freebsd-skq/sys/vm/vm_zone.c
tmm 48dbb11156 Add a missing semicolon to unbreak the kernel build with INVARIANTS
(which was unfortunately turned off in the confguration I used for the
last test build).

Spotted by:	jake
Pointy hat to:	tmm
2001-08-05 03:55:02 +00:00

578 lines
14 KiB
C

/*
* Copyright (c) 1997, 1998 John S. Dyson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. Absolutely no warranty of function or purpose is made by the author
* John S. Dyson.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_param.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/vm_zone.h>
static MALLOC_DEFINE(M_ZONE, "ZONE", "Zone header");
#define ZENTRY_FREE (void*)0x12342378
#define ZONE_ROUNDING 32
/*
* This file comprises a very simple zone allocator. This is used
* in lieu of the malloc allocator, where needed or more optimal.
*
* Note that the initial implementation of this had coloring, and
* absolutely no improvement (actually perf degradation) occurred.
*
* Note also that the zones are type stable. The only restriction is
* that the first two longwords of a data structure can be changed
* between allocations. Any data that must be stable between allocations
* must reside in areas after the first two longwords.
*
* zinitna, zinit, zbootinit are the initialization routines.
* zalloc, zfree, are the allocation/free routines.
*/
/*
* Subsystem lock. Never grab it while holding a zone lock.
*/
static struct mtx zone_mtx;
/*
* Singly-linked list of zones, for book-keeping purposes
*/
static SLIST_HEAD(vm_zone_list, vm_zone) zlist;
/*
* Statistics
*/
static int zone_kmem_pages; /* Number of interrupt-safe pages allocated */
static int zone_kern_pages; /* Number of KVA pages allocated */
static int zone_kmem_kvaspace; /* Number of non-intsafe pages allocated */
/*
* Subsystem initialization, called from vm_mem_init()
*/
void
vm_zone_init(void)
{
mtx_init(&zone_mtx, "zone subsystem", MTX_DEF);
SLIST_INIT(&zlist);
}
void
vm_zone_init2(void)
{
/*
* LATER: traverse zlist looking for partially initialized
* LATER: zones and finish initializing them.
*/
}
/*
* Create a zone, but don't allocate the zone structure. If the
* zone had been previously created by the zone boot code, initialize
* various parts of the zone code.
*
* If waits are not allowed during allocation (e.g. during interrupt
* code), a-priori allocate the kernel virtual space, and allocate
* only pages when needed.
*
* Arguments:
* z pointer to zone structure.
* obj pointer to VM object (opt).
* name name of zone.
* size size of zone entries.
* nentries number of zone entries allocated (only ZONE_INTERRUPT.)
* flags ZONE_INTERRUPT -- items can be allocated at interrupt time.
* zalloc number of pages allocated when memory is needed.
*
* Note that when using ZONE_INTERRUPT, the size of the zone is limited
* by the nentries argument. The size of the memory allocatable is
* unlimited if ZONE_INTERRUPT is not set.
*
*/
int
zinitna(vm_zone_t z, vm_object_t obj, char *name, int size,
int nentries, int flags, int zalloc)
{
int totsize, oldzflags;
GIANT_REQUIRED;
oldzflags = z->zflags;
if ((z->zflags & ZONE_BOOT) == 0) {
z->zsize = (size + ZONE_ROUNDING - 1) & ~(ZONE_ROUNDING - 1);
z->zfreecnt = 0;
z->ztotal = 0;
z->zmax = 0;
z->zname = name;
z->znalloc = 0;
z->zitems = NULL;
}
z->zflags |= flags;
/*
* If we cannot wait, allocate KVA space up front, and we will fill
* in pages as needed.
