freebsd-skq/sys/dev/mmc/mmc.c
Marius Strobl 7a777659ff Correctly use the size of a pointer rather than that of a pointer to a
pointer.

Reported by:	Coverity
CID:		1378432
2017-07-26 21:59:37 +00:00

2543 lines
72 KiB
C

/*-
* Copyright (c) 2006 Bernd Walter. All rights reserved.
* Copyright (c) 2006 M. Warner Losh. All rights reserved.
* Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Portions of this software may have been developed with reference to
* the SD Simplified Specification. The following disclaimer may apply:
*
* The following conditions apply to the release of the simplified
* specification ("Simplified Specification") by the SD Card Association and
* the SD Group. The Simplified Specification is a subset of the complete SD
* Specification which is owned by the SD Card Association and the SD
* Group. This Simplified Specification is provided on a non-confidential
* basis subject to the disclaimers below. Any implementation of the
* Simplified Specification may require a license from the SD Card
* Association, SD Group, SD-3C LLC or other third parties.
*
* Disclaimers:
*
* The information contained in the Simplified Specification is presented only
* as a standard specification for SD Cards and SD Host/Ancillary products and
* is provided "AS-IS" without any representations or warranties of any
* kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD
* Card Association for any damages, any infringements of patents or other
* right of the SD Group, SD-3C LLC, the SD Card Association or any third
* parties, which may result from its use. No license is granted by
* implication, estoppel or otherwise under any patent or other rights of the
* SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing
* herein shall be construed as an obligation by the SD Group, the SD-3C LLC
* or the SD Card Association to disclose or distribute any technical
* information, know-how or other confidential information to any third party.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmc_private.h>
#include <dev/mmc/mmc_subr.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcbrvar.h>
#include <dev/mmc/mmcvar.h>
#include "mmcbr_if.h"
#include "mmcbus_if.h"
CTASSERT(bus_timing_max <= sizeof(uint32_t) * NBBY);
/*
* Per-card data
*/
struct mmc_ivars {
uint32_t raw_cid[4]; /* Raw bits of the CID */
uint32_t raw_csd[4]; /* Raw bits of the CSD */
uint32_t raw_scr[2]; /* Raw bits of the SCR */
uint8_t raw_ext_csd[MMC_EXTCSD_SIZE]; /* Raw bits of the EXT_CSD */
uint32_t raw_sd_status[16]; /* Raw bits of the SD_STATUS */
uint16_t rca;
u_char read_only; /* True when the device is read-only */
u_char high_cap; /* High Capacity device (block addressed) */
enum mmc_card_mode mode;
enum mmc_bus_width bus_width; /* Bus width to use */
struct mmc_cid cid; /* cid decoded */
struct mmc_csd csd; /* csd decoded */
struct mmc_scr scr; /* scr decoded */
struct mmc_sd_status sd_status; /* SD_STATUS decoded */
uint32_t sec_count; /* Card capacity in 512byte blocks */
uint32_t timings; /* Mask of bus timings supported */
uint32_t vccq_120; /* Mask of bus timings at VCCQ of 1.2 V */
uint32_t vccq_180; /* Mask of bus timings at VCCQ of 1.8 V */
uint32_t tran_speed; /* Max speed in normal mode */
uint32_t hs_tran_speed; /* Max speed in high speed mode */
uint32_t erase_sector; /* Card native erase sector size */
uint32_t cmd6_time; /* Generic switch timeout [us] */
char card_id_string[64];/* Formatted CID info (serial, MFG, etc) */
char card_sn_string[16];/* Formatted serial # for disk->d_ident */
};
#define CMD_RETRIES 3
static SYSCTL_NODE(_hw, OID_AUTO, mmc, CTLFLAG_RD, NULL, "mmc driver");
static int mmc_debug;
SYSCTL_INT(_hw_mmc, OID_AUTO, debug, CTLFLAG_RWTUN, &mmc_debug, 0,
"Debug level");
/* bus entry points */
static int mmc_acquire_bus(device_t busdev, device_t dev);
static int mmc_attach(device_t dev);
static int mmc_child_location_str(device_t dev, device_t child, char *buf,
size_t buflen);
static int mmc_detach(device_t dev);
static int mmc_probe(device_t dev);
static int mmc_read_ivar(device_t bus, device_t child, int which,
uintptr_t *result);
static int mmc_release_bus(device_t busdev, device_t dev);
static int mmc_resume(device_t dev);
static void mmc_retune_pause(device_t busdev, device_t dev, bool retune);
static void mmc_retune_unpause(device_t busdev, device_t dev);
static int mmc_suspend(device_t dev);
static int mmc_wait_for_request(device_t busdev, device_t dev,
struct mmc_request *req);
static int mmc_write_ivar(device_t bus, device_t child, int which,
uintptr_t value);
#define MMC_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define MMC_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define MMC_LOCK_INIT(_sc) \
mtx_init(&(_sc)->sc_mtx, device_get_nameunit((_sc)->dev), \
"mmc", MTX_DEF)
#define MMC_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->sc_mtx);
#define MMC_ASSERT_LOCKED(_sc) mtx_assert(&(_sc)->sc_mtx, MA_OWNED);
#define MMC_ASSERT_UNLOCKED(_sc) mtx_assert(&(_sc)->sc_mtx, MA_NOTOWNED);
static int mmc_all_send_cid(struct mmc_softc *sc, uint32_t *rawcid);
static void mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr);
static void mmc_app_decode_sd_status(uint32_t *raw_sd_status,
struct mmc_sd_status *sd_status);
static int mmc_app_sd_status(struct mmc_softc *sc, uint16_t rca,
uint32_t *rawsdstatus);
static int mmc_app_send_scr(struct mmc_softc *sc, uint16_t rca,
uint32_t *rawscr);
static int mmc_calculate_clock(struct mmc_softc *sc);
static void mmc_decode_cid_mmc(uint32_t *raw_cid, struct mmc_cid *cid,
bool is_4_41p);
static void mmc_decode_cid_sd(uint32_t *raw_cid, struct mmc_cid *cid);
static void mmc_decode_csd_mmc(uint32_t *raw_csd, struct mmc_csd *csd);
static int mmc_decode_csd_sd(uint32_t *raw_csd, struct mmc_csd *csd);
static void mmc_delayed_attach(void *xsc);
static int mmc_delete_cards(struct mmc_softc *sc, bool final);
static void mmc_discover_cards(struct mmc_softc *sc);
static void mmc_format_card_id_string(struct mmc_ivars *ivar);
static void mmc_go_discovery(struct mmc_softc *sc);
static uint32_t mmc_get_bits(uint32_t *bits, int bit_len, int start,
int size);
static int mmc_highest_voltage(uint32_t ocr);
static bool mmc_host_timing(device_t dev, enum mmc_bus_timing timing);
static void mmc_idle_cards(struct mmc_softc *sc);
static void mmc_ms_delay(int ms);
static void mmc_log_card(device_t dev, struct mmc_ivars *ivar, int newcard);
static void mmc_power_down(struct mmc_softc *sc);
static void mmc_power_up(struct mmc_softc *sc);
static void mmc_rescan_cards(struct mmc_softc *sc);
static int mmc_retune(device_t busdev, device_t dev, bool reset);
static void mmc_scan(struct mmc_softc *sc);
static int mmc_sd_switch(struct mmc_softc *sc, uint8_t mode, uint8_t grp,
uint8_t value, uint8_t *res);
static int mmc_select_card(struct mmc_softc *sc, uint16_t rca);
static uint32_t mmc_select_vdd(struct mmc_softc *sc, uint32_t ocr);
static int mmc_send_app_op_cond(struct mmc_softc *sc, uint32_t ocr,
uint32_t *rocr);
static int mmc_send_csd(struct mmc_softc *sc, uint16_t rca, uint32_t *rawcsd);
static int mmc_send_if_cond(struct mmc_softc *sc, uint8_t vhs);
static int mmc_send_op_cond(struct mmc_softc *sc, uint32_t ocr,
uint32_t *rocr);
static int mmc_send_relative_addr(struct mmc_softc *sc, uint32_t *resp);
static int mmc_set_blocklen(struct mmc_softc *sc, uint32_t len);
static int mmc_set_card_bus_width(struct mmc_softc *sc, struct mmc_ivars *ivar,
enum mmc_bus_timing timing);
static int mmc_set_power_class(struct mmc_softc *sc, struct mmc_ivars *ivar);
static int mmc_set_relative_addr(struct mmc_softc *sc, uint16_t resp);
static int mmc_set_timing(struct mmc_softc *sc, struct mmc_ivars *ivar,
enum mmc_bus_timing timing);
static int mmc_set_vccq(struct mmc_softc *sc, struct mmc_ivars *ivar,
enum mmc_bus_timing timing);
static int mmc_switch_to_hs200(struct mmc_softc *sc, struct mmc_ivars *ivar,
uint32_t clock);
static int mmc_switch_to_hs400(struct mmc_softc *sc, struct mmc_ivars *ivar,
uint32_t max_dtr, enum mmc_bus_timing max_timing);
static int mmc_test_bus_width(struct mmc_softc *sc);
static uint32_t mmc_timing_to_dtr(struct mmc_ivars *ivar,
enum mmc_bus_timing timing);
static const char *mmc_timing_to_string(enum mmc_bus_timing timing);
static void mmc_update_child_list(struct mmc_softc *sc);
static int mmc_wait_for_command(struct mmc_softc *sc, uint32_t opcode,
uint32_t arg, uint32_t flags, uint32_t *resp, int retries);
static int mmc_wait_for_req(struct mmc_softc *sc, struct mmc_request *req);
static void mmc_wakeup(struct mmc_request *req);
static void
mmc_ms_delay(int ms)
{
DELAY(1000 * ms); /* XXX BAD */
}
static int
mmc_probe(device_t dev)
{
device_set_desc(dev, "MMC/SD bus");
return (0);
}
static int
mmc_attach(device_t dev)
{
struct mmc_softc *sc;
sc = device_get_softc(dev);
sc->dev = dev;
MMC_LOCK_INIT(sc);
/* We'll probe and attach our children later, but before / mount */
sc->config_intrhook.ich_func = mmc_delayed_attach;
sc->config_intrhook.ich_arg = sc;
if (config_intrhook_establish(&sc->config_intrhook) != 0)
device_printf(dev, "config_intrhook_establish failed\n");
return (0);
}
static int
mmc_detach(device_t dev)
{
struct mmc_softc *sc = device_get_softc(dev);
int err;
err = mmc_delete_cards(sc, true);
if (err != 0)
return (err);
mmc_power_down(sc);
MMC_LOCK_DESTROY(sc);
return (0);
}
static int
mmc_suspend(device_t dev)
{
struct mmc_softc *sc = device_get_softc(dev);
int err;
err = bus_generic_suspend(dev);
if (err != 0)
return (err);
/*
* We power down with the bus acquired here, mainly so that no device
* is selected any longer and sc->last_rca gets set to 0. Otherwise,
* the deselect as part of the bus acquisition in mmc_scan() may fail
* during resume, as the bus isn't powered up again before later in
* mmc_go_discovery().
