freebsd-skq/contrib/capsicum-test/socket.cc
Enji Cooper 8ac5aef8f3 Integrate capsicum-test into the FreeBSD test suite
This change takes capsicum-test from upstream and applies some local changes to make the
tests work on FreeBSD when executed via Kyua.

The local modifications are as follows:
1. Make `OpenatTest.WithFlag` pass with the new dot-dot lookup behavior in FreeBSD 12.x+.
2. capsicum-test references a set of helper binaries: `mini-me`, `mini-me.noexec`, and
   `mini-me.setuid`, as part of the execve/fexecve tests, via execve, fexecve, and open.
   It achieves this upstream by assuming `mini-me*` is in the current directory, however,
   in order for Kyua to execute `capsicum-test`, it needs to provide a full path to
   `mini-me*`. In order to achieve this, I made `capsicum-test` cache the executable's
   path from argv[0] in main(..) and use the cached value to compute the path to
   `mini-me*` as part of the execve/fexecve testcases.
3. The capsicum-test test suite assumes that it's always being run on CAPABILITIES enabled
   kernels. However, there's a chance that the test will be run on a host without a
   CAPABILITIES enabled kernel, so we must check for the support before running the tests.
   The way to achieve this is to add the relevant `feature_present("security_capabilities")`
   check to SetupEnvironment::SetUp() and skip the tests when the support is not available.
   While here, add a check for `kern.trap_enotcap` being enabled. As noted by markj@ in
   https://github.com/google/capsicum-test/issues/23, this sysctl being enabled can trigger
   non-deterministic failures. Therefore, the tests should be skipped if this sysctl is
   enabled.

All local changes have been submitted to the capsicum-test project
(https://github.com/google/capsicum-test) and are in various stages of review.
Please see the following pull requests for more details:
1. https://github.com/google/capsicum-test/pull/35
2. https://github.com/google/capsicum-test/pull/41
3. https://github.com/google/capsicum-test/pull/42

Reviewed by:	asomers
Discussed with:	emaste, markj
Approved by:	emaste (mentor)
MFC after:	2 months
Differential Revision: https://reviews.freebsd.org/D19758
2019-04-01 21:24:50 +00:00