*/
if (z->zflags & ZONE_INTERRUPT) {
totsize = round_page(z->zsize * nentries);
atomic_add_int(&zone_kmem_kvaspace, totsize);
z->zkva = kmem_alloc_pageable(kernel_map, totsize);
if (z->zkva == 0)
return 0;
z->zpagemax = totsize / PAGE_SIZE;
if (obj == NULL) {
z->zobj = vm_object_allocate(OBJT_DEFAULT, z->zpagemax);
} else {
z->zobj = obj;
_vm_object_allocate(OBJT_DEFAULT, z->zpagemax, obj);
}
z->zallocflag = VM_ALLOC_INTERRUPT;
z->zmax += nentries;
} else {
z->zallocflag = VM_ALLOC_SYSTEM;
z->zmax = 0;
}
if (z->zsize > PAGE_SIZE)
z->zfreemin = 1;
else
z->zfreemin = PAGE_SIZE / z->zsize;
z->zpagecount = 0;
if (zalloc)
z->zalloc = zalloc;
else
z->zalloc = 1;
/* our zone is good and ready, add it to the list */
if ((z->zflags & ZONE_BOOT) == 0) {
mtx_init(&(z)->zmtx, "zone", MTX_DEF);
mtx_lock(&zone_mtx);
SLIST_INSERT_HEAD(&zlist, z, zent);
mtx_unlock(&zone_mtx);
}
return 1;
}
/*
* Subroutine same as zinitna, except zone data structure is allocated
* automatically by malloc. This routine should normally be used, except
* in certain tricky startup conditions in the VM system -- then
* zbootinit and zinitna can be used. Zinit is the standard zone
* initialization call.
*/
vm_zone_t
zinit(char *name, int size, int nentries, int flags, int zalloc)
{
vm_zone_t z;
z = (vm_zone_t) malloc(sizeof (struct vm_zone), M_ZONE, M_NOWAIT | M_ZERO);
if (z == NULL)
return NULL;
if (zinitna(z, NULL, name, size, nentries, flags, zalloc) == 0) {
free(z, M_ZONE);
return NULL;
}
return z;
}
/*
* Initialize a zone before the system is fully up.
*
* We can't rely on being able to allocate items dynamically, so we
* kickstart the zone with a number of static items provided by the
* caller.
*
* This routine should only be called before full VM startup.
*/
void
zbootinit(vm_zone_t z, char *name, int size, void *item, int nitems)
{
int i;
z->zname = name;
z->zsize = size;
z->zpagemax = 0;
z->zobj = NULL;
z->zflags = ZONE_BOOT;
z->zfreemin = 0;
z->zallocflag = 0;
z->zpagecount = 0;
z->zalloc = 0;
z->znalloc = 0;
mtx_init(&(z)->zmtx, "zone", MTX_DEF);
bzero(item, nitems * z->zsize);
z->zitems = NULL;
for (i = 0; i < nitems; i++) {
((void **) item)[0] = z->zitems;
#ifdef INVARIANTS
((void **) item)[1] = ZENTRY_FREE;
#endif
z->zitems = item;
(char *) item += z->zsize;
}
z->zfreecnt = nitems;
z->zmax = nitems;
z->ztotal = nitems;
mtx_lock(&zone_mtx);
SLIST_INSERT_HEAD(&zlist, z, zent);
mtx_unlock(&zone_mtx);
}
/*
* Destroy a zone, freeing the allocated memory.
* This does not do any locking for the zone; make sure it is not used
* any more before calling. All zalloc()'ated memory in the zone must have
* been zfree()'d.
* zdestroy() may not be used with zbootinit()'ed zones.
*/
void
zdestroy(vm_zone_t z)
{
int i, nitems, nbytes;
void *item, *min, **itp;
vm_map_t map;
vm_map_entry_t entry;
vm_object_t obj;
vm_pindex_t pindex;
vm_prot_t prot;
boolean_t wired;
GIANT_REQUIRED;
KASSERT(z != NULL, ("invalid zone"));
/*
* This is needed, or the algorithm used for non-interrupt zones will
* blow up badly.
*/
KASSERT(z->ztotal == z->zfreecnt,
("zdestroy() used with an active zone"));
KASSERT((z->zflags & ZONE_BOOT) == 0,
("zdestroy() used with a zbootinit()'ed zone"));
if (z->zflags & ZONE_INTERRUPT) {
kmem_free(kernel_map, z->zkva, z->zpagemax * PAGE_SIZE);
vm_object_deallocate(z->zobj);
atomic_subtract_int(&zone_kmem_kvaspace,
z->zpagemax * PAGE_SIZE);
atomic_subtract_int(&zone_kmem_pages,
z->zpagecount);
cnt.v_wire_count -= z->zpagecount;
} else {
/*
* This is evil h0h0 magic:
* The items may be in z->zitems in a random oder; we have to
* free the start of an allocated area, but do not want to save
* extra information. Additionally, we may not access items that
* were in a freed area.
* This is achieved in the following way: the smallest address
* is selected, and, after removing all items that are in a
* range of z->zalloc * PAGE_SIZE (one allocation unit) from
* it, kmem_free is called on it (since it is the smallest one,
* it must be the start of an area). This is repeated until all
* items are gone.