*/
err = mmc_acquire_bus(dev, dev);
if (err != 0)
return (err);
mmc_power_down(sc);
err = mmc_release_bus(dev, dev);
return (err);
}
static int
mmc_resume(device_t dev)
{
struct mmc_softc *sc = device_get_softc(dev);
mmc_scan(sc);
return (bus_generic_resume(dev));
}
static int
mmc_acquire_bus(device_t busdev, device_t dev)
{
struct mmc_softc *sc;
struct mmc_ivars *ivar;
int err;
uint16_t rca;
enum mmc_bus_timing timing;
err = MMCBR_ACQUIRE_HOST(device_get_parent(busdev), busdev);
if (err)
return (err);
sc = device_get_softc(busdev);
MMC_LOCK(sc);
if (sc->owner)
panic("mmc: host bridge didn't serialize us.");
sc->owner = dev;
MMC_UNLOCK(sc);
if (busdev != dev) {
/*
* Keep track of the last rca that we've selected. If
* we're asked to do it again, don't. We never
* unselect unless the bus code itself wants the mmc
* bus, and constantly reselecting causes problems.
*/
ivar = device_get_ivars(dev);
rca = ivar->rca;
if (sc->last_rca != rca) {
if (mmc_select_card(sc, rca) != MMC_ERR_NONE) {
device_printf(busdev, "Card at relative "
"address %d failed to select\n", rca);
return (ENXIO);
}
sc->last_rca = rca;
timing = mmcbr_get_timing(busdev);
/*
* For eMMC modes, setting/updating bus width and VCCQ
* only really is necessary if there actually is more
* than one device on the bus as generally that already
* had to be done by mmc_calculate_clock() or one of
* its calees. Moreover, setting the bus width anew
* can trigger re-tuning (via a CRC error on the next
* CMD), even if not switching between devices an the
* previously selected one is still tuned. Obviously,
* we need to re-tune the host controller if devices
* are actually switched, though.
*/
if (timing >= bus_timing_mmc_ddr52 &&
sc->child_count == 1)
return (0);
/* Prepare bus width for the new card. */
if (bootverbose || mmc_debug) {
device_printf(busdev,
"setting bus width to %d bits %s timing\n",
(ivar->bus_width == bus_width_4) ? 4 :
(ivar->bus_width == bus_width_8) ? 8 : 1,
mmc_timing_to_string(timing));
}
if (mmc_set_card_bus_width(sc, ivar, timing) !=
MMC_ERR_NONE) {
device_printf(busdev, "Card at relative "
"address %d failed to set bus width\n",
rca);
return (ENXIO);
}
mmcbr_set_bus_width(busdev, ivar->bus_width);
mmcbr_update_ios(busdev);
if (mmc_set_vccq(sc, ivar, timing) != MMC_ERR_NONE) {
device_printf(busdev, "Failed to set VCCQ "
"for card at relative address %d\n", rca);
return (ENXIO);
}
if (timing >= bus_timing_mmc_hs200 &&
mmc_retune(busdev, dev, true) != 0) {
device_printf(busdev, "Card at relative "
"address %d failed to re-tune\n", rca);
return (ENXIO);
}
}
} else {
/*
* If there's a card selected, stand down.
*/
if (sc->last_rca != 0) {
if (mmc_select_card(sc, 0) != MMC_ERR_NONE)
return (ENXIO);
sc->last_rca = 0;
}
}
return (0);
}
static int
mmc_release_bus(device_t busdev, device_t dev)
{
struct mmc_softc *sc;
int err;
sc = device_get_softc(busdev);
MMC_LOCK(sc);
if (!sc->owner)
panic("mmc: releasing unowned bus.");
if (sc->owner != dev)
panic("mmc: you don't own the bus. game over.");
MMC_UNLOCK(sc);
err = MMCBR_RELEASE_HOST(device_get_parent(busdev), busdev);
if (err)
return (err);
MMC_LOCK(sc);
sc->owner = NULL;
MMC_UNLOCK(sc);
return (0);
}
static uint32_t
mmc_select_vdd(struct mmc_softc *sc, uint32_t ocr)
{
return (ocr & MMC_OCR_VOLTAGE);
}
static int
mmc_highest_voltage(uint32_t ocr)
{
int i;
for (i = MMC_OCR_MAX_VOLTAGE_SHIFT;
i >= MMC_OCR_MIN_VOLTAGE_SHIFT; i--)
if (ocr & (1 << i))
return (i);
return (-1);
}
static void
mmc_wakeup(struct mmc_request *req)
{
struct mmc_softc *sc;
sc = (struct mmc_softc *)req->done_data;
MMC_LOCK(sc);
req->flags |= MMC_REQ_DONE;
MMC_UNLOCK(sc);
wakeup(req);
}
static int
mmc_wait_for_req(struct mmc_softc *sc, struct mmc_request *req)
{
req->done = mmc_wakeup;
req->done_data = sc;
if (__predict_false(mmc_debug > 1)) {
device_printf(sc->dev, "REQUEST: CMD%d arg %#x flags %#x",
req->cmd->opcode, req->cmd->arg, req->cmd->flags);
if (req->cmd->data) {
printf(" data %d\n", (int)req->cmd->data->len);
} else
printf("\n");
}
MMCBR_REQUEST(device_get_parent(sc->dev), sc->dev, req);
MMC_LOCK(sc);
while ((req->flags & MMC_REQ_DONE) == 0)
msleep(req, &sc->sc_mtx, 0, "mmcreq", 0);
MMC_UNLOCK(sc);
if (__predict_false(mmc_debug > 2 || (mmc_debug > 0 &&
req->cmd->error != MMC_ERR_NONE)))
device_printf(sc->dev, "CMD%d RESULT: %d\n",
req->cmd->opcode, req->cmd->error);
return (0);
}
static int
mmc_wait_for_request(device_t busdev, device_t dev, struct mmc_request *req)
{
struct mmc_softc *sc;
struct mmc_ivars *ivar;
int err, i;
enum mmc_retune_req retune_req;
sc = device_get_softc(busdev);
KASSERT(sc->owner != NULL,
("%s: Request from %s without bus being acquired.", __func__,
device_get_nameunit(dev)));
/*
* Unless no device is selected or re-tuning is already ongoing,
* execute re-tuning if a) the bridge is requesting to do so and
* re-tuning hasn't been otherwise paused, or b) if a child asked
* to be re-tuned prior to pausing (see also mmc_retune_pause()).
*/
if (__predict_false(sc->last_rca != 0 && sc->retune_ongoing == 0 &&
(((retune_req = mmcbr_get_retune_req(busdev)) != retune_req_none &&
sc->retune_paused == 0) || sc->retune_needed == 1))) {
if (__predict_false(mmc_debug > 1)) {
device_printf(busdev,
"Re-tuning with%s circuit reset required\n",
retune_req == retune_req_reset ? "" : "out");
}
if (device_get_parent(dev) == busdev)
ivar = device_get_ivars(dev);
else {
for (i = 0; i < sc->child_count; i++) {
ivar = device_get_ivars(sc->child_list[i]);
if (ivar->rca == sc->last_rca)
break;
}
if (ivar->rca != sc->last_rca)
return (EINVAL);
}
sc->retune_ongoing = 1;
err = mmc_retune(busdev, dev, retune_req == retune_req_reset);
sc->retune_ongoing = 0;
switch (err) {
case MMC_ERR_NONE:
case MMC_ERR_FAILED: /* Re-tune error but still might work */
break;
case MMC_ERR_BADCRC: /* Switch failure on HS400 recovery */
return (ENXIO);
case MMC_ERR_INVALID: /* Driver implementation b0rken */
default: /* Unknown error, should not happen */
return (EINVAL);
}
sc->retune_needed = 0;
}
return (mmc_wait_for_req(sc, req));
}
static int
mmc_wait_for_command(struct mmc_softc *sc, uint32_t opcode,
uint32_t arg, uint32_t flags, uint32_t *resp, int retries)
{
struct mmc_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = opcode;
cmd.arg = arg;
cmd.flags = flags;
cmd.data = NULL;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, retries);
if (err)
return (err);
if (resp) {
if (flags & MMC_RSP_136)
memcpy(resp, cmd.resp, 4 * sizeof(uint32_t));
else
*resp = cmd.resp[0];
}
return (0);
}
static void
mmc_idle_cards(struct mmc_softc *sc)
{
device_t dev;
struct mmc_command cmd;
dev = sc->dev;
mmcbr_set_chip_select(dev, cs_high);
mmcbr_update_ios(dev);
mmc_ms_delay(1);
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = MMC_GO_IDLE_STATE;
cmd.arg = 0;
cmd.flags = MMC_RSP_NONE | MMC_CMD_BC;
cmd.data = NULL;
mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
mmc_ms_delay(1);
mmcbr_set_chip_select(dev, cs_dontcare);
mmcbr_update_ios(dev);
mmc_ms_delay(1);
}
static int
mmc_send_app_op_cond(struct mmc_softc *sc, uint32_t ocr, uint32_t *rocr)
{
struct mmc_command cmd;
int err = MMC_ERR_NONE, i;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = ACMD_SD_SEND_OP_COND;
cmd.arg = ocr;
cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR;
cmd.data = NULL;
for (i = 0; i < 1000; i++) {
err = mmc_wait_for_app_cmd(sc->dev, sc->dev, 0, &cmd,
CMD_RETRIES);
if (err != MMC_ERR_NONE)
break;
if ((cmd.resp[0] & MMC_OCR_CARD_BUSY) ||
(ocr & MMC_OCR_VOLTAGE) == 0)
break;
err = MMC_ERR_TIMEOUT;
mmc_ms_delay(10);
}
if (rocr && err == MMC_ERR_NONE)
*rocr = cmd.resp[0];
return (err);
}
static int
mmc_send_op_cond(struct mmc_softc *sc, uint32_t ocr, uint32_t *rocr)
{
struct mmc_command cmd;
int err = MMC_ERR_NONE, i;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = MMC_SEND_OP_COND;
cmd.arg = ocr;
cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR;
cmd.data = NULL;
for (i = 0; i < 1000; i++) {
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
if (err != MMC_ERR_NONE)
break;
if ((cmd.resp[0] & MMC_OCR_CARD_BUSY) ||
(ocr & MMC_OCR_VOLTAGE) == 0)
break;
err = MMC_ERR_TIMEOUT;
mmc_ms_delay(10);
}
if (rocr && err == MMC_ERR_NONE)
*rocr = cmd.resp[0];
return (err);
}
static int
mmc_send_if_cond(struct mmc_softc *sc, uint8_t vhs)
{
struct mmc_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = SD_SEND_IF_COND;
cmd.arg = (vhs << 8) + 0xAA;
cmd.flags = MMC_RSP_R7 | MMC_CMD_BCR;
cmd.data = NULL;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
return (err);
}
static void
mmc_power_up(struct mmc_softc *sc)
{
device_t dev;
enum mmc_vccq vccq;
dev = sc->dev;
mmcbr_set_vdd(dev, mmc_highest_voltage(mmcbr_get_host_ocr(dev)));
mmcbr_set_bus_mode(dev, opendrain);
mmcbr_set_chip_select(dev, cs_dontcare);
