|
{ 0x1A, 0xFF, 0x61 },
|
|
{ 0 }
|
|
};
|
|
|
|
/*
|
|
* We need explicit IRQ and supported address.
|
|
* I'm not sure which address and IRQ is possible for Gateway
|
|
* Ethernet family. The following accepts everything. FIXME.
|
|
*/
|
|
if ( dev->id_irq == NO_IRQ || ( sc->iobase & ~0x3E0 ) != 0 ) {
|
|
return ( 0 );
|
|
}
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "top of probe" );
|
|
#endif
|
|
|
|
/* Setup an I/O address mapping table. */
|
|
for ( i = 0; i < MAXREGISTERS; i++ ) {
|
|
sc->ioaddr[ i ] = sc->iobase + i;
|
|
}
|
|
|
|
/* See if the card is on its address. */
|
|
if ( !fe_simple_probe( sc, probe_table ) ) {
|
|
return 0;
|
|
}
|
|
|
|
/* Determine the card type. */
|
|
sc->typestr = "Gateway Ethernet w/ Fujitsu chipset";
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk( sc, 0x18, sc->sc_enaddr, ETHER_ADDR_LEN );
|
|
|
|
/*
|
|
* Program the 86960 as follows:
|
|
* SRAM: 16KB, 100ns, byte-wide access.
|
|
* Transmission buffer: 2KB x 2.
|
|
* System bus interface: 16 bits.
|
|
* Make sure to clear out ID bits in DLCR7
|
|
* (They actually are Encoder/Decoder control in NICE.)
|
|
*/
|
|
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
|
|
sc->proto_dlcr5 = 0;
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_16KB | FE_D6_TXBSIZ_2x2KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH;
|
|
sc->proto_bmpr13 = 0;
|
|
|
|
/* Minimal initialization of 86960. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Disable all interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
|
|
|
|
/* That's all. The card occupies 32 I/O addresses, as always. */
|
|
return 32;
|
|
}
|
|
|
|
#if NCARD > 0
|
|
/*
|
|
* Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
|
|
* Note that this is for 10302 only; MBH10304 is handled by fe_probe_tdk().
|
|
*/
|
|
static int
|
|
fe_probe_mbh ( DEVICE * dev, struct fe_softc * sc )
|
|
{
|
|
int i,type;
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR0, 0x09, 0x00 },
|
|
{ FE_DLCR2, 0x79, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
{ FE_DLCR6, 0xFF, 0xB6 },
|
|
/*
|
|
* The following location has the first byte of the card's
|
|
* Ethernet (MAC) address.
|
|
* We can always verify the *first* 2 bits (in Ethernet
|
|
* bit order) are "global" and "unicast" for any vendors'.
|
|
*/
|
|
{ FE_MBH10, 0x03, 0x00 },
|
|
|
|
/* Just a gap? Seems reliable, anyway. */
|
|
{ 0x12, 0xFF, 0x00 },
|
|
{ 0x13, 0xFF, 0x00 },
|
|
{ 0x14, 0xFF, 0x00 },
|
|
{ 0x15, 0xFF, 0x00 },
|
|
{ 0x16, 0xFF, 0x00 },
|
|
{ 0x17, 0xFF, 0x00 },
|
|
#if 0
|
|
{ 0x18, 0xFF, 0xFF },
|
|
{ 0x19, 0xFF, 0xFF },
|
|
#endif
|
|
|
|
{ 0 }
|
|
};
|
|
|
|
/*
|
|
* We need explicit IRQ and supported address.
|
|
*/
|
|
if ( dev->id_irq == NO_IRQ || ( sc->iobase & ~0x3E0 ) != 0 ) {
|
|
return ( 0 );
|
|
}
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "top of probe" );
|
|
#endif
|
|
|
|
/* Setup an I/O address mapping table. */
|
|
for ( i = 0; i < MAXREGISTERS; i++ ) {
|
|
sc->ioaddr[ i ] = sc->iobase + i;
|
|
}
|
|
|
|
/*
|
|
* See if MBH10302 is on its address.
|
|
* I'm not sure the following probe code works. FIXME.
|
|
*/
|
|
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
|
|
|
|
/* Determine the card type. */
|
|
sc->typestr = "MBH10302 (PCMCIA)";
|
|
|
|
/*
|
|
* Initialize constants in the per-line structure.
|
|
*/
|
|
|
|
/* Get our station address from EEPROM. */
|
|
inblk( sc, FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN );
|
|
|
|
/* Make sure we got a valid station address. */
|
|
if ( sc->sc_enaddr[ 0 ] == 0x00
|
|
&& sc->sc_enaddr[ 1 ] == 0x00
|
|
&& sc->sc_enaddr[ 2 ] == 0x00 ) return 0;
|
|
|
|
/*
|
|
* Program the 86960 as follows:
|
|
* SRAM: 32KB, 100ns, byte-wide access.
|
|
* Transmission buffer: 4KB x 2.
|
|
* System bus interface: 16 bits.
|
|
*/
|
|
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
|
|
sc->proto_dlcr5 = 0;
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
|
|
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
|
|
|
|
/* Setup hooks. We need a special initialization procedure. */
|
|
sc->init = fe_init_mbh;
|
|
|
|
/*
|
|
* Minimum initialization.
|
|
*/
|
|
|
|
/* Minimal initialization of 86960. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Disable all interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
|
|
|
|
#if 1 /* FIXME. */
|
|
/* Initialize system bus interface and encoder/decoder operation. */
|
|
outb( sc->ioaddr[ FE_MBH0 ], FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE );
|
|
#endif
|
|
|
|
/*
|
|
* That's all. MBH10302 occupies 32 I/O addresses, by the way.
|
|
*/
|
|
return 32;
|
|
}
|
|
|
|
/* MBH specific initialization routine. */
|
|
static void
|
|
fe_init_mbh ( struct fe_softc * sc )
|
|
{
|
|
/* Minimal initialization of 86960. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Disable all interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
|
|
|
|
/* Enable master interrupt flag. */
|
|
outb( sc->ioaddr[ FE_MBH0 ], FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE );
|
|
}
|
|
|
|
/*
|
|
* Probe and initialization for TDK/CONTEC PCMCIA Ethernet interface.
|
|
* by MASUI Kenji <masui@cs.titech.ac.jp>
|
|
*
|
|
* (Contec uses TDK Ethenet chip -- hosokawa)
|
|
*
|
|
* This version of fe_probe_tdk has been rewrote to handle
|
|
* *generic* PC card implementation of Fujitsu MB8696x and compatibles.
|
|
* The name _tdk is just for a historical reason. <seki> :-)
|
|
*/
|
|
static int
|
|
fe_probe_tdk ( DEVICE * dev, struct fe_softc * sc )
|
|
{
|
|
int i;
|
|
|
|
static struct fe_simple_probe_struct probe_table [] = {
|
|
{ FE_DLCR2, 0x70, 0x00 },
|
|
{ FE_DLCR4, 0x08, 0x00 },
|
|
/* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
|
|
{ 0 }
|
|
};
|
|
|
|
/* We need an IRQ. */
|
|
if ( dev->id_irq == NO_IRQ ) {
|
|
return ( 0 );
|
|
}
|
|
|
|
/* Generic driver needs Ethernet address taken from CIS. */
|
|
if (sc->arpcom.ac_enaddr[0] == 0
|
|
&& sc->arpcom.ac_enaddr[1] == 0
|
|
&& sc->arpcom.ac_enaddr[2] == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Setup an I/O address mapping table; we need only 16 ports. */
|
|
for (i = 0; i < 16; i++) {
|
|
sc->ioaddr[i] = sc->iobase + i;
|
|
}
|
|
/* Fill unused slots with a safe address. */
|
|
for (i = 16; i < MAXREGISTERS; i++) {
|
|
sc->ioaddr[i] = sc->iobase;
|
|
}
|
|
|
|
/*
|
|
* See if C-NET(PC)C is on its address.
|
|
*/
|
|
|
|
if ( !fe_simple_probe( sc, probe_table ) ) return 0;
|
|
|
|
/* Determine the card type. */
|
|
sc->typestr = "Generic MB8696x Ethernet (PCMCIA)";
|
|
|
|
/*
|
|
* Initialize constants in the per-line structure.
|
|
*/
|
|
|
|
/* The station address *must*be* already in sc_enaddr;
|
|
Make sure we got a valid station address. */
|
|
if ( ( sc->sc_enaddr[ 0 ] & 0x03 ) != 0x00
|
|
|| ( sc->sc_enaddr[ 0 ] == 0x00
|
|
&& sc->sc_enaddr[ 1 ] == 0x00
|
|
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) return 0;
|
|
|
|
/*
|
|
* Program the 86965 as follows:
|
|
* SRAM: 32KB, 100ns, byte-wide access.
|
|
* Transmission buffer: 4KB x 2.
|
|
* System bus interface: 16 bits.
|
|
* XXX: Should we remove IDENT_NICE from DLCR7? Or,
|
|
* even add IDENT_EC instead? FIXME.