*/
nbytes = z->zalloc * PAGE_SIZE;
nitems = nbytes / z->zsize;
while (z->zitems != NULL) {
/* Find minimal element. */
item = min = z->zitems;
while (item != NULL) {
if (item < min)
min = item;
item = ((void **)item)[0];
}
/* Free. */
itp = &z->zitems;
i = 0;
while (*itp != NULL && i < nitems) {
if ((char *)*itp >= (char *)min &&
(char *)*itp < (char *)min + nbytes) {
*itp = ((void **)*itp)[0];
i++;
} else
itp = &((void **)*itp)[0];
}
KASSERT(i == nitems, ("zdestroy(): corrupt zone"));
/*
* We can allocate from kmem_map (kmem_malloc) or
* kernel_map (kmem_alloc).
* kmem_map is a submap of kernel_map, so we can use
* vm_map_lookup to retrieve the map we need to use.
*/
map = kernel_map;
if (vm_map_lookup(&map, (vm_offset_t)min, VM_PROT_NONE,
&entry, &obj, &pindex, &prot, &wired) !=
KERN_SUCCESS)
panic("zalloc mapping lost");
/* Need to unlock. */
vm_map_lookup_done(map, entry);
if (map == kmem_map) {
atomic_subtract_int(&zone_kmem_pages,
z->zalloc);
} else if (map == kernel_map) {
atomic_subtract_int(&zone_kern_pages,
z->zalloc);
} else
panic("zdestroy(): bad map");
kmem_free(map, (vm_offset_t)min, nbytes);
}
}
mtx_lock(&zone_mtx);
SLIST_REMOVE(&zlist, z, vm_zone, zent);
mtx_unlock(&zone_mtx);
mtx_destroy(&z->zmtx);
free(z, M_ZONE);
}
/*
* Grow the specified zone to accomodate more items.
*/
static void *
_zget(vm_zone_t z)
{
int i;
vm_page_t m;
int nitems, nbytes;
void *item;
KASSERT(z != NULL, ("invalid zone"));
if (z->zflags & ZONE_INTERRUPT) {
item = (char *) z->zkva + z->zpagecount * PAGE_SIZE;
for (i = 0; ((i < z->zalloc) && (z->zpagecount < z->zpagemax));
i++) {
vm_offset_t zkva;
m = vm_page_alloc(z->zobj, z->zpagecount,
z->zallocflag);
if (m == NULL)
break;
zkva = z->zkva + z->zpagecount * PAGE_SIZE;
pmap_kenter(zkva, VM_PAGE_TO_PHYS(m));
bzero((caddr_t) zkva, PAGE_SIZE);
z->zpagecount++;
atomic_add_int(&zone_kmem_pages, 1);
cnt.v_wire_count++;
}
nitems = (i * PAGE_SIZE) / z->zsize;
} else {
/* Please check zdestroy() when changing this! */
nbytes = z->zalloc * PAGE_SIZE;
/*
* Check to see if the kernel map is already locked. We could allow
* for recursive locks, but that eliminates a valuable debugging
* mechanism, and opens up the kernel map for potential corruption
* by inconsistent data structure manipulation. We could also use
* the interrupt allocation mechanism, but that has size limitations.
* Luckily, we have kmem_map that is a submap of kernel map available
* for memory allocation, and manipulation of that map doesn't affect
* the kernel map structures themselves.
*
* We can wait, so just do normal map allocation in the appropriate
* map.
*/
mtx_unlock(&z->zmtx);
if (lockstatus(&kernel_map->lock, NULL)) {
item = (void *) kmem_malloc(kmem_map, nbytes, M_WAITOK);
if (item != NULL)
atomic_add_int(&zone_kmem_pages, z->zalloc);
} else {
item = (void *) kmem_alloc(kernel_map, nbytes);
if (item != NULL)
atomic_add_int(&zone_kern_pages, z->zalloc);
}
if (item != NULL) {
bzero(item, nbytes);
} else {
nbytes = 0;
}
nitems = nbytes / z->zsize;
mtx_lock(&z->zmtx);
}
z->ztotal += nitems;
/*
* Save one for immediate allocation
*/
if (nitems != 0) {
nitems -= 1;
for (i = 0; i < nitems; i++) {
((void **) item)[0] = z->zitems;
#ifdef INVARIANTS
((void **) item)[1] = ZENTRY_FREE;
#endif
z->zitems = item;
(char *) item += z->zsize;
}
z->zfreecnt += nitems;
z->znalloc++;
} else if (z->zfreecnt > 0) {
item = z->zitems;
z->zitems = ((void **) item)[0];
#ifdef INVARIANTS
KASSERT(((void **) item)[1] == ZENTRY_FREE,
("item is not free"));
((void **) item)[1] = 0;
#endif
z->zfreecnt--;
z->znalloc++;
} else {
item = NULL;
}
mtx_assert(&z->zmtx, MA_OWNED);
return item;
}
/*
* Allocates an item from the specified zone.