mmcbr_set_bus_width(dev, bus_width_1);
mmcbr_set_power_mode(dev, power_up);
mmcbr_set_clock(dev, 0);
mmcbr_update_ios(dev);
for (vccq = vccq_330; ; vccq--) {
mmcbr_set_vccq(dev, vccq);
if (mmcbr_switch_vccq(dev) == 0 || vccq == vccq_120)
break;
}
mmc_ms_delay(1);
mmcbr_set_clock(dev, SD_MMC_CARD_ID_FREQUENCY);
mmcbr_set_timing(dev, bus_timing_normal);
mmcbr_set_power_mode(dev, power_on);
mmcbr_update_ios(dev);
mmc_ms_delay(2);
}
static void
mmc_power_down(struct mmc_softc *sc)
{
device_t dev = sc->dev;
mmcbr_set_bus_mode(dev, opendrain);
mmcbr_set_chip_select(dev, cs_dontcare);
mmcbr_set_bus_width(dev, bus_width_1);
mmcbr_set_power_mode(dev, power_off);
mmcbr_set_clock(dev, 0);
mmcbr_set_timing(dev, bus_timing_normal);
mmcbr_update_ios(dev);
}
static int
mmc_select_card(struct mmc_softc *sc, uint16_t rca)
{
int err, flags;
flags = (rca ? MMC_RSP_R1B : MMC_RSP_NONE) | MMC_CMD_AC;
sc->retune_paused++;
err = mmc_wait_for_command(sc, MMC_SELECT_CARD, (uint32_t)rca << 16,
flags, NULL, CMD_RETRIES);
sc->retune_paused--;
return (err);
}
static int
mmc_sd_switch(struct mmc_softc *sc, uint8_t mode, uint8_t grp, uint8_t value,
uint8_t *res)
{
int err;
struct mmc_command cmd;
struct mmc_data data;
memset(&cmd, 0, sizeof(cmd));
memset(&data, 0, sizeof(data));
memset(res, 0, 64);
cmd.opcode = SD_SWITCH_FUNC;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.arg = mode << 31; /* 0 - check, 1 - set */
cmd.arg |= 0x00FFFFFF;
cmd.arg &= ~(0xF << (grp * 4));
cmd.arg |= value << (grp * 4);
cmd.data = &data;
data.data = res;
data.len = 64;
data.flags = MMC_DATA_READ;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
return (err);
}
static int
mmc_set_card_bus_width(struct mmc_softc *sc, struct mmc_ivars *ivar,
enum mmc_bus_timing timing)
{
struct mmc_command cmd;
int err;
uint8_t value;
if (mmcbr_get_mode(sc->dev) == mode_sd) {
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = ACMD_SET_CLR_CARD_DETECT;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
cmd.arg = SD_CLR_CARD_DETECT;
err = mmc_wait_for_app_cmd(sc->dev, sc->dev, ivar->rca, &cmd,
CMD_RETRIES);
if (err != 0)
return (err);
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = ACMD_SET_BUS_WIDTH;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
switch (ivar->bus_width) {
case bus_width_1:
cmd.arg = SD_BUS_WIDTH_1;
break;
case bus_width_4:
cmd.arg = SD_BUS_WIDTH_4;
break;
default:
return (MMC_ERR_INVALID);
}
err = mmc_wait_for_app_cmd(sc->dev, sc->dev, ivar->rca, &cmd,
CMD_RETRIES);
} else {
switch (ivar->bus_width) {
case bus_width_1:
if (timing == bus_timing_mmc_hs400 ||
timing == bus_timing_mmc_hs400es)
return (MMC_ERR_INVALID);
value = EXT_CSD_BUS_WIDTH_1;
break;
case bus_width_4:
switch (timing) {
case bus_timing_mmc_ddr52:
value = EXT_CSD_BUS_WIDTH_4_DDR;
break;
case bus_timing_mmc_hs400:
case bus_timing_mmc_hs400es:
return (MMC_ERR_INVALID);
default:
value = EXT_CSD_BUS_WIDTH_4;
break;
}
break;
case bus_width_8:
value = 0;
switch (timing) {
case bus_timing_mmc_hs400es:
value = EXT_CSD_BUS_WIDTH_ES;
/* FALLTHROUGH */
case bus_timing_mmc_ddr52:
case bus_timing_mmc_hs400:
value |= EXT_CSD_BUS_WIDTH_8_DDR;
break;
default:
value = EXT_CSD_BUS_WIDTH_8;
break;
}
break;
default:
return (MMC_ERR_INVALID);
}
err = mmc_switch(sc->dev, sc->dev, ivar->rca,
EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, value,
ivar->cmd6_time, true);
}
return (err);
}
static int
mmc_set_power_class(struct mmc_softc *sc, struct mmc_ivars *ivar)
{
device_t dev;
const uint8_t *ext_csd;
uint32_t clock;
uint8_t value;
dev = sc->dev;
if (mmcbr_get_mode(dev) != mode_mmc || ivar->csd.spec_vers < 4)
return (MMC_ERR_NONE);
value = 0;
ext_csd = ivar->raw_ext_csd;
clock = mmcbr_get_clock(dev);
switch (1 << mmcbr_get_vdd(dev)) {
case MMC_OCR_LOW_VOLTAGE:
if (clock <= MMC_TYPE_HS_26_MAX)
value = ext_csd[EXT_CSD_PWR_CL_26_195];
else if (clock <= MMC_TYPE_HS_52_MAX) {
if (mmcbr_get_timing(dev) >= bus_timing_mmc_ddr52 &&
ivar->bus_width >= bus_width_4)
value = ext_csd[EXT_CSD_PWR_CL_52_195_DDR];
else
value = ext_csd[EXT_CSD_PWR_CL_52_195];
} else if (clock <= MMC_TYPE_HS200_HS400ES_MAX)
value = ext_csd[EXT_CSD_PWR_CL_200_195];
break;
case MMC_OCR_270_280:
case MMC_OCR_280_290:
case MMC_OCR_290_300:
case MMC_OCR_300_310:
case MMC_OCR_310_320:
case MMC_OCR_320_330:
case MMC_OCR_330_340:
case MMC_OCR_340_350:
case MMC_OCR_350_360:
if (clock <= MMC_TYPE_HS_26_MAX)
value = ext_csd[EXT_CSD_PWR_CL_26_360];
else if (clock <= MMC_TYPE_HS_52_MAX) {
if (mmcbr_get_timing(dev) == bus_timing_mmc_ddr52 &&
ivar->bus_width >= bus_width_4)
value = ext_csd[EXT_CSD_PWR_CL_52_360_DDR];
else
value = ext_csd[EXT_CSD_PWR_CL_52_360];
} else if (clock <= MMC_TYPE_HS200_HS400ES_MAX) {
if (ivar->bus_width == bus_width_8)
value = ext_csd[EXT_CSD_PWR_CL_200_360_DDR];
else
value = ext_csd[EXT_CSD_PWR_CL_200_360];
}
break;
default:
device_printf(dev, "No power class support for VDD 0x%x\n",
1 << mmcbr_get_vdd(dev));
return (MMC_ERR_INVALID);
}
if (ivar->bus_width == bus_width_8)
value = (value & EXT_CSD_POWER_CLASS_8BIT_MASK) >>
EXT_CSD_POWER_CLASS_8BIT_SHIFT;
else
value = (value & EXT_CSD_POWER_CLASS_4BIT_MASK) >>
EXT_CSD_POWER_CLASS_4BIT_SHIFT;
if (value == 0)
return (MMC_ERR_NONE);
return (mmc_switch(dev, dev, ivar->rca, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_CLASS, value, ivar->cmd6_time, true));
}
static int
mmc_set_timing(struct mmc_softc *sc, struct mmc_ivars *ivar,
enum mmc_bus_timing timing)
{
u_char switch_res[64];
uint8_t value;
int err;
if (mmcbr_get_mode(sc->dev) == mode_sd) {
switch (timing) {
case bus_timing_normal:
value = SD_SWITCH_NORMAL_MODE;
break;
case bus_timing_hs:
value = SD_SWITCH_HS_MODE;
break;
default:
return (MMC_ERR_INVALID);
}
err = mmc_sd_switch(sc, SD_SWITCH_MODE_SET, SD_SWITCH_GROUP1,
value, switch_res);
if (err != MMC_ERR_NONE)
return (err);
if ((switch_res[16] & 0xf) != value)
return (MMC_ERR_FAILED);
mmcbr_set_timing(sc->dev, timing);
mmcbr_update_ios(sc->dev);
} else {
switch (timing) {
case bus_timing_normal:
value = EXT_CSD_HS_TIMING_BC;
break;
case bus_timing_hs:
case bus_timing_mmc_ddr52:
value = EXT_CSD_HS_TIMING_HS;
break;
case bus_timing_mmc_hs200:
value = EXT_CSD_HS_TIMING_HS200;
break;
case bus_timing_mmc_hs400:
case bus_timing_mmc_hs400es:
value = EXT_CSD_HS_TIMING_HS400;
break;
default:
return (MMC_ERR_INVALID);
}
err = mmc_switch(sc->dev, sc->dev, ivar->rca,
EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, value,
ivar->cmd6_time, false);
if (err != MMC_ERR_NONE)
return (err);
mmcbr_set_timing(sc->dev, timing);
mmcbr_update_ios(sc->dev);
err = mmc_switch_status(sc->dev, sc->dev, ivar->rca,
ivar->cmd6_time);
}
return (err);
}
static int
mmc_set_vccq(struct mmc_softc *sc, struct mmc_ivars *ivar,
enum mmc_bus_timing timing)
{
if (isset(&ivar->vccq_120, timing))
mmcbr_set_vccq(sc->dev, vccq_120);
else if (isset(&ivar->vccq_180, timing))
mmcbr_set_vccq(sc->dev, vccq_180);
else
mmcbr_set_vccq(sc->dev, vccq_330);
if (mmcbr_switch_vccq(sc->dev) != 0)
return (MMC_ERR_INVALID);
else
return (MMC_ERR_NONE);
}
static const uint8_t p8[8] = {
0x55, 0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t p8ok[8] = {
0xAA, 0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t p4[4] = {
0x5A, 0x00, 0x00, 0x00
};
static const uint8_t p4ok[4] = {
0xA5, 0x00, 0x00, 0x00
};
static int
mmc_test_bus_width(struct mmc_softc *sc)
{
struct mmc_command cmd;
struct mmc_data data;
uint8_t buf[8];
int err;
if (mmcbr_get_caps(sc->dev) & MMC_CAP_8_BIT_DATA) {
mmcbr_set_bus_width(sc->dev, bus_width_8);
mmcbr_update_ios(sc->dev);
sc->squelched++; /* Errors are expected, squelch reporting. */
memset(&cmd, 0, sizeof(cmd));
memset(&data, 0, sizeof(data));
cmd.opcode = MMC_BUSTEST_W;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.data = &data;
data.data = __DECONST(void *, p8);
data.len = 8;
data.flags = MMC_DATA_WRITE;
mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, 0);
memset(&cmd, 0, sizeof(cmd));
memset(&data, 0, sizeof(data));
cmd.opcode = MMC_BUSTEST_R;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.data = &data;
data.data = buf;
data.len = 8;
data.flags = MMC_DATA_READ;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, 0);
sc->squelched--;
mmcbr_set_bus_width(sc->dev, bus_width_1);
mmcbr_update_ios(sc->dev);
if (err == MMC_ERR_NONE && memcmp(buf, p8ok, 8) == 0)
return (bus_width_8);
}
if (mmcbr_get_caps(sc->dev) & MMC_CAP_4_BIT_DATA) {
mmcbr_set_bus_width(sc->dev, bus_width_4);
mmcbr_update_ios(sc->dev);
sc->squelched++; /* Errors are expected, squelch reporting. */
memset(&cmd, 0, sizeof(cmd));
memset(&data, 0, sizeof(data));
cmd.opcode = MMC_BUSTEST_W;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.data = &data;
data.data = __DECONST(void *, p4);
data.len = 4;
data.flags = MMC_DATA_WRITE;
mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, 0);
memset(&cmd, 0, sizeof(cmd));
memset(&data, 0, sizeof(data));
cmd.opcode = MMC_BUSTEST_R;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.data = &data;
data.data = buf;
data.len = 4;
data.flags = MMC_DATA_READ;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, 0);
sc->squelched--;
mmcbr_set_bus_width(sc->dev, bus_width_1);
mmcbr_update_ios(sc->dev);
if (err == MMC_ERR_NONE && memcmp(buf, p4ok, 4) == 0)
return (bus_width_4);
}
return (bus_width_1);
}
static uint32_t
mmc_get_bits(uint32_t *bits, int bit_len, int start, int size)
{
const int i = (bit_len / 32) - (start / 32) - 1;
const int shift = start & 31;
uint32_t retval = bits[i] >> shift;
if (size + shift > 32)
retval |= bits[i - 1] << (32 - shift);
return (retval & ((1llu << size) - 1));
}
static void
mmc_decode_cid_sd(uint32_t *raw_cid, struct mmc_cid *cid)
{
int i;
/* There's no version info, so we take it on faith */
memset(cid, 0, sizeof(*cid));
cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
cid->oid = mmc_get_bits(raw_cid, 128, 104, 16);
for (i = 0; i < 5; i++)
cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
cid->pnm[5] = 0;
cid->prv = mmc_get_bits(raw_cid, 128, 56, 8);
cid->psn = mmc_get_bits(raw_cid, 128, 24, 32);
cid->mdt_year = mmc_get_bits(raw_cid, 128, 12, 8) + 2000;
cid->mdt_month = mmc_get_bits(raw_cid, 128, 8, 4);
}
static void
mmc_decode_cid_mmc(uint32_t *raw_cid, struct mmc_cid *cid, bool is_4_41p)
{
int i;
/* There's no version info, so we take it on faith */
memset(cid, 0, sizeof(*cid));
cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
cid->oid = mmc_get_bits(raw_cid, 128, 104, 8);
for (i = 0; i < 6; i++)
cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
cid->pnm[6] = 0;
cid->prv = mmc_get_bits(raw_cid, 128, 48, 8);
cid->psn = mmc_get_bits(raw_cid, 128, 16, 32);
cid->mdt_month = mmc_get_bits(raw_cid, 128, 12, 4);
cid->mdt_year = mmc_get_bits(raw_cid, 128, 8, 4);
if (is_4_41p)
cid->mdt_year += 2013;
else
cid->mdt_year += 1997;
}
static void
mmc_format_card_id_string(struct mmc_ivars *ivar)
{
char oidstr[8];
uint8_t c1;
uint8_t c2;
/*
* Format a card ID string for use by the mmcsd driver, it's what
* appears between the <> in the following:
* mmcsd0: 968MB <SD SD01G 8.0 SN 2686905 Mfg 08/2008 by 3 TN> at mmc0
* 22.5MHz/4bit/128-block
*
* Also format just the card serial number, which the mmcsd driver will
* use as the disk->d_ident string.
*
* The card_id_string in mmc_ivars is currently allocated as 64 bytes,
* and our max formatted length is currently 55 bytes if every field
* contains the largest value.
*
* Sometimes the oid is two printable ascii chars; when it's not,
* format it as 0xnnnn instead.
*/
c1 = (ivar->cid.oid >> 8) & 0x0ff;
c2 = ivar->cid.oid & 0x0ff;
if (c1 > 0x1f && c1 < 0x7f && c2 > 0x1f && c2 < 0x7f)
snprintf(oidstr, sizeof(oidstr), "%c%c", c1, c2);
else
snprintf(oidstr, sizeof(oidstr), "0x%04x", ivar->cid.oid);
snprintf(ivar->card_sn_string, sizeof(ivar->card_sn_string),
"%08X", ivar->cid.psn);
snprintf(ivar->card_id_string, sizeof(ivar->card_id_string),
"%s%s %s %d.%d SN %08X MFG %02d/%04d by %d %s",
ivar->mode == mode_sd ? "SD" : "MMC", ivar->high_cap ? "HC" : "",
ivar->cid.pnm, ivar->cid.prv >> 4, ivar->cid.prv & 0x0f,
ivar->cid.psn, ivar->cid.mdt_month, ivar->cid.mdt_year,
ivar->cid.mid, oidstr);
}
static const int exp[8] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
};
static const int mant[16] = {
0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80
};
static const int cur_min[8] = {
500, 1000, 5000, 10000, 25000, 35000, 60000, 100000
};
static const int cur_max[8] = {
1000, 5000, 10000, 25000, 35000, 45000, 800000, 200000
};
static int
mmc_decode_csd_sd(uint32_t *raw_csd, struct mmc_csd *csd)
{
int v;
int m;
int e;
memset(csd, 0, sizeof(*csd));
csd->csd_structure = v = mmc_get_bits(raw_csd, 128, 126, 2);
if (v == 0) {
m = mmc_get_bits(raw_csd, 128, 115, 4);
e = mmc_get_bits(raw_csd, 128, 112, 3);
csd->tacc = (exp[e] * mant[m] + 9) / 10;
csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
m = mmc_get_bits(raw_csd, 128, 99, 4);
e = mmc_get_bits(raw_csd, 128, 96, 3);
csd->tran_speed = exp[e] * 10000 * mant[m];
csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
csd->vdd_r_curr_min =
cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
csd->vdd_r_curr_max =
cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
csd->vdd_w_curr_min =
cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
csd->vdd_w_curr_max =
cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
m = mmc_get_bits(raw_csd, 128, 62, 12);
e = mmc_get_bits(raw_csd, 128, 47, 3);
csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1);
csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1;
csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7);
csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
return (MMC_ERR_NONE);
} else if (v == 1) {
m = mmc_get_bits(raw_csd, 128, 115, 4);
e = mmc_get_bits(raw_csd, 128, 112, 3);
csd->tacc = (exp[e] * mant[m] + 9) / 10;
csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
m = mmc_get_bits(raw_csd, 128, 99, 4);
e = mmc_get_bits(raw_csd, 128, 96, 3);
csd->tran_speed = exp[e] * 10000 * mant[m];
csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
csd->capacity = ((uint64_t)mmc_get_bits(raw_csd, 128, 48, 22) +
1) * 512 * 1024;
csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1);
csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1;
csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7);
csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
return (MMC_ERR_NONE);
}
return (MMC_ERR_INVALID);
}
static void
mmc_decode_csd_mmc(uint32_t *raw_csd, struct mmc_csd *csd)
{
int m;
int e;
memset(csd, 0, sizeof(*csd));
csd->csd_structure = mmc_get_bits(raw_csd, 128, 126, 2);
csd->spec_vers = mmc_get_bits(raw_csd, 128, 122, 4);
m = mmc_get_bits(raw_csd, 128, 115, 4);
e = mmc_get_bits(raw_csd, 128, 112, 3);
csd->tacc = exp[e] * mant[m] + 9 / 10;
csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
m = mmc_get_bits(raw_csd, 128, 99, 4);
e = mmc_get_bits(raw_csd, 128, 96, 3);
csd->tran_speed = exp[e] * 10000 * mant[m];
csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
m = mmc_get_bits(raw_csd, 128, 62, 12);
e = mmc_get_bits(raw_csd, 128, 47, 3);
csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
csd->erase_blk_en = 0;
csd->erase_sector = (mmc_get_bits(raw_csd, 128, 42, 5) + 1) *
(mmc_get_bits(raw_csd, 128, 37, 5) + 1);
csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 5);
csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
}
static void
mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr)
{
unsigned int scr_struct;
memset(scr, 0, sizeof(*scr));
scr_struct = mmc_get_bits(raw_scr, 64, 60, 4);
if (scr_struct != 0) {
printf("Unrecognised SCR structure version %d\n",
scr_struct);
return;
}
scr->sda_vsn = mmc_get_bits(raw_scr, 64, 56, 4);
scr->bus_widths = mmc_get_bits(raw_scr, 64, 48, 4);
}
static void
mmc_app_decode_sd_status(uint32_t *raw_sd_status,
struct mmc_sd_status *sd_status)
{
memset(sd_status, 0, sizeof(*sd_status));
sd_status->bus_width = mmc_get_bits(raw_sd_status, 512, 510, 2);
sd_status->secured_mode = mmc_get_bits(raw_sd_status, 512, 509, 1);
sd_status->card_type = mmc_get_bits(raw_sd_status, 512, 480, 16);
sd_status->prot_area = mmc_get_bits(raw_sd_status, 512, 448, 12);
sd_status->speed_class = mmc_get_bits(raw_sd_status, 512, 440, 8);
sd_status->perf_move = mmc_get_bits(raw_sd_status, 512, 432, 8);
sd_status->au_size = mmc_get_bits(raw_sd_status, 512, 428, 4);
sd_status->erase_size = mmc_get_bits(raw_sd_status, 512, 408, 16);
sd_status->erase_timeout = mmc_get_bits(raw_sd_status, 512, 402, 6);
sd_status->erase_offset = mmc_get_bits(raw_sd_status, 512, 400, 2);
}
static int
mmc_all_send_cid(struct mmc_softc *sc, uint32_t *rawcid)
{
struct mmc_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = MMC_ALL_SEND_CID;
cmd.arg = 0;
cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR;
cmd.data = NULL;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
memcpy(rawcid, cmd.resp, 4 * sizeof(uint32_t));
return (err);
}
static int
mmc_send_csd(struct mmc_softc *sc, uint16_t rca, uint32_t *rawcsd)
{
struct mmc_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = MMC_SEND_CSD;
cmd.arg = rca << 16;
cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR;
cmd.data = NULL;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
memcpy(rawcsd, cmd.resp, 4 * sizeof(uint32_t));
return (err);
}
static int
mmc_app_send_scr(struct mmc_softc *sc, uint16_t rca, uint32_t *rawscr)
{
int err;
struct mmc_command cmd;
struct mmc_data data;
memset(&cmd, 0, sizeof(cmd));
memset(&data, 0, sizeof(data));
memset(rawscr, 0, 8);