|
|
*/
|
|
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
|
|
sc->proto_dlcr5 = 0;
|
|
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
|
|
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
|
|
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
|
|
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
|
|
|
|
/* Minimul initialization of 86960. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Disable all interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0 );
|
|
|
|
/*
|
|
* That's all. C-NET(PC)C occupies 16 I/O addresses.
|
|
*
|
|
* Some PC cards (e.g., TDK and Contec) have 16 I/O addresses,
|
|
* while some others (e.g., Fujitsu) have 32. Fortunately,
|
|
* this generic driver never accesses latter 16 ports in 32
|
|
* ports cards. So, we can assume the *generic* PC cards
|
|
* always have 16 ports.
|
|
*
|
|
* Moreover, PC card probe is isolated from ISA probe, and PC
|
|
* card probe routine doesn't use "# of ports" returned by this
|
|
* function. 16 v.s. 32 is not important now.
|
|
*/
|
|
return 16;
|
|
}
|
|
#endif /* NCARD > 0 */
|
|
|
|
/*
|
|
* Install interface into kernel networking data structures
|
|
*/
|
|
static int
|
|
fe_attach ( DEVICE * dev )
|
|
{
|
|
#if NCARD > 0
|
|
static int already_ifattach[NFE];
|
|
#endif
|
|
struct fe_softc *sc = &fe_softc[dev->id_unit];
|
|
|
|
/*
|
|
* Initialize ifnet structure
|
|
*/
|
|
sc->sc_if.if_softc = sc;
|
|
sc->sc_if.if_unit = sc->sc_unit;
|
|
sc->sc_if.if_name = "fe";
|
|
sc->sc_if.if_output = ether_output;
|
|
sc->sc_if.if_start = fe_start;
|
|
sc->sc_if.if_ioctl = fe_ioctl;
|
|
sc->sc_if.if_watchdog = fe_watchdog;
|
|
|
|
/*
|
|
* Set default interface flags.
|
|
*/
|
|
sc->sc_if.if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
|
|
/*
|
|
* Set maximum size of output queue, if it has not been set.
|
|
* It is done here as this driver may be started after the
|
|
* system initialization (i.e., the interface is PCMCIA.)
|
|
*
|
|
* I'm not sure this is really necessary, but, even if it is,
|
|
* it should be done somewhere else, e.g., in if_attach(),
|
|
* since it must be a common workaround for all network drivers.
|
|
* FIXME.
|
|
*/
|
|
if ( sc->sc_if.if_snd.ifq_maxlen == 0 ) {
|
|
sc->sc_if.if_snd.ifq_maxlen = ifqmaxlen;
|
|
}
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "attach()" );
|
|
#endif
|
|
|
|
#if FE_SINGLE_TRANSMISSION
|
|
/* Override txb config to allocate minimum. */
|
|
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
|
|
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
|
|
#endif
|
|
|
|
/* Modify hardware config if it is requested. */
|
|
if ( dev->id_flags & FE_FLAGS_OVERRIDE_DLCR6 ) {
|
|
sc->proto_dlcr6 = dev->id_flags & FE_FLAGS_DLCR6_VALUE;
|
|
}
|
|
|
|
/* Find TX buffer size, based on the hardware dependent proto. */
|
|
switch ( sc->proto_dlcr6 & FE_D6_TXBSIZ ) {
|
|
case FE_D6_TXBSIZ_2x2KB: sc->txb_size = 2048; break;
|
|
case FE_D6_TXBSIZ_2x4KB: sc->txb_size = 4096; break;
|
|
case FE_D6_TXBSIZ_2x8KB: sc->txb_size = 8192; break;
|
|
default:
|
|
/* Oops, we can't work with single buffer configuration. */
|
|
#if FE_DEBUG >= 2
|
|
log( LOG_WARNING, "fe%d: strange TXBSIZ config; fixing\n",
|
|
sc->sc_unit );
|
|
#endif
|
|
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
|
|
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
|
|
sc->txb_size = 2048;
|
|
break;
|
|
}
|
|
|
|
/* Attach and stop the interface. */
|
|
#if NCARD > 0
|
|
if (already_ifattach[dev->id_unit] != 1) {
|
|
if_attach(&sc->sc_if);
|
|
already_ifattach[dev->id_unit] = 1;
|
|
}
|
|
#else
|
|
if_attach(&sc->sc_if);
|
|
#endif
|
|
fe_stop(sc->sc_unit); /* This changes the state to IDLE. */
|
|
ether_ifattach(&sc->sc_if);
|
|
|
|
/* Print additional info when attached. */
|
|
printf( "fe%d: address %6D, type %s\n", sc->sc_unit,
|
|
sc->sc_enaddr, ":" , sc->typestr );
|
|
#if FE_DEBUG >= 3
|
|
{
|
|
int buf, txb, bbw, sbw, ram;
|
|
|
|
buf = txb = bbw = sbw = ram = -1;
|
|
switch ( sc->proto_dlcr6 & FE_D6_BUFSIZ ) {
|
|
case FE_D6_BUFSIZ_8KB: buf = 8; break;
|
|
case FE_D6_BUFSIZ_16KB: buf = 16; break;
|
|
case FE_D6_BUFSIZ_32KB: buf = 32; break;
|
|
case FE_D6_BUFSIZ_64KB: buf = 64; break;
|
|
}
|
|
switch ( sc->proto_dlcr6 & FE_D6_TXBSIZ ) {
|
|
case FE_D6_TXBSIZ_2x2KB: txb = 2; break;
|
|
case FE_D6_TXBSIZ_2x4KB: txb = 4; break;
|
|
case FE_D6_TXBSIZ_2x8KB: txb = 8; break;
|
|
}
|
|
switch ( sc->proto_dlcr6 & FE_D6_BBW ) {
|
|
case FE_D6_BBW_BYTE: bbw = 8; break;
|
|
case FE_D6_BBW_WORD: bbw = 16; break;
|
|
}
|
|
switch ( sc->proto_dlcr6 & FE_D6_SBW ) {
|
|
case FE_D6_SBW_BYTE: sbw = 8; break;
|
|
case FE_D6_SBW_WORD: sbw = 16; break;
|
|
}
|
|
switch ( sc->proto_dlcr6 & FE_D6_SRAM ) {
|
|
case FE_D6_SRAM_100ns: ram = 100; break;
|
|
case FE_D6_SRAM_150ns: ram = 150; break;
|
|
}
|
|
printf( "fe%d: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
|
|
sc->sc_unit, buf, bbw, ram, txb, sbw );
|
|
}
|
|
#endif
|
|
|
|
#if NBPFILTER > 0
|
|
/* If BPF is in the kernel, call the attach for it. */
|
|
bpfattach( &sc->sc_if, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Reset interface.
|
|
*/
|
|
static void
|
|
fe_reset ( int unit )
|
|
{
|
|
/*
|
|
* Stop interface and re-initialize.
|
|
*/
|
|
fe_stop(unit);
|
|
fe_init(unit);
|
|
}
|
|
|
|
/*
|
|
* Stop everything on the interface.
|
|
*
|
|
* All buffered packets, both transmitting and receiving,
|
|
* if any, will be lost by stopping the interface.
|
|
*/
|
|
static void
|
|
fe_stop ( int unit )
|
|
{
|
|
struct fe_softc *sc = &fe_softc[unit];
|
|
int s;
|
|
|
|
s = splimp();
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "stop()" );
|
|
#endif
|
|
|
|
/* Disable interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0x00 );
|
|
|
|
/* Stop interface hardware. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Clear all interrupt status. */
|
|
outb( sc->ioaddr[ FE_DLCR0 ], 0xFF );
|
|
outb( sc->ioaddr[ FE_DLCR1 ], 0xFF );
|
|
|
|
/* Put the chip in stand-by mode. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR7 ], sc->proto_dlcr7 | FE_D7_POWER_DOWN );
|
|
DELAY( 200 );
|
|
|
|
/* Reset transmitter variables and interface flags. */
|
|
sc->sc_if.if_flags &= ~( IFF_OACTIVE | IFF_RUNNING );
|
|
sc->sc_if.if_timer = 0;
|
|
sc->txb_free = sc->txb_size;
|
|
sc->txb_count = 0;
|
|
sc->txb_sched = 0;
|
|
|
|
/* MAR loading can be delayed. */
|
|
sc->filter_change = 0;
|
|
|
|
/* Update config status also. */
|
|
|
|
/* Call a hook. */
|
|
if ( sc->stop ) sc->stop( sc );
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "end of stop()" );
|
|
#endif
|
|
|
|
(void) splx(s);
|
|
}
|
|
|
|
/*
|
|
* Device timeout/watchdog routine. Entered if the device neglects to
|
|
* generate an interrupt after a transmit has been started on it.