*/
void *
zalloc(vm_zone_t z)
{
void *item;
KASSERT(z != NULL, ("invalid zone"));
mtx_lock(&z->zmtx);
if (z->zfreecnt <= z->zfreemin) {
item = _zget(z);
goto out;
}
item = z->zitems;
z->zitems = ((void **) item)[0];
#ifdef INVARIANTS
KASSERT(((void **) item)[1] == ZENTRY_FREE,
("item is not free"));
((void **) item)[1] = 0;
#endif
z->zfreecnt--;
z->znalloc++;
out:
mtx_unlock(&z->zmtx);
return item;
}
/*
* Frees an item back to the specified zone.
*/
void
zfree(vm_zone_t z, void *item)
{
KASSERT(z != NULL, ("invalid zone"));
KASSERT(item != NULL, ("invalid item"));
mtx_lock(&z->zmtx);
((void **) item)[0] = z->zitems;
#ifdef INVARIANTS
KASSERT(((void **) item)[1] != ZENTRY_FREE,
("item is already free"));
((void **) item)[1] = (void *) ZENTRY_FREE;
#endif
z->zitems = item;
z->zfreecnt++;
mtx_unlock(&z->zmtx);
}
/*
* Sysctl handler for vm.zone
*/
static int
sysctl_vm_zone(SYSCTL_HANDLER_ARGS)
{
int error, len, cnt;
const int linesize = 128; /* conservative */
char *tmpbuf, *offset;
vm_zone_t z;
char *p;
cnt = 0;
mtx_lock(&zone_mtx);
SLIST_FOREACH(z, &zlist, zent)
cnt++;
mtx_unlock(&zone_mtx);
MALLOC(tmpbuf, char *, (cnt == 0 ? 1 : cnt) * linesize,
M_TEMP, M_WAITOK);
len = snprintf(tmpbuf, linesize,
"\nITEM SIZE LIMIT USED FREE REQUESTS\n\n");
if (cnt == 0)
tmpbuf[len - 1] = '\0';
error = SYSCTL_OUT(req, tmpbuf, cnt == 0 ? len-1 : len);
if (error || cnt == 0)
goto out;
offset = tmpbuf;
mtx_lock(&zone_mtx);
SLIST_FOREACH(z, &zlist, zent) {
if (cnt == 0) /* list may have changed size */
break;
mtx_lock(&z->zmtx);
len = snprintf(offset, linesize,
"%-12.12s %6.6u, %8.8u, %6.6u, %6.6u, %8.8u\n",
z->zname, z->zsize, z->zmax, (z->ztotal - z->zfreecnt),
z->zfreecnt, z->znalloc);
mtx_unlock(&z->zmtx);
for (p = offset + 12; p > offset && *p == ' '; --p)
/* nothing */ ;
p[1] = ':';
cnt--;
offset += len;
}
mtx_unlock(&zone_mtx);
*offset++ = '\0';
error = SYSCTL_OUT(req, tmpbuf, offset - tmpbuf);
out:
FREE(tmpbuf, M_TEMP);
return (error);
}
SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD,
NULL, 0, sysctl_vm_zone, "A", "Zone Info");
SYSCTL_INT(_vm, OID_AUTO, zone_kmem_pages, CTLFLAG_RD, &zone_kmem_pages, 0,
"Number of interrupt safe pages allocated by zone");
SYSCTL_INT(_vm, OID_AUTO, zone_kmem_kvaspace, CTLFLAG_RD, &zone_kmem_kvaspace, 0,
"KVA space allocated by zone");
SYSCTL_INT(_vm, OID_AUTO, zone_kern_pages, CTLFLAG_RD, &zone_kern_pages, 0,
"Number of non-interrupt safe pages allocated by zone");