cmd.opcode = ACMD_SEND_SCR;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.arg = 0;
cmd.data = &data;
data.data = rawscr;
data.len = 8;
data.flags = MMC_DATA_READ;
err = mmc_wait_for_app_cmd(sc->dev, sc->dev, rca, &cmd, CMD_RETRIES);
rawscr[0] = be32toh(rawscr[0]);
rawscr[1] = be32toh(rawscr[1]);
return (err);
}
static int
mmc_app_sd_status(struct mmc_softc *sc, uint16_t rca, uint32_t *rawsdstatus)
{
struct mmc_command cmd;
struct mmc_data data;
int err, i;
memset(&cmd, 0, sizeof(cmd));
memset(&data, 0, sizeof(data));
memset(rawsdstatus, 0, 64);
cmd.opcode = ACMD_SD_STATUS;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.arg = 0;
cmd.data = &data;
data.data = rawsdstatus;
data.len = 64;
data.flags = MMC_DATA_READ;
err = mmc_wait_for_app_cmd(sc->dev, sc->dev, rca, &cmd, CMD_RETRIES);
for (i = 0; i < 16; i++)
rawsdstatus[i] = be32toh(rawsdstatus[i]);
return (err);
}
static int
mmc_set_relative_addr(struct mmc_softc *sc, uint16_t resp)
{
struct mmc_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = MMC_SET_RELATIVE_ADDR;
cmd.arg = resp << 16;
cmd.flags = MMC_RSP_R6 | MMC_CMD_BCR;
cmd.data = NULL;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
return (err);
}
static int
mmc_send_relative_addr(struct mmc_softc *sc, uint32_t *resp)
{
struct mmc_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = SD_SEND_RELATIVE_ADDR;
cmd.arg = 0;
cmd.flags = MMC_RSP_R6 | MMC_CMD_BCR;
cmd.data = NULL;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
*resp = cmd.resp[0];
return (err);
}
static int
mmc_set_blocklen(struct mmc_softc *sc, uint32_t len)
{
struct mmc_command cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = MMC_SET_BLOCKLEN;
cmd.arg = len;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
cmd.data = NULL;
err = mmc_wait_for_cmd(sc->dev, sc->dev, &cmd, CMD_RETRIES);
return (err);
}
static uint32_t
mmc_timing_to_dtr(struct mmc_ivars *ivar, enum mmc_bus_timing timing)
{
switch (timing) {
case bus_timing_normal:
return (ivar->tran_speed);
case bus_timing_hs:
return (ivar->hs_tran_speed);
case bus_timing_uhs_sdr12:
return (SD_SDR12_MAX);
case bus_timing_uhs_sdr25:
return (SD_SDR25_MAX);
case bus_timing_uhs_ddr50:
return (SD_DDR50_MAX);
case bus_timing_uhs_sdr50:
return (SD_SDR50_MAX);
case bus_timing_uhs_sdr104:
return (SD_SDR104_MAX);
case bus_timing_mmc_ddr52:
return (MMC_TYPE_DDR52_MAX);
case bus_timing_mmc_hs200:
case bus_timing_mmc_hs400:
case bus_timing_mmc_hs400es:
return (MMC_TYPE_HS200_HS400ES_MAX);
}
return (0);
}
static const char *
mmc_timing_to_string(enum mmc_bus_timing timing)
{
switch (timing) {
case bus_timing_normal:
return ("normal speed");
case bus_timing_hs:
return ("high speed");
case bus_timing_uhs_sdr12:
case bus_timing_uhs_sdr25:
case bus_timing_uhs_sdr50:
case bus_timing_uhs_sdr104:
return ("single data rate");
case bus_timing_uhs_ddr50:
case bus_timing_mmc_ddr52:
return ("dual data rate");
case bus_timing_mmc_hs200:
return ("HS200");
case bus_timing_mmc_hs400:
return ("HS400");
case bus_timing_mmc_hs400es:
return ("HS400 with enhanced strobe");
}
return ("");
}
static bool
mmc_host_timing(device_t dev, enum mmc_bus_timing timing)
{
int host_caps;
host_caps = mmcbr_get_caps(dev);
#define HOST_TIMING_CAP(host_caps, cap) ({ \
bool retval; \
if (((host_caps) & (cap)) == (cap)) \
retval = true; \
else \
retval = false; \
retval; \
})
switch (timing) {
case bus_timing_normal:
return (true);
case bus_timing_hs:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_HSPEED));
case bus_timing_uhs_sdr12:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_SDR12));
case bus_timing_uhs_sdr25:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_SDR25));
case bus_timing_uhs_ddr50:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_DDR50));
case bus_timing_uhs_sdr50:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_SDR50));
case bus_timing_uhs_sdr104:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_UHS_SDR104));
case bus_timing_mmc_ddr52:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_MMC_DDR52));
case bus_timing_mmc_hs200:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_MMC_HS200));
case bus_timing_mmc_hs400:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_MMC_HS400));
case bus_timing_mmc_hs400es:
return (HOST_TIMING_CAP(host_caps, MMC_CAP_MMC_HS400 |
MMC_CAP_MMC_ENH_STROBE));
}
#undef HOST_TIMING_CAP
return (false);
}
static void
mmc_log_card(device_t dev, struct mmc_ivars *ivar, int newcard)
{
enum mmc_bus_timing max_timing, timing;
device_printf(dev, "Card at relative address 0x%04x%s:\n",
ivar->rca, newcard ? " added" : "");
device_printf(dev, " card: %s\n", ivar->card_id_string);
max_timing = bus_timing_normal;
for (timing = bus_timing_max; timing > bus_timing_normal; timing--) {
if (isset(&ivar->timings, timing)) {
max_timing = timing;
break;
}
}
device_printf(dev, " bus: %ubit, %uMHz (%s timing)\n",
(ivar->bus_width == bus_width_1 ? 1 :
(ivar->bus_width == bus_width_4 ? 4 : 8)),
mmc_timing_to_dtr(ivar, timing) / 1000000,
mmc_timing_to_string(timing));
device_printf(dev, " memory: %u blocks, erase sector %u blocks%s\n",
ivar->sec_count, ivar->erase_sector,
ivar->read_only ? ", read-only" : "");
}
static void
mmc_discover_cards(struct mmc_softc *sc)
{
u_char switch_res[64];
uint32_t raw_cid[4];
struct mmc_ivars *ivar = NULL;
device_t child;
int err, host_caps, i, newcard;
uint32_t resp, sec_count, status;
uint16_t rca = 2;
host_caps = mmcbr_get_caps(sc->dev);
if (bootverbose || mmc_debug)
device_printf(sc->dev, "Probing cards\n");
while (1) {
child = NULL;
sc->squelched++; /* Errors are expected, squelch reporting. */
err = mmc_all_send_cid(sc, raw_cid);
sc->squelched--;
if (err == MMC_ERR_TIMEOUT)
break;
if (err != MMC_ERR_NONE) {
device_printf(sc->dev, "Error reading CID %d\n", err);
break;
}
newcard = 1;
for (i = 0; i < sc->child_count; i++) {
ivar = device_get_ivars(sc->child_list[i]);
if (memcmp(ivar->raw_cid, raw_cid, sizeof(raw_cid)) ==
0) {
newcard = 0;
break;
}
}
if (bootverbose || mmc_debug) {
device_printf(sc->dev,
"%sard detected (CID %08x%08x%08x%08x)\n",
newcard ? "New c" : "C",
raw_cid[0], raw_cid[1], raw_cid[2], raw_cid[3]);
}
if (newcard) {
ivar = malloc(sizeof(struct mmc_ivars), M_DEVBUF,
M_WAITOK | M_ZERO);
memcpy(ivar->raw_cid, raw_cid, sizeof(raw_cid));
}
if (mmcbr_get_ro(sc->dev))
ivar->read_only = 1;
ivar->bus_width = bus_width_1;
setbit(&ivar->timings, bus_timing_normal);
ivar->mode = mmcbr_get_mode(sc->dev);
if (ivar->mode == mode_sd) {
mmc_decode_cid_sd(ivar->raw_cid, &ivar->cid);
err = mmc_send_relative_addr(sc, &resp);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev,
"Error getting RCA %d\n", err);
goto free_ivar;
}
ivar->rca = resp >> 16;
/* Get card CSD. */
err = mmc_send_csd(sc, ivar->rca, ivar->raw_csd);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev,
"Error getting CSD %d\n", err);
goto free_ivar;
}
if (bootverbose || mmc_debug)
device_printf(sc->dev,
"%sard detected (CSD %08x%08x%08x%08x)\n",
newcard ? "New c" : "C", ivar->raw_csd[0],
ivar->raw_csd[1], ivar->raw_csd[2],
ivar->raw_csd[3]);
err = mmc_decode_csd_sd(ivar->raw_csd, &ivar->csd);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev, "Error decoding CSD\n");
goto free_ivar;
}
ivar->sec_count = ivar->csd.capacity / MMC_SECTOR_SIZE;
if (ivar->csd.csd_structure > 0)
ivar->high_cap = 1;
ivar->tran_speed = ivar->csd.tran_speed;
ivar->erase_sector = ivar->csd.erase_sector *
ivar->csd.write_bl_len / MMC_SECTOR_SIZE;
err = mmc_send_status(sc->dev, sc->dev, ivar->rca,
&status);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev,
"Error reading card status %d\n", err);
goto free_ivar;
}
if ((status & R1_CARD_IS_LOCKED) != 0) {
device_printf(sc->dev,
"Card is password protected, skipping\n");
goto free_ivar;
}
/* Get card SCR. Card must be selected to fetch it. */
err = mmc_select_card(sc, ivar->rca);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev,
"Error selecting card %d\n", err);
goto free_ivar;
}
err = mmc_app_send_scr(sc, ivar->rca, ivar->raw_scr);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev,
"Error reading SCR %d\n", err);
goto free_ivar;
}
mmc_app_decode_scr(ivar->raw_scr, &ivar->scr);
/* Get card switch capabilities (command class 10). */
if ((ivar->scr.sda_vsn >= 1) &&
(ivar->csd.ccc & (1 << 10))) {
err = mmc_sd_switch(sc, SD_SWITCH_MODE_CHECK,
SD_SWITCH_GROUP1, SD_SWITCH_NOCHANGE,
switch_res);
if (err == MMC_ERR_NONE &&
switch_res[13] & (1 << SD_SWITCH_HS_MODE)) {
setbit(&ivar->timings, bus_timing_hs);
ivar->hs_tran_speed = SD_HS_MAX;
}
}
/*
* We deselect then reselect the card here. Some cards
* become unselected and timeout with the above two
* commands, although the state tables / diagrams in the
* standard suggest they go back to the transfer state.