|
|
*/
|
|
static void
|
|
fe_watchdog ( struct ifnet *ifp )
|
|
{
|
|
struct fe_softc *sc = (struct fe_softc *)ifp;
|
|
|
|
#if FE_DEBUG >= 1
|
|
/* A "debug" message. */
|
|
log( LOG_ERR, "fe%d: transmission timeout (%d+%d)%s\n",
|
|
ifp->if_unit, sc->txb_sched, sc->txb_count,
|
|
( ifp->if_flags & IFF_UP ) ? "" : " when down" );
|
|
if ( sc->sc_if.if_opackets == 0 && sc->sc_if.if_ipackets == 0 ) {
|
|
log( LOG_WARNING, "fe%d: wrong IRQ setting in config?\n",
|
|
ifp->if_unit );
|
|
}
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, NULL );
|
|
#endif
|
|
|
|
/* Record how many packets are lost by this accident. */
|
|
ifp->if_oerrors += sc->txb_sched + sc->txb_count;
|
|
|
|
/* Put the interface into known initial state. */
|
|
if ( ifp->if_flags & IFF_UP ) {
|
|
fe_reset( ifp->if_unit );
|
|
} else {
|
|
fe_stop( ifp->if_unit );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize device.
|
|
*/
|
|
static void
|
|
fe_init ( int unit )
|
|
{
|
|
struct fe_softc *sc = &fe_softc[unit];
|
|
int s;
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "init()" );
|
|
#endif
|
|
|
|
/* We need an address. */
|
|
if (TAILQ_EMPTY(&sc->sc_if.if_addrhead)) { /* XXX unlikely */
|
|
#if FE_DEBUG >= 1
|
|
log( LOG_ERR, "fe%d: init() without any address\n",
|
|
sc->sc_unit );
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
#if FE_DEBUG >= 1
|
|
/*
|
|
* Make sure we have a valid station address.
|
|
* The following test is applicable for any Ethernet interfaces.
|
|
* It can be done in somewhere common to all of them. FIXME.
|
|
*/
|
|
if ( ( sc->sc_enaddr[ 0 ] & 0x01 ) != 0
|
|
|| ( sc->sc_enaddr[ 0 ] == 0x00
|
|
&& sc->sc_enaddr[ 1 ] == 0x00
|
|
&& sc->sc_enaddr[ 2 ] == 0x00 ) ) {
|
|
log( LOG_ERR, "fe%d: invalid station address (%6D)\n",
|
|
sc->sc_unit, sc->sc_enaddr, ":" );
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Start initializing 86960. */
|
|
s = splimp();
|
|
|
|
/* Call a hook. */
|
|
if ( sc->init ) sc->init( sc );
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "after init hook" );
|
|
#endif
|
|
|
|
/*
|
|
* Make sure to disable the chip, also.
|
|
* This may also help re-programming the chip after
|
|
* hot insertion of PCMCIAs.
|
|
*/
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Power up the chip and select register bank for DLCRs. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP );
|
|
DELAY( 200 );
|
|
|
|
/* Feed the station address. */
|
|
outblk( sc, FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN );
|
|
|
|
/* Clear multicast address filter to receive nothing. */
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP );
|
|
outblk( sc, FE_MAR8, fe_filter_nothing.data, FE_FILTER_LEN );
|
|
|
|
/* Select the BMPR bank for runtime register access. */
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP );
|
|
|
|
/* Initialize registers. */
|
|
outb( sc->ioaddr[ FE_DLCR0 ], 0xFF ); /* Clear all bits. */
|
|
outb( sc->ioaddr[ FE_DLCR1 ], 0xFF ); /* ditto. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_DLCR4 ], sc->proto_dlcr4 );
|
|
outb( sc->ioaddr[ FE_DLCR5 ], sc->proto_dlcr5 );
|
|
outb( sc->ioaddr[ FE_BMPR10 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_BMPR11 ], FE_B11_CTRL_SKIP | FE_B11_MODE1 );
|
|
outb( sc->ioaddr[ FE_BMPR12 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_BMPR13 ], sc->proto_bmpr13 );
|
|
outb( sc->ioaddr[ FE_BMPR14 ], 0x00 );
|
|
outb( sc->ioaddr[ FE_BMPR15 ], 0x00 );
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "just before enabling DLC" );
|
|
#endif
|
|
|
|
/* Enable interrupts. */
|
|
outb( sc->ioaddr[ FE_DLCR2 ], FE_TMASK );
|
|
outb( sc->ioaddr[ FE_DLCR3 ], FE_RMASK );
|
|
|
|
/* Enable transmitter and receiver. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_ENABLE );
|
|
DELAY( 200 );
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "just after enabling DLC" );
|
|
#endif
|
|
|
|
/*
|
|
* Make sure to empty the receive buffer.
|
|
*
|
|
* This may be redundant, but *if* the receive buffer were full
|
|
* at this point, then the driver would hang. I have experienced
|
|
* some strange hang-up just after UP. I hope the following
|
|
* code solve the problem.
|
|
*
|
|
* I have changed the order of hardware initialization.
|
|
* I think the receive buffer cannot have any packets at this
|
|
* point in this version. The following code *must* be
|
|
* redundant now. FIXME.
|
|
*
|
|
* I've heard a rumore that on some PC card implementation of
|
|
* 8696x, the receive buffer can have some data at this point.
|
|
* The following message helps discovering the fact. FIXME.
|
|
*/
|
|
if ( !( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) ) {
|
|
log( LOG_WARNING,
|
|
"fe%d: receive buffer has some data after reset\n",
|
|
sc->sc_unit );
|
|
|
|
fe_emptybuffer( sc );
|
|
}
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "after ERB loop" );
|
|
#endif
|
|
|
|
/* Do we need this here? Actually, no. I must be paranoia. */
|
|
outb( sc->ioaddr[ FE_DLCR0 ], 0xFF ); /* Clear all bits. */
|
|
outb( sc->ioaddr[ FE_DLCR1 ], 0xFF ); /* ditto. */
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "after FIXME" );
|
|
#endif
|
|
/* Set 'running' flag, because we are now running. */
|
|
sc->sc_if.if_flags |= IFF_RUNNING;
|
|
|
|
/*
|
|
* At this point, the interface is running properly,
|
|
* except that it receives *no* packets. we then call
|
|
* fe_setmode() to tell the chip what packets to be
|
|
* received, based on the if_flags and multicast group
|
|
* list. It completes the initialization process.
|
|
*/
|
|
fe_setmode( sc );
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "after setmode" );
|
|
#endif
|
|
|
|
/* ...and attempt to start output queued packets. */
|
|
fe_start( &sc->sc_if );
|
|
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, "init() done" );
|
|
#endif
|
|
|
|
(void) splx(s);
|
|
}
|
|
|
|
/*
|
|
* This routine actually starts the transmission on the interface
|
|
*/
|
|
static void
|
|
fe_xmit ( struct fe_softc * sc )
|
|
{
|
|
/*
|
|
* Set a timer just in case we never hear from the board again.
|
|
* We use longer timeout for multiple packet transmission.
|
|
* I'm not sure this timer value is appropriate. FIXME.
|
|
*/
|
|
sc->sc_if.if_timer = 1 + sc->txb_count;
|
|
|
|
/* Update txb variables. */
|
|
sc->txb_sched = sc->txb_count;
|
|
sc->txb_count = 0;
|
|
sc->txb_free = sc->txb_size;
|
|
sc->tx_excolls = 0;
|
|
|
|
/* Start transmitter, passing packets in TX buffer. */
|
|
outb( sc->ioaddr[ FE_BMPR10 ], sc->txb_sched | FE_B10_START );
|
|
}
|
|
|
|
/*
|
|
* Start output on interface.
|
|
* We make two assumptions here:
|
|
* 1) that the current priority is set to splimp _before_ this code
|
|
* is called *and* is returned to the appropriate priority after
|
|
* return
|
|
* 2) that the IFF_OACTIVE flag is checked before this code is called
|
|
* (i.e. that the output part of the interface is idle)
|
|
*/
|
|
void
|
|
fe_start ( struct ifnet *ifp )
|
|
{
|
|
struct fe_softc *sc = ifp->if_softc;
|
|
struct mbuf *m;
|
|
|
|
#if FE_DEBUG >= 1
|
|
/* Just a sanity check. */
|
|
if ( ( sc->txb_count == 0 ) != ( sc->txb_free == sc->txb_size ) ) {
|
|
/*
|
|
* Txb_count and txb_free co-works to manage the
|
|
* transmission buffer. Txb_count keeps track of the
|
|
* used potion of the buffer, while txb_free does unused
|
|
* potion. So, as long as the driver runs properly,
|
|
* txb_count is zero if and only if txb_free is same
|
|
* as txb_size (which represents whole buffer.)
|
|
*/
|
|
log( LOG_ERR, "fe%d: inconsistent txb variables (%d, %d)\n",
|
|
sc->sc_unit, sc->txb_count, sc->txb_free );
|
|
/*
|
|
* So, what should I do, then?
|
|
*
|
|
* We now know txb_count and txb_free contradicts. We
|
|
* cannot, however, tell which is wrong. More
|
|
* over, we cannot peek 86960 transmission buffer or
|
|
* reset the transmission buffer. (In fact, we can
|
|
* reset the entire interface. I don't want to do it.)
|
|
*
|
|
* If txb_count is incorrect, leaving it as-is will cause
|
|
* sending of garbage after next interrupt. We have to
|
|
* avoid it. Hence, we reset the txb_count here. If
|
|
* txb_free was incorrect, resetting txb_count just loose
|
|
* some packets. We can live with it.
|
|
*/
|
|
sc->txb_count = 0;
|
|
}
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 1
|
|
/*
|
|
* First, see if there are buffered packets and an idle
|
|
* transmitter - should never happen at this point.
|
|
*/
|
|
if ( ( sc->txb_count > 0 ) && ( sc->txb_sched == 0 ) ) {
|
|
log( LOG_ERR,
|
|
"fe%d: transmitter idle with %d buffered packets\n",
|
|
sc->sc_unit, sc->txb_count );
|
|
fe_xmit( sc );
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Stop accepting more transmission packets temporarily, when
|
|
* a filter change request is delayed. Updating the MARs on
|
|
* 86960 flushes the transmission buffer, so it is delayed
|
|
* until all buffered transmission packets have been sent
|
|
* out.
|
|
*/
|
|
if ( sc->filter_change ) {
|
|
/*
|
|
* Filter change request is delayed only when the DLC is
|
|
* working. DLC soon raise an interrupt after finishing
|
|
* the work.
|
|
*/
|
|
goto indicate_active;
|
|
}
|
|
|
|
for (;;) {
|
|
|
|
/*
|
|
* See if there is room to put another packet in the buffer.
|
|
* We *could* do better job by peeking the send queue to
|
|
* know the length of the next packet. Current version just
|
|
* tests against the worst case (i.e., longest packet). FIXME.
|
|
*
|
|
* When adding the packet-peek feature, don't forget adding a
|
|
* test on txb_count against QUEUEING_MAX.
|
|
* There is a little chance the packet count exceeds
|
|
* the limit. Assume transmission buffer is 8KB (2x8KB
|
|
* configuration) and an application sends a bunch of small
|
|
* (i.e., minimum packet sized) packets rapidly. An 8KB
|
|
* buffer can hold 130 blocks of 62 bytes long...
|
|
*/
|
|
if ( sc->txb_free
|
|
< ETHER_MAX_LEN - ETHER_CRC_LEN + FE_DATA_LEN_LEN ) {
|
|
/* No room. */
|
|
goto indicate_active;
|
|
}
|
|
|
|
#if FE_SINGLE_TRANSMISSION
|
|
if ( sc->txb_count > 0 ) {
|
|
/* Just one packet per a transmission buffer. */
|
|
goto indicate_active;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Get the next mbuf chain for a packet to send.
|
|
*/
|
|
IF_DEQUEUE( &sc->sc_if.if_snd, m );
|
|
if ( m == NULL ) {
|
|
/* No more packets to send. */
|
|
goto indicate_inactive;
|
|
}
|
|
|
|
/*
|
|
* Copy the mbuf chain into the transmission buffer.
|
|
* txb_* variables are updated as necessary.
|
|
*/
|
|
fe_write_mbufs( sc, m );
|
|
|
|
/* Start transmitter if it's idle. */
|
|
if ( ( sc->txb_count > 0 ) && ( sc->txb_sched == 0 ) ) {
|
|
fe_xmit( sc );
|
|
}
|
|
|
|
/*
|
|
* Tap off here if there is a bpf listener,
|
|
* and the device is *not* in promiscuous mode.
|
|
* (86960 receives self-generated packets if
|
|
* and only if it is in "receive everything"
|
|
* mode.)
|
|
*/
|
|
#if NBPFILTER > 0
|
|
if ( sc->sc_if.if_bpf
|
|
&& !( sc->sc_if.if_flags & IFF_PROMISC ) ) {
|
|
bpf_mtap( &sc->sc_if, m );
|
|
}
|
|
#endif
|
|
|
|
m_freem( m );
|
|
}
|
|
|
|
indicate_inactive:
|
|
/*
|
|
* We are using the !OACTIVE flag to indicate to
|
|
* the outside world that we can accept an
|
|
* additional packet rather than that the
|
|
* transmitter is _actually_ active. Indeed, the
|
|
* transmitter may be active, but if we haven't
|
|
* filled all the buffers with data then we still
|
|
* want to accept more.
|
|
*/
|
|
sc->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
return;
|
|
|
|
indicate_active:
|
|
/*
|
|
* The transmitter is active, and there are no room for
|
|
* more outgoing packets in the transmission buffer.
|
|
*/
|
|
sc->sc_if.if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Drop (skip) a packet from receive buffer in 86960 memory.
|
|
*/
|
|
static void
|
|
fe_droppacket ( struct fe_softc * sc, int len )
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* 86960 manual says that we have to read 8 bytes from the buffer
|
|
* before skip the packets and that there must be more than 8 bytes
|
|
* remaining in the buffer when issue a skip command.
|
|
* Remember, we have already read 4 bytes before come here.
|
|
*/
|
|
if ( len > 12 ) {
|
|
/* Read 4 more bytes, and skip the rest of the packet. */
|
|
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
outb( sc->ioaddr[ FE_BMPR14 ], FE_B14_SKIP );
|
|
} else {
|
|
/* We should not come here unless receiving RUNTs. */
|
|
for ( i = 0; i < len; i += 2 ) {
|
|
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Empty receiving buffer.
|
|
*/
|
|
static void
|
|
fe_emptybuffer ( struct fe_softc * sc )
|
|
{
|
|
int i;
|
|
u_char saved_dlcr5;
|
|
|
|
#if FE_DEBUG >= 2
|
|
log( LOG_WARNING, "fe%d: emptying receive buffer\n", sc->sc_unit );
|
|
#endif
|
|
/*
|
|
* Stop receiving packets, temporarily.
|
|
*/
|
|
saved_dlcr5 = inb( sc->ioaddr[ FE_DLCR5 ] );
|
|
outb( sc->ioaddr[ FE_DLCR5 ], sc->proto_dlcr5 );
|
|
DELAY(1300);
|
|
|
|
/*
|
|
* When we come here, the receive buffer management should
|
|
* have been broken. So, we cannot use skip operation.
|
|
* Just discard everything in the buffer.
|
|
*/
|
|
for (i = 0; i < 32768; i++) {
|
|
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) break;
|
|
( void )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
}
|
|
|
|
/*
|
|
* Double check.
|
|
*/
|
|
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) {
|
|
log( LOG_ERR, "fe%d: could not empty receive buffer\n",
|
|
sc->sc_unit );
|
|
/* Hmm. What should I do if this happens? FIXME. */
|
|
}
|
|
|
|
/*
|
|
* Restart receiving packets.
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR5 ], saved_dlcr5 );
|
|
}
|
|
|
|
/*
|
|
* Transmission interrupt handler
|
|
* The control flow of this function looks silly. FIXME.
|
|
*/
|
|
static void
|
|
fe_tint ( struct fe_softc * sc, u_char tstat )
|
|
{
|
|
int left;
|
|
int col;
|
|
|
|
/*
|
|
* Handle "excessive collision" interrupt.
|
|
*/
|
|
if ( tstat & FE_D0_COLL16 ) {
|
|
|
|
/*
|
|
* Find how many packets (including this collided one)
|
|
* are left unsent in transmission buffer.
|
|
*/
|
|
left = inb( sc->ioaddr[ FE_BMPR10 ] );
|
|
|
|
#if FE_DEBUG >= 2
|
|
log( LOG_WARNING, "fe%d: excessive collision (%d/%d)\n",
|
|
sc->sc_unit, left, sc->txb_sched );
|
|
#endif
|
|
#if FE_DEBUG >= 3
|
|
fe_dump( LOG_INFO, sc, NULL );
|
|
#endif
|
|
|
|
/*
|
|
* Clear the collision flag (in 86960) here
|
|
* to avoid confusing statistics.
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR0 ], FE_D0_COLLID );
|
|
|
|
/*
|
|
* Restart transmitter, skipping the
|
|
* collided packet.
|
|
*
|
|
* We *must* skip the packet to keep network running
|
|
* properly. Excessive collision error is an
|
|
* indication of the network overload. If we
|
|
* tried sending the same packet after excessive
|
|
* collision, the network would be filled with
|
|
* out-of-time packets. Packets belonging
|
|
* to reliable transport (such as TCP) are resent
|
|
* by some upper layer.
|
|
*/
|
|
outb( sc->ioaddr[ FE_BMPR11 ],
|
|
FE_B11_CTRL_SKIP | FE_B11_MODE1 );
|
|
|
|
/* Update statistics. */
|
|
sc->tx_excolls++;
|
|
}
|
|
|
|
/*
|
|
* Handle "transmission complete" interrupt.
|
|
*/
|
|
if ( tstat & FE_D0_TXDONE ) {
|
|
|
|
/*
|
|
* Add in total number of collisions on last
|
|
* transmission. We also clear "collision occurred" flag
|
|
* here.
|
|
*
|
|
* 86960 has a design flaw on collision count on multiple
|
|
* packet transmission. When we send two or more packets
|
|
* with one start command (that's what we do when the
|
|
* transmission queue is crowded), 86960 informs us number
|
|
* of collisions occurred on the last packet on the
|
|
* transmission only. Number of collisions on previous
|
|
* packets are lost. I have told that the fact is clearly
|
|
* stated in the Fujitsu document.