* Other cards don't become deselected, and if we
* attempt to blindly re-select them, we get timeout
* errors from some controllers. So we deselect then
* reselect to handle all situations. The only thing we
* use from the sd_status is the erase sector size, but
* it is still nice to get that right.
*/
(void)mmc_select_card(sc, 0);
(void)mmc_select_card(sc, ivar->rca);
(void)mmc_app_sd_status(sc, ivar->rca,
ivar->raw_sd_status);
mmc_app_decode_sd_status(ivar->raw_sd_status,
&ivar->sd_status);
if (ivar->sd_status.au_size != 0) {
ivar->erase_sector =
16 << ivar->sd_status.au_size;
}
/* Find maximum supported bus width. */
if ((host_caps & MMC_CAP_4_BIT_DATA) &&
(ivar->scr.bus_widths & SD_SCR_BUS_WIDTH_4))
ivar->bus_width = bus_width_4;
goto child_common;
}
ivar->rca = rca++;
err = mmc_set_relative_addr(sc, ivar->rca);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev, "Error setting RCA %d\n", err);
goto free_ivar;
}
/* Get card CSD. */
err = mmc_send_csd(sc, ivar->rca, ivar->raw_csd);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev, "Error getting CSD %d\n", err);
goto free_ivar;
}
if (bootverbose || mmc_debug)
device_printf(sc->dev,
"%sard detected (CSD %08x%08x%08x%08x)\n",
newcard ? "New c" : "C", ivar->raw_csd[0],
ivar->raw_csd[1], ivar->raw_csd[2],
ivar->raw_csd[3]);
mmc_decode_csd_mmc(ivar->raw_csd, &ivar->csd);
ivar->sec_count = ivar->csd.capacity / MMC_SECTOR_SIZE;
ivar->tran_speed = ivar->csd.tran_speed;
ivar->erase_sector = ivar->csd.erase_sector *
ivar->csd.write_bl_len / MMC_SECTOR_SIZE;
err = mmc_send_status(sc->dev, sc->dev, ivar->rca, &status);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev,
"Error reading card status %d\n", err);
goto free_ivar;
}
if ((status & R1_CARD_IS_LOCKED) != 0) {
device_printf(sc->dev,
"Card is password protected, skipping\n");
goto free_ivar;
}
err = mmc_select_card(sc, ivar->rca);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev, "Error selecting card %d\n",
err);
goto free_ivar;
}
/* Only MMC >= 4.x devices support EXT_CSD. */
if (ivar->csd.spec_vers >= 4) {
err = mmc_send_ext_csd(sc->dev, sc->dev,
ivar->raw_ext_csd);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev,
"Error reading EXT_CSD %d\n", err);
goto free_ivar;
}
/* Handle extended capacity from EXT_CSD */
sec_count = ivar->raw_ext_csd[EXT_CSD_SEC_CNT] +
(ivar->raw_ext_csd[EXT_CSD_SEC_CNT + 1] << 8) +
(ivar->raw_ext_csd[EXT_CSD_SEC_CNT + 2] << 16) +
(ivar->raw_ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
if (sec_count != 0) {
ivar->sec_count = sec_count;
ivar->high_cap = 1;
}
/* Find maximum supported bus width. */
ivar->bus_width = mmc_test_bus_width(sc);
/* Get device speeds beyond normal mode. */
if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_HS_52) != 0) {
setbit(&ivar->timings, bus_timing_hs);
ivar->hs_tran_speed = MMC_TYPE_HS_52_MAX;
} else if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_HS_26) != 0) {
setbit(&ivar->timings, bus_timing_hs);
ivar->hs_tran_speed = MMC_TYPE_HS_26_MAX;
}
if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_DDR_52_1_2V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_120) != 0) {
setbit(&ivar->timings, bus_timing_mmc_ddr52);
setbit(&ivar->vccq_120, bus_timing_mmc_ddr52);
}
if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_DDR_52_1_8V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_180) != 0) {
setbit(&ivar->timings, bus_timing_mmc_ddr52);
setbit(&ivar->vccq_180, bus_timing_mmc_ddr52);
}
if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_HS200_1_2V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_120) != 0) {
setbit(&ivar->timings, bus_timing_mmc_hs200);
setbit(&ivar->vccq_120, bus_timing_mmc_hs200);
}
if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_HS200_1_8V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_180) != 0) {
setbit(&ivar->timings, bus_timing_mmc_hs200);
setbit(&ivar->vccq_180, bus_timing_mmc_hs200);
}
if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_HS400_1_2V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_120) != 0 &&
ivar->bus_width == bus_width_8) {
setbit(&ivar->timings, bus_timing_mmc_hs400);
setbit(&ivar->vccq_120, bus_timing_mmc_hs400);
}
if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_HS400_1_8V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_180) != 0 &&
ivar->bus_width == bus_width_8) {
setbit(&ivar->timings, bus_timing_mmc_hs400);
setbit(&ivar->vccq_180, bus_timing_mmc_hs400);
}
if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_HS400_1_2V) != 0 &&
(ivar->raw_ext_csd[EXT_CSD_STROBE_SUPPORT] &
EXT_CSD_STROBE_SUPPORT_EN) != 0 &&
(host_caps & MMC_CAP_SIGNALING_120) != 0 &&
ivar->bus_width == bus_width_8) {
setbit(&ivar->timings, bus_timing_mmc_hs400es);
setbit(&ivar->vccq_120, bus_timing_mmc_hs400es);
}
if ((ivar->raw_ext_csd[EXT_CSD_CARD_TYPE] &
EXT_CSD_CARD_TYPE_HS400_1_8V) != 0 &&
(ivar->raw_ext_csd[EXT_CSD_STROBE_SUPPORT] &
EXT_CSD_STROBE_SUPPORT_EN) != 0 &&
(host_caps & MMC_CAP_SIGNALING_180) != 0 &&
ivar->bus_width == bus_width_8) {
setbit(&ivar->timings, bus_timing_mmc_hs400es);
setbit(&ivar->vccq_180, bus_timing_mmc_hs400es);
}
/*
* Determine generic switch timeout (provided in
* units of 10 ms), defaulting to 500 ms.
*/
ivar->cmd6_time = 500 * 1000;
if (ivar->csd.spec_vers >= 6)
ivar->cmd6_time = 10 *
ivar->raw_ext_csd[EXT_CSD_GEN_CMD6_TIME];
/* Handle HC erase sector size. */
if (ivar->raw_ext_csd[EXT_CSD_ERASE_GRP_SIZE] != 0) {
ivar->erase_sector = 1024 *
ivar->raw_ext_csd[EXT_CSD_ERASE_GRP_SIZE];
err = mmc_switch(sc->dev, sc->dev, ivar->rca,
EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GRP_DEF,
EXT_CSD_ERASE_GRP_DEF_EN,
ivar->cmd6_time, true);
if (err != MMC_ERR_NONE) {
device_printf(sc->dev,
"Error setting erase group %d\n",
err);
goto free_ivar;
}
}
}
mmc_decode_cid_mmc(ivar->raw_cid, &ivar->cid,
ivar->raw_ext_csd[EXT_CSD_REV] >= 5);
child_common:
/*
* Some cards that report maximum I/O block sizes greater
* than 512 require the block length to be set to 512, even
* though that is supposed to be the default. Example:
*
* Transcend 2GB SDSC card, CID:
* mid=0x1b oid=0x534d pnm="00000" prv=1.0 mdt=00.2000
*/
if (ivar->csd.read_bl_len != MMC_SECTOR_SIZE ||
ivar->csd.write_bl_len != MMC_SECTOR_SIZE)
mmc_set_blocklen(sc, MMC_SECTOR_SIZE);
mmc_format_card_id_string(ivar);
if (bootverbose || mmc_debug)
mmc_log_card(sc->dev, ivar, newcard);
if (newcard) {
/* Add device. */
child = device_add_child(sc->dev, NULL, -1);
if (child != NULL) {
device_set_ivars(child, ivar);
sc->child_list = realloc(sc->child_list,
sizeof(device_t) * sc->child_count + 1,
M_DEVBUF, M_WAITOK);
sc->child_list[sc->child_count++] = child;
} else
device_printf(sc->dev, "Error adding child\n");
}
free_ivar:
if (newcard && child == NULL)
free(ivar, M_DEVBUF);
(void)mmc_select_card(sc, 0);
/*
* Not returning here when one MMC device could no be added
* potentially would mean looping forever when that device
* is broken (in which case it also may impact the remainder
* of the bus anyway, though).
*/
if ((newcard && child == NULL) ||
mmcbr_get_mode(sc->dev) == mode_sd)
return;
}
}
static void
mmc_update_child_list(struct mmc_softc *sc)
{
device_t child;
int i, j;
if (sc->child_count == 0) {
free(sc->child_list, M_DEVBUF);
return;
}
for (i = j = 0; i < sc->child_count; i++) {
for (;;) {
child = sc->child_list[j++];
if (child != NULL)
break;
}
if (i != j)
sc->child_list[i] = child;
}
sc->child_list = realloc(sc->child_list, sizeof(device_t) *
sc->child_count, M_DEVBUF, M_WAITOK);
}
static void
mmc_rescan_cards(struct mmc_softc *sc)
{
struct mmc_ivars *ivar;
int err, i, j;
for (i = j = 0; i < sc->child_count; i++) {
ivar = device_get_ivars(sc->child_list[i]);
if (mmc_select_card(sc, ivar->rca) != MMC_ERR_NONE) {
if (bootverbose || mmc_debug)
device_printf(sc->dev,
"Card at relative address %d lost\n",
ivar->rca);
err = device_delete_child(sc->dev, sc->child_list[i]);
if (err != 0) {
j++;
continue;
}
free(ivar, M_DEVBUF);
} else
j++;
}
if (sc->child_count == j)
goto out;
sc->child_count = j;
mmc_update_child_list(sc);
out:
(void)mmc_select_card(sc, 0);
}
static int
mmc_delete_cards(struct mmc_softc *sc, bool final)
{
struct mmc_ivars *ivar;
int err, i, j;
err = 0;
for (i = j = 0; i < sc->child_count; i++) {
ivar = device_get_ivars(sc->child_list[i]);
if (bootverbose || mmc_debug)
device_printf(sc->dev,
"Card at relative address %d deleted\n",
ivar->rca);
err = device_delete_child(sc->dev, sc->child_list[i]);
if (err != 0) {
j++;
if (final == false)
continue;
else
break;
}
free(ivar, M_DEVBUF);
}
sc->child_count = j;
mmc_update_child_list(sc);
return (err);
}
static void
mmc_go_discovery(struct mmc_softc *sc)
{
uint32_t ocr;
device_t dev;
int err;
dev = sc->dev;
if (mmcbr_get_power_mode(dev) != power_on) {
/*
* First, try SD modes
*/
sc->squelched++; /* Errors are expected, squelch reporting. */
mmcbr_set_mode(dev, mode_sd);
mmc_power_up(sc);
mmcbr_set_bus_mode(dev, pushpull);
if (bootverbose || mmc_debug)
device_printf(sc->dev, "Probing bus\n");
mmc_idle_cards(sc);
err = mmc_send_if_cond(sc, 1);
if ((bootverbose || mmc_debug) && err == 0)
device_printf(sc->dev,
"SD 2.0 interface conditions: OK\n");
if (mmc_send_app_op_cond(sc, 0, &ocr) != MMC_ERR_NONE) {
if (bootverbose || mmc_debug)
device_printf(sc->dev, "SD probe: failed\n");
/*
* Failed, try MMC
*/
mmcbr_set_mode(dev, mode_mmc);
if (mmc_send_op_cond(sc, 0, &ocr) != MMC_ERR_NONE) {
if (bootverbose || mmc_debug)
device_printf(sc->dev,
"MMC probe: failed\n");
ocr = 0; /* Failed both, powerdown. */
} else if (bootverbose || mmc_debug)
device_printf(sc->dev,
"MMC probe: OK (OCR: 0x%08x)\n", ocr);
} else if (bootverbose || mmc_debug)
device_printf(sc->dev, "SD probe: OK (OCR: 0x%08x)\n",
ocr);
sc->squelched--;
mmcbr_set_ocr(dev, mmc_select_vdd(sc, ocr));
if (mmcbr_get_ocr(dev) != 0)
mmc_idle_cards(sc);
} else {
mmcbr_set_bus_mode(dev, opendrain);
mmcbr_set_clock(dev, SD_MMC_CARD_ID_FREQUENCY);
mmcbr_update_ios(dev);
/* XXX recompute vdd based on new cards? */
}
/*
* Make sure that we have a mutually agreeable voltage to at least
* one card on the bus.
*/
if (bootverbose || mmc_debug)
device_printf(sc->dev, "Current OCR: 0x%08x\n",
mmcbr_get_ocr(dev));
if (mmcbr_get_ocr(dev) == 0) {
device_printf(sc->dev, "No compatible cards found on bus\n");
(void)mmc_delete_cards(sc, false);
mmc_power_down(sc);
return;
}
/*
* Reselect the cards after we've idled them above.
*/
if (mmcbr_get_mode(dev) == mode_sd) {
err = mmc_send_if_cond(sc, 1);
mmc_send_app_op_cond(sc,
(err ? 0 : MMC_OCR_CCS) | mmcbr_get_ocr(dev), NULL);
} else
mmc_send_op_cond(sc, MMC_OCR_CCS | mmcbr_get_ocr(dev), NULL);
mmc_discover_cards(sc);
mmc_rescan_cards(sc);
mmcbr_set_bus_mode(dev, pushpull);
mmcbr_update_ios(dev);
mmc_calculate_clock(sc);
}
static int
mmc_calculate_clock(struct mmc_softc *sc)
{
device_t dev;
struct mmc_ivars *ivar;
int i;
uint32_t dtr, max_dtr;
uint16_t rca;
enum mmc_bus_timing max_timing, timing;
bool changed, hs400;
dev = sc->dev;
max_dtr = mmcbr_get_f_max(dev);
max_timing = bus_timing_max;
do {
changed = false;
for (i = 0; i < sc->child_count; i++) {
ivar = device_get_ivars(sc->child_list[i]);
if (isclr(&ivar->timings, max_timing) ||
!mmc_host_timing(dev, max_timing)) {
for (timing = max_timing - 1; timing >=
bus_timing_normal; timing--) {
if (isset(&ivar->timings, timing) &&
mmc_host_timing(dev, timing)) {
max_timing = timing;
break;
}
}
changed = true;
}
dtr = mmc_timing_to_dtr(ivar, max_timing);
if (dtr < max_dtr) {
max_dtr = dtr;
changed = true;
}
}
} while (changed == true);
if (bootverbose || mmc_debug) {
device_printf(dev,
"setting transfer rate to %d.%03dMHz (%s timing)\n",
max_dtr / 1000000, (max_dtr / 1000) % 1000,
mmc_timing_to_string(max_timing));
}
/*
* HS400 must be tuned in HS200 mode, so in case of HS400 we begin
* with HS200 following the sequence as described in "6.6.2.2 HS200
* timing mode selection" of the eMMC specification v5.1, too, and
* switch to max_timing later. HS400ES requires no tuning and, thus,
* can be switch to directly, but requires the same detour via high
* speed mode as does HS400 (see mmc_switch_to_hs400()).
*/
hs400 = max_timing == bus_timing_mmc_hs400;
timing = hs400 == true ? bus_timing_mmc_hs200 : max_timing;
for (i = 0; i < sc->child_count; i++) {
ivar = device_get_ivars(sc->child_list[i]);
if ((ivar->timings & ~(1 << bus_timing_normal)) == 0)
continue;
rca = ivar->rca;
if (mmc_select_card(sc, rca) != MMC_ERR_NONE) {
device_printf(dev, "Card at relative address %d "
"failed to select\n", rca);
continue;
}
if (timing == bus_timing_mmc_hs200 || /* includes HS400 */
timing == bus_timing_mmc_hs400es) {
if (mmc_set_vccq(sc, ivar, timing) != MMC_ERR_NONE) {
device_printf(dev, "Failed to set VCCQ for "
"card at relative address %d\n", rca);
continue;
}
}
if (timing == bus_timing_mmc_hs200) { /* includes HS400 */
/* Set bus width (required for initial tuning). */
if (mmc_set_card_bus_width(sc, ivar, timing) !=
MMC_ERR_NONE) {
device_printf(dev, "Card at relative address "
"%d failed to set bus width\n", rca);
continue;
}
mmcbr_set_bus_width(dev, ivar->bus_width);
mmcbr_update_ios(dev);
} else if (timing == bus_timing_mmc_hs400es) {
if (mmc_switch_to_hs400(sc, ivar, max_dtr, timing) !=
MMC_ERR_NONE) {
device_printf(dev, "Card at relative address "
"%d failed to set %s timing\n", rca,
mmc_timing_to_string(timing));
continue;
}
goto power_class;
}
if (mmc_set_timing(sc, ivar, timing) != MMC_ERR_NONE) {
device_printf(dev, "Card at relative address %d "
"failed to set %s timing\n", rca,
mmc_timing_to_string(timing));
continue;
}
if (timing == bus_timing_mmc_ddr52) {
/*
* Set EXT_CSD_BUS_WIDTH_n_DDR in EXT_CSD_BUS_WIDTH
* (must be done after switching to EXT_CSD_HS_TIMING).