|
|
*
|
|
* I considered not to mind it seriously. Collision
|
|
* count is not so important, anyway. Any comments? FIXME.
|
|
*/
|
|
|
|
if ( inb( sc->ioaddr[ FE_DLCR0 ] ) & FE_D0_COLLID ) {
|
|
|
|
/* Clear collision flag. */
|
|
outb( sc->ioaddr[ FE_DLCR0 ], FE_D0_COLLID );
|
|
|
|
/* Extract collision count from 86960. */
|
|
col = inb( sc->ioaddr[ FE_DLCR4 ] );
|
|
col = ( col & FE_D4_COL ) >> FE_D4_COL_SHIFT;
|
|
if ( col == 0 ) {
|
|
/*
|
|
* Status register indicates collisions,
|
|
* while the collision count is zero.
|
|
* This can happen after multiple packet
|
|
* transmission, indicating that one or more
|
|
* previous packet(s) had been collided.
|
|
*
|
|
* Since the accurate number of collisions
|
|
* has been lost, we just guess it as 1;
|
|
* Am I too optimistic? FIXME.
|
|
*/
|
|
col = 1;
|
|
}
|
|
sc->sc_if.if_collisions += col;
|
|
#if FE_DEBUG >= 3
|
|
log( LOG_WARNING, "fe%d: %d collision(s) (%d)\n",
|
|
sc->sc_unit, col, sc->txb_sched );
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Update transmission statistics.
|
|
* Be sure to reflect number of excessive collisions.
|
|
*/
|
|
sc->sc_if.if_opackets += sc->txb_sched - sc->tx_excolls;
|
|
sc->sc_if.if_oerrors += sc->tx_excolls;
|
|
sc->sc_if.if_collisions += sc->tx_excolls * 16;
|
|
sc->txb_sched = 0;
|
|
|
|
/*
|
|
* The transmitter is no more active.
|
|
* Reset output active flag and watchdog timer.
|
|
*/
|
|
sc->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
sc->sc_if.if_timer = 0;
|
|
|
|
/*
|
|
* If more data is ready to transmit in the buffer, start
|
|
* transmitting them. Otherwise keep transmitter idle,
|
|
* even if more data is queued. This gives receive
|
|
* process a slight priority.
|
|
*/
|
|
if ( sc->txb_count > 0 ) fe_xmit( sc );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface receiver interrupt.
|
|
*/
|
|
static void
|
|
fe_rint ( struct fe_softc * sc, u_char rstat )
|
|
{
|
|
u_short len;
|
|
u_char status;
|
|
int i;
|
|
|
|
/*
|
|
* Update statistics if this interrupt is caused by an error.
|
|
*/
|
|
if ( rstat & ( FE_D1_OVRFLO | FE_D1_CRCERR
|
|
| FE_D1_ALGERR | FE_D1_SRTPKT ) ) {
|
|
#if FE_DEBUG >= 2
|
|
log( LOG_WARNING,
|
|
"fe%d: receive error: %s%s%s%s(%02x)\n",
|
|
sc->sc_unit,
|
|
rstat & FE_D1_OVRFLO ? "OVR " : "",
|
|
rstat & FE_D1_CRCERR ? "CRC " : "",
|
|
rstat & FE_D1_ALGERR ? "ALG " : "",
|
|
rstat & FE_D1_SRTPKT ? "LEN " : "",
|
|
rstat );
|
|
#endif
|
|
sc->sc_if.if_ierrors++;
|
|
}
|
|
|
|
/*
|
|
* MB86960 has a flag indicating "receive queue empty."
|
|
* We just loop, checking the flag, to pull out all received
|
|
* packets.
|
|
*
|
|
* We limit the number of iterations to avoid infinite-loop.
|
|
* The upper bound is set to unrealistic high value.
|
|
*/
|
|
for (i = 0; i < FE_MAX_RECV_COUNT * 2; i++) {
|
|
|
|
/* Stop the iteration if 86960 indicates no packets. */
|
|
if ( inb( sc->ioaddr[ FE_DLCR5 ] ) & FE_D5_BUFEMP ) break;
|
|
|
|
/*
|
|
* Extract A receive status byte.
|
|
* As our 86960 is in 16 bit bus access mode, we have to
|
|
* use inw() to get the status byte. The significant
|
|
* value is returned in lower 8 bits.
|
|
*/
|
|
status = ( u_char )inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
#if FE_DEBUG >= 4
|
|
log( LOG_INFO, "fe%d: receive status = %04x\n",
|
|
sc->sc_unit, status );
|
|
#endif
|
|
|
|
/*
|
|
* Extract the packet length.
|
|
* It is a sum of a header (14 bytes) and a payload.
|
|
* CRC has been stripped off by the 86960.
|
|
*/
|
|
len = inw( sc->ioaddr[ FE_BMPR8 ] );
|
|
|
|
#if FE_DEBUG >= 1
|
|
/*
|
|
* If there was an error with the received packet, it
|
|
* must be an indication of out-of-sync on receive
|
|
* buffer, because we have programmed the 8696x to
|
|
* to discard errored packets, even when the interface
|
|
* is in promiscuous mode. We have to re-synchronize.
|
|
*/
|
|
if (!(status & FE_RPH_GOOD)) {
|
|
log(LOG_ERR,
|
|
"fe%d: corrupted receive status byte (%02x)\n",
|
|
sc->arpcom.ac_if.if_unit, status);
|
|
sc->arpcom.ac_if.if_ierrors++;
|
|
fe_emptybuffer( sc );
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 1
|
|
/*
|
|
* MB86960 checks the packet length and drop big packet
|
|
* before passing it to us. There are no chance we can
|
|
* get big packets through it, even if they are actually
|
|
* sent over a line. Hence, if the length exceeds
|
|
* the specified limit, it means some serious failure,
|
|
* such as out-of-sync on receive buffer management.
|
|
*
|
|
* Same for short packets, since we have programmed
|
|
* 86960 to drop short packets.
|
|
*/
|
|
if ( len > ETHER_MAX_LEN - ETHER_CRC_LEN
|
|
|| len < ETHER_MIN_LEN - ETHER_CRC_LEN ) {
|
|
log( LOG_WARNING,
|
|
"fe%d: received a %s packet? (%u bytes)\n",
|
|
sc->sc_unit,
|
|
len < ETHER_MIN_LEN - ETHER_CRC_LEN
|
|
? "partial" : "big",
|
|
len );
|
|
sc->sc_if.if_ierrors++;
|
|
fe_emptybuffer( sc );
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Go get a packet.
|
|
*/
|
|
if ( fe_get_packet( sc, len ) < 0 ) {
|
|
|
|
#if FE_DEBUG >= 2
|
|
log( LOG_WARNING, "%s%d: out of mbuf;"
|
|
" dropping a packet (%u bytes)\n",
|
|
sc->sc_unit, len );
|
|
#endif
|
|
|
|
/* Skip a packet, updating statistics. */
|
|
sc->sc_if.if_ierrors++;
|
|
fe_droppacket( sc, len );
|
|
|
|
/*
|
|
* Try extracting other packets, although they will
|
|
* cause out-of-mbuf error again. This is required
|
|
* to keep receiver interrupt comming.
|
|
* (Earlier versions had a bug on this point.)
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/* Successfully received a packet. Update stat. */
|
|
sc->sc_if.if_ipackets++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface interrupt processor
|
|
*/
|
|
void
|
|
feintr ( int unit )
|
|
{
|
|
struct fe_softc *sc = &fe_softc[unit];
|
|
u_char tstat, rstat;
|
|
|
|
/*
|
|
* Loop until there are no more new interrupt conditions.
|
|
*/
|
|
for (;;) {
|
|
|
|
#if FE_DEBUG >= 4
|
|
fe_dump( LOG_INFO, sc, "intr()" );
|
|
#endif
|
|
|
|
/*
|
|
* Get interrupt conditions, masking unneeded flags.
|
|
*/
|
|
tstat = inb( sc->ioaddr[ FE_DLCR0 ] ) & FE_TMASK;
|
|
rstat = inb( sc->ioaddr[ FE_DLCR1 ] ) & FE_RMASK;
|
|
|
|
#if FE_DEBUG >= 1
|
|
/* Test for a "dead-lock" condition. */
|
|
if ((rstat & FE_D1_PKTRDY) == 0
|
|
&& (inb(sc->ioaddr[FE_DLCR5]) & FE_D5_BUFEMP) == 0
|
|
&& (inb(sc->ioaddr[FE_DLCR1]) & FE_D1_PKTRDY) == 0) {
|
|
/*
|
|
* PKTRDY is off, while receive buffer is not empty.
|
|
* We did a double check to avoid a race condition...
|
|
* So, we should have missed an interrupt.
|
|
*/
|
|
log(LOG_WARNING,
|
|
"fe%d: missed a receiver interrupt?\n",
|
|
sc->arpcom.ac_if.if_unit);
|
|
/* Simulate the missed interrupt condition. */
|
|
rstat |= FE_D1_PKTRDY;
|
|
}
|
|
#endif
|
|
|
|
/* Stop processing if there are no interrupts to handle. */
|
|
if ( tstat == 0 && rstat == 0 ) break;
|
|
|
|
/*
|
|
* Reset the conditions we are acknowledging.