*/
if (mmc_set_card_bus_width(sc, ivar, timing) !=
MMC_ERR_NONE) {
device_printf(dev, "Card at relative address "
"%d failed to set bus width\n", rca);
continue;
}
mmcbr_set_bus_width(dev, ivar->bus_width);
mmcbr_update_ios(dev);
if (mmc_set_vccq(sc, ivar, timing) != MMC_ERR_NONE) {
device_printf(dev, "Failed to set VCCQ for "
"card at relative address %d\n", rca);
continue;
}
}
/* Set clock (must be done before initial tuning). */
mmcbr_set_clock(dev, max_dtr);
mmcbr_update_ios(dev);
if (mmcbr_tune(dev, hs400) != 0) {
device_printf(dev, "Card at relative address %d "
"failed to execute initial tuning\n", rca);
continue;
}
if (hs400 == true && mmc_switch_to_hs400(sc, ivar, max_dtr,
max_timing) != MMC_ERR_NONE) {
device_printf(dev, "Card at relative address %d "
"failed to set %s timing\n", rca,
mmc_timing_to_string(max_timing));
continue;
}
power_class:
if (mmc_set_power_class(sc, ivar) != MMC_ERR_NONE) {
device_printf(dev, "Card at relative address %d "
"failed to set power class\n", rca);
}
}
(void)mmc_select_card(sc, 0);
return (max_dtr);
}
/*
* Switch from HS200 to HS400 (either initially or for re-tuning) or directly
* to HS400ES. This follows the sequences described in "6.6.2.3 HS400 timing
* mode selection" of the eMMC specification v5.1.
*/
static int
mmc_switch_to_hs400(struct mmc_softc *sc, struct mmc_ivars *ivar,
uint32_t clock, enum mmc_bus_timing max_timing)
{
device_t dev;
int err;
uint16_t rca;
dev = sc->dev;
rca = ivar->rca;
/*
* Both clock and timing must be set as appropriate for high speed
* before eventually switching to HS400/HS400ES; mmc_set_timing()
* will issue mmcbr_update_ios().
*/
mmcbr_set_clock(dev, ivar->hs_tran_speed);
err = mmc_set_timing(sc, ivar, bus_timing_hs);
if (err != MMC_ERR_NONE)
return (err);
/*
* Set EXT_CSD_BUS_WIDTH_8_DDR in EXT_CSD_BUS_WIDTH (and additionally
* EXT_CSD_BUS_WIDTH_ES for HS400ES).
*/
err = mmc_set_card_bus_width(sc, ivar, max_timing);
if (err != MMC_ERR_NONE)
return (err);
mmcbr_set_bus_width(dev, ivar->bus_width);
mmcbr_update_ios(dev);
/* Finally, switch to HS400/HS400ES mode. */
err = mmc_set_timing(sc, ivar, max_timing);
if (err != MMC_ERR_NONE)
return (err);
mmcbr_set_clock(dev, clock);
mmcbr_update_ios(dev);
return (MMC_ERR_NONE);
}
/*
* Switch from HS400 to HS200 (for re-tuning).
*/
static int
mmc_switch_to_hs200(struct mmc_softc *sc, struct mmc_ivars *ivar,
uint32_t clock)
{
device_t dev;
int err;
uint16_t rca;
dev = sc->dev;
rca = ivar->rca;
/*
* Both clock and timing must initially be set as appropriate for
* DDR52 before eventually switching to HS200; mmc_set_timing()
* will issue mmcbr_update_ios().
*/
mmcbr_set_clock(dev, ivar->hs_tran_speed);
err = mmc_set_timing(sc, ivar, bus_timing_mmc_ddr52);
if (err != MMC_ERR_NONE)
return (err);
/*
* Next, switch to high speed. Thus, clear EXT_CSD_BUS_WIDTH_n_DDR
* in EXT_CSD_BUS_WIDTH and update bus width and timing in ios.
*/
err = mmc_set_card_bus_width(sc, ivar, bus_timing_hs);
if (err != MMC_ERR_NONE)
return (err);
mmcbr_set_bus_width(dev, ivar->bus_width);
mmcbr_set_timing(sc->dev, bus_timing_hs);
mmcbr_update_ios(dev);
/* Finally, switch to HS200 mode. */
err = mmc_set_timing(sc, ivar, bus_timing_mmc_hs200);
if (err != MMC_ERR_NONE)
return (err);
mmcbr_set_clock(dev, clock);
mmcbr_update_ios(dev);
return (MMC_ERR_NONE);
}
static int
mmc_retune(device_t busdev, device_t dev, bool reset)
{
struct mmc_softc *sc;
struct mmc_ivars *ivar;
int err;
uint32_t clock;
enum mmc_bus_timing timing;
if (device_get_parent(dev) != busdev)
return (MMC_ERR_INVALID);
sc = device_get_softc(busdev);
if (sc->retune_needed != 1 && sc->retune_paused != 0)
return (MMC_ERR_INVALID);
timing = mmcbr_get_timing(busdev);
if (timing == bus_timing_mmc_hs400) {
/*
* Controllers use the data strobe line to latch data from
* the devices in HS400 mode so periodic re-tuning isn't
* expected to be required, i. e. only if a CRC or tuning
* error is signaled to the bridge. In these latter cases
* we are asked to reset the tuning circuit and need to do
* the switch timing dance.
*/
if (reset == false)
return (0);
ivar = device_get_ivars(dev);
clock = mmcbr_get_clock(busdev);
if (mmc_switch_to_hs200(sc, ivar, clock) != MMC_ERR_NONE)
return (MMC_ERR_BADCRC);
}
err = mmcbr_retune(busdev, reset);
if (err != 0 && timing == bus_timing_mmc_hs400)
return (MMC_ERR_BADCRC);
switch (err) {
case 0:
break;
case EIO:
return (MMC_ERR_FAILED);
default:
return (MMC_ERR_INVALID);
}
if (timing == bus_timing_mmc_hs400) {
if (mmc_switch_to_hs400(sc, ivar, clock, timing) !=
MMC_ERR_NONE)
return (MMC_ERR_BADCRC);
}
return (MMC_ERR_NONE);
}
static void
mmc_retune_pause(device_t busdev, device_t dev, bool retune)
{
struct mmc_softc *sc;
sc = device_get_softc(busdev);
KASSERT(device_get_parent(dev) == busdev,
("%s: %s is not a child of %s", __func__, device_get_nameunit(dev),
device_get_nameunit(busdev)));
KASSERT(sc->owner != NULL,
("%s: Request from %s without bus being acquired.", __func__,
device_get_nameunit(dev)));
if (retune == true && sc->retune_paused == 0)
sc->retune_needed = 1;
sc->retune_paused++;
}
static void
mmc_retune_unpause(device_t busdev, device_t dev)
{
struct mmc_softc *sc;
sc = device_get_softc(busdev);
KASSERT(device_get_parent(dev) == busdev,
("%s: %s is not a child of %s", __func__, device_get_nameunit(dev),
device_get_nameunit(busdev)));
KASSERT(sc->owner != NULL,
("%s: Request from %s without bus being acquired.", __func__,
device_get_nameunit(dev)));
KASSERT(sc->retune_paused != 0,
("%s: Re-tune pause count already at 0", __func__));
sc->retune_paused--;
}
static void
mmc_scan(struct mmc_softc *sc)
{
device_t dev = sc->dev;
int err;
err = mmc_acquire_bus(dev, dev);
if (err != 0) {
device_printf(dev, "Failed to acquire bus for scanning\n");
return;
}
mmc_go_discovery(sc);
err = mmc_release_bus(dev, dev);
if (err != 0) {
device_printf(dev, "Failed to release bus after scanning\n");
return;
}
(void)bus_generic_attach(dev);
}
static int
mmc_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
{
struct mmc_ivars *ivar = device_get_ivars(child);
switch (which) {
default:
return (EINVAL);
case MMC_IVAR_SPEC_VERS:
*result = ivar->csd.spec_vers;
break;
case MMC_IVAR_DSR_IMP:
*result = ivar->csd.dsr_imp;
break;
case MMC_IVAR_MEDIA_SIZE:
*result = ivar->sec_count;
break;
case MMC_IVAR_RCA:
*result = ivar->rca;
break;
case MMC_IVAR_SECTOR_SIZE:
*result = MMC_SECTOR_SIZE;
break;
case MMC_IVAR_TRAN_SPEED:
*result = mmcbr_get_clock(bus);
break;
case MMC_IVAR_READ_ONLY:
*result = ivar->read_only;
break;
case MMC_IVAR_HIGH_CAP:
*result = ivar->high_cap;
break;
case MMC_IVAR_CARD_TYPE:
*result = ivar->mode;
break;
case MMC_IVAR_BUS_WIDTH:
*result = ivar->bus_width;
break;
case MMC_IVAR_ERASE_SECTOR:
*result = ivar->erase_sector;
break;
case MMC_IVAR_MAX_DATA:
*result = mmcbr_get_max_data(bus);
break;
case MMC_IVAR_CARD_ID_STRING:
*(char **)result = ivar->card_id_string;
break;
case MMC_IVAR_CARD_SN_STRING:
*(char **)result = ivar->card_sn_string;
break;
}
return (0);
}
static int
mmc_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
{
/*
* None are writable ATM
*/
return (EINVAL);
}
static void
mmc_delayed_attach(void *xsc)
{
struct mmc_softc *sc = xsc;
mmc_scan(sc);
config_intrhook_disestablish(&sc->config_intrhook);
}
static int
mmc_child_location_str(device_t dev, device_t child, char *buf,
size_t buflen)
{
snprintf(buf, buflen, "rca=0x%04x", mmc_get_rca(child));
return (0);
}
static device_method_t mmc_methods[] = {
/* device_if */
DEVMETHOD(device_probe, mmc_probe),
DEVMETHOD(device_attach, mmc_attach),
DEVMETHOD(device_detach, mmc_detach),
DEVMETHOD(device_suspend, mmc_suspend),
DEVMETHOD(device_resume, mmc_resume),
/* Bus interface */
DEVMETHOD(bus_read_ivar, mmc_read_ivar),
DEVMETHOD(bus_write_ivar, mmc_write_ivar),
DEVMETHOD(bus_child_location_str, mmc_child_location_str),
/* MMC Bus interface */
DEVMETHOD(mmcbus_retune_pause, mmc_retune_pause),
DEVMETHOD(mmcbus_retune_unpause, mmc_retune_unpause),
DEVMETHOD(mmcbus_wait_for_request, mmc_wait_for_request),
DEVMETHOD(mmcbus_acquire_bus, mmc_acquire_bus),
DEVMETHOD(mmcbus_release_bus, mmc_release_bus),
DEVMETHOD_END
};
driver_t mmc_driver = {
"mmc",
mmc_methods,
sizeof(struct mmc_softc),
};
devclass_t mmc_devclass;
MODULE_VERSION(mmc, MMC_VERSION);