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR0 ], tstat );
|
|
outb( sc->ioaddr[ FE_DLCR1 ], rstat );
|
|
|
|
/*
|
|
* Handle transmitter interrupts. Handle these first because
|
|
* the receiver will reset the board under some conditions.
|
|
*/
|
|
if ( tstat ) {
|
|
fe_tint( sc, tstat );
|
|
}
|
|
|
|
/*
|
|
* Handle receiver interrupts
|
|
*/
|
|
if ( rstat ) {
|
|
fe_rint( sc, rstat );
|
|
}
|
|
|
|
/*
|
|
* Update the multicast address filter if it is
|
|
* needed and possible. We do it now, because
|
|
* we can make sure the transmission buffer is empty,
|
|
* and there is a good chance that the receive queue
|
|
* is empty. It will minimize the possibility of
|
|
* packet loss.
|
|
*/
|
|
if ( sc->filter_change
|
|
&& sc->txb_count == 0 && sc->txb_sched == 0 ) {
|
|
fe_loadmar(sc);
|
|
sc->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
/*
|
|
* If it looks like the transmitter can take more data,
|
|
* attempt to start output on the interface. This is done
|
|
* after handling the receiver interrupt to give the
|
|
* receive operation priority.
|
|
*
|
|
* BTW, I'm not sure in what case the OACTIVE is on at
|
|
* this point. Is the following test redundant?
|
|
*
|
|
* No. This routine polls for both transmitter and
|
|
* receiver interrupts. 86960 can raise a receiver
|
|
* interrupt when the transmission buffer is full.
|
|
*/
|
|
if ( ( sc->sc_if.if_flags & IFF_OACTIVE ) == 0 ) {
|
|
fe_start( &sc->sc_if );
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request. This code needs some work - it looks
|
|
* pretty ugly.
|
|
*/
|
|
static int
|
|
fe_ioctl ( struct ifnet * ifp, int command, caddr_t data )
|
|
{
|
|
struct fe_softc *sc = ifp->if_softc;
|
|
int s, error = 0;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log( LOG_INFO, "fe%d: ioctl(%x)\n", sc->sc_unit, command );
|
|
#endif
|
|
|
|
s = splimp();
|
|
|
|
switch (command) {
|
|
|
|
case SIOCSIFADDR:
|
|
{
|
|
struct ifaddr * ifa = ( struct ifaddr * )data;
|
|
|
|
sc->sc_if.if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
fe_init( sc->sc_unit ); /* before arp_ifinit */
|
|
arp_ifinit( &sc->arpcom, ifa );
|
|
break;
|
|
#endif
|
|
#ifdef IPX
|
|
/*
|
|
* XXX - This code is probably wrong
|
|
*/
|
|
case AF_IPX:
|
|
{
|
|
register struct ipx_addr *ina
|
|
= &(IA_SIPX(ifa)->sipx_addr);
|
|
|
|
if (ipx_nullhost(*ina))
|
|
ina->x_host =
|
|
*(union ipx_host *) (sc->sc_enaddr); else {
|
|
bcopy((caddr_t) ina->x_host.c_host,
|
|
(caddr_t) sc->sc_enaddr,
|
|
sizeof(sc->sc_enaddr));
|
|
}
|
|
|
|
/*
|
|
* Set new address
|
|
*/
|
|
fe_init(sc->sc_unit);
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
/* IPV6 added by shin 96.2.6 */
|
|
fe_init(sc->sc_unit);
|
|
ndp6_ifinit(&sc->arpcom, ifa);
|
|
break;
|
|
#endif
|
|
#ifdef NS
|
|
|
|
/*
|
|
* XXX - This code is probably wrong
|
|
*/
|
|
case AF_NS:
|
|
{
|
|
register struct ns_addr *ina
|
|
= &(IA_SNS(ifa)->sns_addr);
|
|
|
|
if (ns_nullhost(*ina))
|
|
ina->x_host =
|
|
*(union ns_host *) (sc->sc_enaddr);
|
|
else {
|
|
bcopy((caddr_t) ina->x_host.c_host,
|
|
(caddr_t) sc->sc_enaddr,
|
|
sizeof(sc->sc_enaddr));
|
|
}
|
|
|
|
/*
|
|
* Set new address
|
|
*/
|
|
fe_init(sc->sc_unit);
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
fe_init( sc->sc_unit );
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifdef SIOCGIFADDR
|
|
case SIOCGIFADDR:
|
|
{
|
|
struct ifreq * ifr = ( struct ifreq * )data;
|
|
struct sockaddr * sa = ( struct sockaddr * )&ifr->ifr_data;
|
|
|
|
bcopy((caddr_t)sc->sc_enaddr,
|
|
(caddr_t)sa->sa_data, ETHER_ADDR_LEN);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef SIOCGIFPHYSADDR
|
|
case SIOCGIFPHYSADDR:
|
|
{
|
|
struct ifreq * ifr = ( struct ifreq * )data;
|
|
|
|
bcopy((caddr_t)sc->sc_enaddr,
|
|
(caddr_t)&ifr->ifr_data, ETHER_ADDR_LEN);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef notdef
|
|
#ifdef SIOCSIFPHYSADDR
|
|
case SIOCSIFPHYSADDR:
|
|
{
|
|
/*
|
|
* Set the physical (Ethernet) address of the interface.
|
|
* When and by whom is this command used? FIXME.
|
|
*/
|
|
struct ifreq * ifr = ( struct ifreq * )data;
|
|
|
|
bcopy((caddr_t)&ifr->ifr_data,
|
|
(caddr_t)sc->sc_enaddr, ETHER_ADDR_LEN);
|
|
fe_setlinkaddr( sc );
|
|
break;
|
|
}
|
|
#endif
|
|
#endif /* notdef */
|
|
|
|
#ifdef SIOCSIFFLAGS
|
|
case SIOCSIFFLAGS:
|
|
{
|
|
/*
|
|
* Switch interface state between "running" and
|
|
* "stopped", reflecting the UP flag.
|
|
*/
|
|
if ( sc->sc_if.if_flags & IFF_UP ) {
|
|
if ( ( sc->sc_if.if_flags & IFF_RUNNING ) == 0 ) {
|
|
fe_init( sc->sc_unit );
|
|
}
|
|
} else {
|
|
if ( ( sc->sc_if.if_flags & IFF_RUNNING ) != 0 ) {
|
|
fe_stop( sc->sc_unit );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Promiscuous and/or multicast flags may have changed,
|
|
* so reprogram the multicast filter and/or receive mode.
|
|
*/
|
|
fe_setmode( sc );
|
|
|
|
#if FE_DEBUG >= 1
|
|
/* "ifconfig fe0 debug" to print register dump. */
|
|
if ( sc->sc_if.if_flags & IFF_DEBUG ) {
|
|
fe_dump( LOG_DEBUG, sc, "SIOCSIFFLAGS(DEBUG)" );
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef SIOCADDMULTI
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
fe_setmode( sc );
|
|
error = 0;
|
|
break;
|
|
#endif
|
|
|
|
#ifdef SIOCSIFMTU
|
|
case SIOCSIFMTU:
|
|
{
|
|
/*
|
|
* Set the interface MTU.
|
|
*/
|
|
struct ifreq * ifr = ( struct ifreq * )data;
|
|
|
|
if ( ifr->ifr_mtu > ETHERMTU ) {
|
|
error = EINVAL;
|
|
} else {
|
|
sc->sc_if.if_mtu = ifr->ifr_mtu;
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
|
|
(void) splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Retrieve packet from receive buffer and send to the next level up via
|
|
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
|
|
* Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
|
|
*/
|
|
static int
|
|
fe_get_packet ( struct fe_softc * sc, u_short len )
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
|
|
/*
|
|
* NFS wants the data be aligned to the word (4 byte)
|
|
* boundary. Ethernet header has 14 bytes. There is a
|
|
* 2-byte gap.
|
|
*/
|
|
#define NFS_MAGIC_OFFSET 2
|
|
|
|
/*
|
|
* This function assumes that an Ethernet packet fits in an
|
|
* mbuf (with a cluster attached when necessary.) On FreeBSD
|
|
* 2.0 for x86, which is the primary target of this driver, an
|
|
* mbuf cluster has 4096 bytes, and we are happy. On ancient
|
|
* BSDs, such as vanilla 4.3 for 386, a cluster size was 1024,
|
|
* however. If the following #error message were printed upon
|
|
* compile, you need to rewrite this function.
|
|
*/
|
|
#if ( MCLBYTES < ETHER_MAX_LEN - ETHER_CRC_LEN + NFS_MAGIC_OFFSET )
|
|
#error "Too small MCLBYTES to use fe driver."
|
|
#endif
|
|
|
|
/*
|
|
* Our strategy has one more problem. There is a policy on
|
|
* mbuf cluster allocation. It says that we must have at
|
|
* least MINCLSIZE (208 bytes on FreeBSD 2.0 for x86) to
|
|
* allocate a cluster. For a packet of a size between
|
|
* (MHLEN - 2) to (MINCLSIZE - 2), our code violates the rule...
|
|
* On the other hand, the current code is short, simple,
|
|
* and fast, however. It does no harmful thing, just waists
|
|
* some memory. Any comments? FIXME.
|
|
*/
|
|
|
|
/* Allocate an mbuf with packet header info. */
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if ( m == NULL ) return -1;
|
|
|
|
/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
|
|
if ( len > MHLEN - NFS_MAGIC_OFFSET ) {
|
|
MCLGET( m, M_DONTWAIT );
|
|
if ( !( m->m_flags & M_EXT ) ) {
|
|
m_freem( m );
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Initialize packet header info. */
|
|
m->m_pkthdr.rcvif = &sc->sc_if;
|
|
m->m_pkthdr.len = len;
|
|
|
|
/* Set the length of this packet. */
|
|
m->m_len = len;
|
|
|
|
/* The following silliness is to make NFS happy */
|
|
m->m_data += NFS_MAGIC_OFFSET;
|
|
|
|
/* Get a packet. */
|
|
insw( sc->ioaddr[ FE_BMPR8 ], m->m_data, ( len + 1 ) >> 1 );
|
|
|
|
/* Get (actually just point to) the header part. */
|
|
eh = mtod( m, struct ether_header *);
|
|
|
|
#define ETHER_ADDR_IS_MULTICAST(A) (*(char *)(A) & 1)
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Check if there's a BPF listener on this interface.
|
|
* If it is, hand off the raw packet to bpf.
|
|
*/
|
|
if ( sc->sc_if.if_bpf ) {
|
|
bpf_mtap( &sc->sc_if, m );
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Make sure this packet is (or may be) directed to us.
|
|
* That is, the packet is either unicasted to our address,
|
|
* or broad/multi-casted. If any other packets are
|
|
* received, it is an indication of an error -- probably
|
|
* 86960 is in a wrong operation mode.
|
|
* Promiscuous mode is an exception. Under the mode, all
|
|
* packets on the media must be received. (We must have
|
|
* programmed the 86960 so.)
|
|
*/
|
|
|
|
if ( ( sc->sc_if.if_flags & IFF_PROMISC )
|
|
&& !ETHER_ADDR_IS_MULTICAST( eh->ether_dhost )
|
|
&& bcmp( eh->ether_dhost, sc->sc_enaddr, ETHER_ADDR_LEN ) != 0 ) {
|
|
/*
|
|
* The packet was not for us. This is normal since
|
|
* we are now in promiscuous mode. Just drop the packet.
|
|
*/
|
|
m_freem( m );
|
|
return 0;
|
|
}
|
|
|
|
#if FE_DEBUG >= 3
|
|
if ( !ETHER_ADDR_IS_MULTICAST( eh->ether_dhost )
|
|
&& bcmp( eh->ether_dhost, sc->sc_enaddr, ETHER_ADDR_LEN ) != 0 ) {
|
|
/*
|
|
* This packet was not for us. We can't be in promiscuous
|
|
* mode since the case was handled by above test.
|
|
* We found an error (of this driver.)
|
|
*/
|
|
log( LOG_WARNING,
|
|
"fe%d: got an unwanted packet, dst = %6D\n",
|
|
sc->sc_unit, eh->ether_dhost , ":" );
|
|
m_freem( m );
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Strip off the Ethernet header. */
|
|
m->m_pkthdr.len -= sizeof ( struct ether_header );
|
|
m->m_len -= sizeof ( struct ether_header );
|
|
m->m_data += sizeof ( struct ether_header );
|
|
|
|
/* Feed the packet to upper layer. */
|
|
ether_input( &sc->sc_if, eh, m );
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
|
|
* Returns number of bytes actually written, including length word.
|
|
*
|
|
* If an mbuf chain is too long for an Ethernet frame, it is not sent.
|
|
* Packets shorter than Ethernet minimum are legal, and we pad them
|
|
* before sending out. An exception is "partial" packets which are
|
|
* shorter than mandatory Ethernet header.
|
|
*/
|
|
static void
|
|
fe_write_mbufs ( struct fe_softc *sc, struct mbuf *m )
|
|
{
|
|
u_short addr_bmpr8 = sc->ioaddr[ FE_BMPR8 ];
|
|
u_short length, len;
|
|
struct mbuf *mp;
|
|
u_char *data;
|
|
u_short savebyte; /* WARNING: Architecture dependent! */
|
|
#define NO_PENDING_BYTE 0xFFFF
|
|
|
|
static u_char padding [ ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_HDR_LEN ];
|
|
|
|
#if FE_DEBUG >= 1
|
|
/* First, count up the total number of bytes to copy */
|
|
length = 0;
|
|
for ( mp = m; mp != NULL; mp = mp->m_next ) {
|
|
length += mp->m_len;
|
|
}
|
|
#else
|
|
/* Just use the length value in the packet header. */
|
|
length = m->m_pkthdr.len;
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 2
|
|
/* Check if this matches the one in the packet header. */
|
|
if ( length != m->m_pkthdr.len ) {
|
|
log( LOG_WARNING, "fe%d: packet length mismatch? (%d/%d)\n",
|
|
sc->sc_unit, length, m->m_pkthdr.len );
|
|
}
|
|
#endif
|
|
|
|
#if FE_DEBUG >= 1
|
|
/*
|
|
* Should never send big packets. If such a packet is passed,
|
|
* it should be a bug of upper layer. We just ignore it.
|
|
* ... Partial (too short) packets, neither.
|
|
*/
|
|
if ( length < ETHER_HDR_LEN
|
|
|| length > ETHER_MAX_LEN - ETHER_CRC_LEN ) {
|
|
log( LOG_ERR,
|
|
"fe%d: got an out-of-spec packet (%u bytes) to send\n",
|
|
sc->sc_unit, length );
|
|
sc->sc_if.if_oerrors++;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Put the length word for this frame.
|
|
* Does 86960 accept odd length? -- Yes.
|
|
* Do we need to pad the length to minimum size by ourselves?
|
|
* -- Generally yes. But for (or will be) the last
|
|
* packet in the transmission buffer, we can skip the
|
|
* padding process. It may gain performance slightly. FIXME.
|
|
*/
|
|
outw( addr_bmpr8, max( length, ETHER_MIN_LEN - ETHER_CRC_LEN ) );
|
|
|
|
/*
|
|
* Update buffer status now.
|
|
* Truncate the length up to an even number, since we use outw().
|
|
*/
|
|
length = ( length + 1 ) & ~1;
|
|
sc->txb_free -= FE_DATA_LEN_LEN + max( length, ETHER_MIN_LEN - ETHER_CRC_LEN);
|
|
sc->txb_count++;
|
|
|
|
/*
|
|
* Transfer the data from mbuf chain to the transmission buffer.
|
|
* MB86960 seems to require that data be transferred as words, and
|
|
* only words. So that we require some extra code to patch
|
|
* over odd-length mbufs.
|
|
*/
|
|
savebyte = NO_PENDING_BYTE;
|
|
for ( mp = m; mp != 0; mp = mp->m_next ) {
|
|
|
|
/* Ignore empty mbuf. */
|
|
len = mp->m_len;
|
|
if ( len == 0 ) continue;
|
|
|
|
/* Find the actual data to send. */
|
|
data = mtod(mp, caddr_t);
|
|
|
|
/* Finish the last byte. */
|
|
if ( savebyte != NO_PENDING_BYTE ) {
|
|
outw( addr_bmpr8, savebyte | ( *data << 8 ) );
|
|
data++;
|
|
len--;
|
|
savebyte = NO_PENDING_BYTE;
|
|
}
|
|
|
|
/* output contiguous words */
|
|
if (len > 1) {
|
|
outsw( addr_bmpr8, data, len >> 1);
|
|
data += len & ~1;
|
|
len &= 1;
|
|
}
|
|
|
|
/* Save a remaining byte, if there is one. */
|
|
if ( len > 0 ) {
|
|
savebyte = *data;
|
|
}
|
|
}
|
|
|
|
/* Spit the last byte, if the length is odd. */
|
|
if ( savebyte != NO_PENDING_BYTE ) {
|
|
outw( addr_bmpr8, savebyte );
|
|
}
|
|
|
|
/* Pad to the Ethernet minimum length, if the packet is too short. */
|
|
if ( length < ETHER_MIN_LEN - ETHER_CRC_LEN ) {
|
|
outsw( addr_bmpr8, padding, ( ETHER_MIN_LEN - ETHER_CRC_LEN - length ) >> 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute hash value for an Ethernet address
|
|
*/
|
|
static int
|
|
fe_hash ( u_char * ep )
|
|
{
|
|
#define FE_HASH_MAGIC_NUMBER 0xEDB88320L
|
|
|
|
u_long hash = 0xFFFFFFFFL;
|
|
int i, j;
|
|
u_char b;
|
|
u_long m;
|
|
|
|
for ( i = ETHER_ADDR_LEN; --i >= 0; ) {
|
|
b = *ep++;
|
|
for ( j = 8; --j >= 0; ) {
|
|
m = hash;
|
|
hash >>= 1;
|
|
if ( ( m ^ b ) & 1 ) hash ^= FE_HASH_MAGIC_NUMBER;
|
|
b >>= 1;
|
|
}
|
|
}
|
|
return ( ( int )( hash >> 26 ) );
|
|
}
|
|
|
|
/*
|
|
* Compute the multicast address filter from the
|
|
* list of multicast addresses we need to listen to.
|
|
*/
|
|
static struct fe_filter
|
|
fe_mcaf ( struct fe_softc *sc )
|
|
{
|
|
int index;
|
|
struct fe_filter filter;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
filter = fe_filter_nothing;
|
|
for (ifma = sc->arpcom.ac_if.if_multiaddrs.lh_first; ifma;
|
|
ifma = ifma->ifma_link.le_next) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
index = fe_hash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
#if FE_DEBUG >= 4
|
|
log( LOG_INFO, "fe%d: hash(%6D) == %d\n",
|
|
sc->sc_unit, enm->enm_addrlo , ":", index );
|
|
#endif
|
|
|
|
filter.data[index >> 3] |= 1 << (index & 7);
|
|
}
|
|
return ( filter );
|
|
}
|
|
|
|
/*
|
|
* Calculate a new "multicast packet filter" and put the 86960
|
|
* receiver in appropriate mode.
|
|
*/
|
|
static void
|
|
fe_setmode ( struct fe_softc *sc )
|
|
{
|
|
int flags = sc->sc_if.if_flags;
|
|
|
|
/*
|
|
* If the interface is not running, we postpone the update
|
|
* process for receive modes and multicast address filter
|
|
* until the interface is restarted. It reduces some
|
|
* complicated job on maintaining chip states. (Earlier versions
|
|
* of this driver had a bug on that point...)
|
|
*
|
|
* To complete the trick, fe_init() calls fe_setmode() after
|
|
* restarting the interface.
|
|
*/
|
|
if ( !( flags & IFF_RUNNING ) ) return;
|
|
|
|
/*
|
|
* Promiscuous mode is handled separately.
|
|
*/
|
|
if ( flags & IFF_PROMISC ) {
|
|
/*
|
|
* Program 86960 to receive all packets on the segment
|
|
* including those directed to other stations.
|
|
* Multicast filter stored in MARs are ignored
|
|
* under this setting, so we don't need to update it.
|
|
*
|
|
* Promiscuous mode in FreeBSD 2 is used solely by
|
|
* BPF, and BPF only listens to valid (no error) packets.
|
|
* So, we ignore erroneous ones even in this mode.
|
|
* (Older versions of fe driver mistook the point.)
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR5 ],
|
|
sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1 );
|
|
sc->filter_change = 0;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log( LOG_INFO, "fe%d: promiscuous mode\n", sc->sc_unit );
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Turn the chip to the normal (non-promiscuous) mode.
|
|
*/
|
|
outb( sc->ioaddr[ FE_DLCR5 ], sc->proto_dlcr5 | FE_D5_AFM1 );
|
|
|
|
/*
|
|
* Find the new multicast filter value.
|
|
* I'm not sure we have to handle modes other than MULTICAST.
|
|
* Who sets ALLMULTI? Who turns MULTICAST off? FIXME.
|
|
*/
|
|
if ( flags & IFF_ALLMULTI ) {
|
|
sc->filter = fe_filter_all;
|
|
} else if ( flags & IFF_MULTICAST ) {
|
|
sc->filter = fe_mcaf( sc );
|
|
} else {
|
|
sc->filter = fe_filter_nothing;
|
|
}
|
|
sc->filter_change = 1;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log( LOG_INFO, "fe%d: address filter: [%8D]\n",
|
|
sc->sc_unit, sc->filter.data, " " );
|
|
#endif
|
|
|
|
/*
|
|
* We have to update the multicast filter in the 86960, A.S.A.P.
|
|
*
|
|
* Note that the DLC (Data Link Control unit, i.e. transmitter
|
|
* and receiver) must be stopped when feeding the filter, and
|
|
* DLC trashes all packets in both transmission and receive
|
|
* buffers when stopped.
|
|
*
|
|
* ... Are the above sentences correct? I have to check the
|
|
* manual of the MB86960A. FIXME.
|
|
*
|
|
* To reduce the packet loss, we delay the filter update
|
|
* process until buffers are empty.
|
|
*/
|
|
if ( sc->txb_sched == 0 && sc->txb_count == 0
|
|
&& !( inb( sc->ioaddr[ FE_DLCR1 ] ) & FE_D1_PKTRDY ) ) {
|
|
/*
|
|
* Buffers are (apparently) empty. Load
|
|
* the new filter value into MARs now.
|
|
*/
|
|
fe_loadmar(sc);
|
|
} else {
|
|
/*
|
|
* Buffers are not empty. Mark that we have to update
|
|
* the MARs. The new filter will be loaded by feintr()
|
|
* later.
|
|
*/
|
|
#if FE_DEBUG >= 4
|
|
log( LOG_INFO, "fe%d: filter change delayed\n", sc->sc_unit );
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load a new multicast address filter into MARs.
|
|
*
|
|
* The caller must have splimp'ed before fe_loadmar.
|
|
* This function starts the DLC upon return. So it can be called only
|
|
* when the chip is working, i.e., from the driver's point of view, when
|
|
* a device is RUNNING. (I mistook the point in previous versions.)
|
|
*/
|
|
static void
|
|
fe_loadmar ( struct fe_softc * sc )
|
|
{
|
|
/* Stop the DLC (transmitter and receiver). */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_DISABLE );
|
|
DELAY( 200 );
|
|
|
|
/* Select register bank 1 for MARs. */
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP );
|
|
|
|
/* Copy filter value into the registers. */
|
|
outblk( sc, FE_MAR8, sc->filter.data, FE_FILTER_LEN );
|
|
|
|
/* Restore the bank selection for BMPRs (i.e., runtime registers). */
|
|
outb( sc->ioaddr[ FE_DLCR7 ],
|
|
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP );
|
|
|
|
/* Restart the DLC. */
|
|
DELAY( 200 );
|
|
outb( sc->ioaddr[ FE_DLCR6 ], sc->proto_dlcr6 | FE_D6_DLC_ENABLE );
|
|
DELAY( 200 );
|
|
|
|
/* We have just updated the filter. */
|
|
sc->filter_change = 0;
|
|
|
|
#if FE_DEBUG >= 3
|
|
log( LOG_INFO, "fe%d: address filter changed\n", sc->sc_unit );
|
|
#endif
|
|
}
|
|
|
|
#if FE_DEBUG >= 1
|
|
static void
|
|
fe_dump ( int level, struct fe_softc * sc, char * message )
|
|
{
|
|
log( level, "fe%d: %s,"
|
|
" DLCR = %02x %02x %02x %02x %02x %02x %02x %02x,"
|
|
" BMPR = xx xx %02x %02x %02x %02x %02x %02x,"
|
|
" asic = %02x %02x %02x %02x %02x %02x %02x %02x"
|
|
" + %02x %02x %02x %02x %02x %02x %02x %02x\n",
|
|
sc->sc_unit, message ? message : "registers",
|
|
inb( sc->ioaddr[ FE_DLCR0 ] ), inb( sc->ioaddr[ FE_DLCR1 ] ),
|
|
inb( sc->ioaddr[ FE_DLCR2 ] ), inb( sc->ioaddr[ FE_DLCR3 ] ),
|
|
inb( sc->ioaddr[ FE_DLCR4 ] ), inb( sc->ioaddr[ FE_DLCR5 ] ),
|
|
inb( sc->ioaddr[ FE_DLCR6 ] ), inb( sc->ioaddr[ FE_DLCR7 ] ),
|
|
inb( sc->ioaddr[ FE_BMPR10 ] ), inb( sc->ioaddr[ FE_BMPR11 ] ),
|
|
inb( sc->ioaddr[ FE_BMPR12 ] ), inb( sc->ioaddr[ FE_BMPR13 ] ),
|
|
inb( sc->ioaddr[ FE_BMPR14 ] ), inb( sc->ioaddr[ FE_BMPR15 ] ),
|
|
inb( sc->ioaddr[ 0x10 ] ), inb( sc->ioaddr[ 0x11 ] ),
|
|
inb( sc->ioaddr[ 0x12 ] ), inb( sc->ioaddr[ 0x13 ] ),
|
|
inb( sc->ioaddr[ 0x14 ] ), inb( sc->ioaddr[ 0x15 ] ),
|
|
inb( sc->ioaddr[ 0x16 ] ), inb( sc->ioaddr[ 0x17 ] ),
|
|
inb( sc->ioaddr[ 0x18 ] ), inb( sc->ioaddr[ 0x19 ] ),
|
|
inb( sc->ioaddr[ 0x1A ] ), inb( sc->ioaddr[ 0x1B ] ),
|
|
inb( sc->ioaddr[ 0x1C ] ), inb( sc->ioaddr[ 0x1D ] ),
|
|
inb( sc->ioaddr[ 0x1E ] ), inb( sc->ioaddr[ 0x1F ] ) );
|
|
}
|
|
#endif
|