341 lines
11 KiB
C++

// Tests for socket functionality.
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string>
#include "capsicum.h"
#include "syscalls.h"
#include "capsicum-test.h"
TEST(Socket, UnixDomain) {
const char* socketName = TmpFile("capsicum-test.socket");
unlink(socketName);
cap_rights_t r_rw;
cap_rights_init(&r_rw, CAP_READ, CAP_WRITE);
cap_rights_t r_all;
cap_rights_init(&r_all, CAP_READ, CAP_WRITE, CAP_SOCK_CLIENT, CAP_SOCK_SERVER);
pid_t child = fork();
if (child == 0) {
// Child process: wait for server setup
sleep(1);
// Create sockets
int sock = socket(AF_UNIX, SOCK_STREAM, 0);
EXPECT_OK(sock);
if (sock < 0) return;
int cap_sock_rw = dup(sock);
EXPECT_OK(cap_sock_rw);
EXPECT_OK(cap_rights_limit(cap_sock_rw, &r_rw));
int cap_sock_all = dup(sock);
EXPECT_OK(cap_sock_all);
EXPECT_OK(cap_rights_limit(cap_sock_all, &r_all));
EXPECT_OK(close(sock));
// Connect socket
struct sockaddr_un un;
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
strcpy(un.sun_path, socketName);
socklen_t len = sizeof(un);
EXPECT_NOTCAPABLE(connect_(cap_sock_rw, (struct sockaddr *)&un, len));
EXPECT_OK(connect_(cap_sock_all, (struct sockaddr *)&un, len));
exit(HasFailure());
}
int sock = socket(AF_UNIX, SOCK_STREAM, 0);
EXPECT_OK(sock);
if (sock < 0) return;
int cap_sock_rw = dup(sock);
EXPECT_OK(cap_sock_rw);
EXPECT_OK(cap_rights_limit(cap_sock_rw, &r_rw));
int cap_sock_all = dup(sock);
EXPECT_OK(cap_sock_all);
EXPECT_OK(cap_rights_limit(cap_sock_all, &r_all));
EXPECT_OK(close(sock));
struct sockaddr_un un;
memset(&un, 0, sizeof(un));
un.sun_family = AF_UNIX;
strcpy(un.sun_path, socketName);
socklen_t len = (sizeof(un) - sizeof(un.sun_path) + strlen(un.sun_path));
// Can only bind the fully-capable socket.
EXPECT_NOTCAPABLE(bind_(cap_sock_rw, (struct sockaddr *)&un, len));
EXPECT_OK(bind_(cap_sock_all, (struct sockaddr *)&un, len));
// Can only listen on the fully-capable socket.
EXPECT_NOTCAPABLE(listen(cap_sock_rw, 3));
EXPECT_OK(listen(cap_sock_all, 3));
// Can only do socket operations on the fully-capable socket.
len = sizeof(un);
EXPECT_NOTCAPABLE(getsockname(cap_sock_rw, (struct sockaddr*)&un, &len));
int value = 0;
EXPECT_NOTCAPABLE(setsockopt(cap_sock_rw, SOL_SOCKET, SO_DEBUG, &value, sizeof(value)));
len = sizeof(value);
EXPECT_NOTCAPABLE(getsockopt(cap_sock_rw, SOL_SOCKET, SO_DEBUG, &value, &len));
len = sizeof(un);
memset(&un, 0, sizeof(un));
EXPECT_OK(getsockname(cap_sock_all, (struct sockaddr*)&un, &len));
EXPECT_EQ(AF_UNIX, un.sun_family);
EXPECT_EQ(std::string(socketName), std::string(un.sun_path));
value = 0;
EXPECT_OK(setsockopt(cap_sock_all, SOL_SOCKET, SO_DEBUG, &value, sizeof(value)));
len = sizeof(value);
EXPECT_OK(getsockopt(cap_sock_all, SOL_SOCKET, SO_DEBUG, &value, &len));
// Accept the incoming connection
len = sizeof(un);
memset(&un, 0, sizeof(un));
EXPECT_NOTCAPABLE(accept(cap_sock_rw, (struct sockaddr *)&un, &len));
int conn_fd = accept(cap_sock_all, (struct sockaddr *)&un, &len);
EXPECT_OK(conn_fd);
#ifdef CAP_FROM_ACCEPT
// New connection should also be a capability.
cap_rights_t rights;
cap_rights_init(&rights, 0);
EXPECT_OK(cap_rights_get(conn_fd, &rights));
EXPECT_RIGHTS_IN(&rights, &r_all);
#endif
// Wait for the child.
int status;
EXPECT_EQ(child, waitpid(child, &status, 0));
int rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1;
EXPECT_EQ(0, rc);
close(conn_fd);
close(cap_sock_rw);
close(cap_sock_all);
unlink(socketName);
}
TEST(Socket, TCP) {
int sock = socket(AF_INET, SOCK_STREAM, 0);
EXPECT_OK(sock);
if (sock < 0) return;
cap_rights_t r_rw;
cap_rights_init(&r_rw, CAP_READ, CAP_WRITE);
cap_rights_t r_all;
cap_rights_init(&r_all, CAP_READ, CAP_WRITE, CAP_SOCK_CLIENT, CAP_SOCK_SERVER);
int cap_sock_rw = dup(sock);
EXPECT_OK(cap_sock_rw);
EXPECT_OK(cap_rights_limit(cap_sock_rw, &r_rw));
int cap_sock_all = dup(sock);
EXPECT_OK(cap_sock_all);
EXPECT_OK(cap_rights_limit(cap_sock_all, &r_all));
close(sock);
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(0);
addr.sin_addr.s_addr = htonl(INADDR_ANY);
socklen_t len = sizeof(addr);
// Can only bind the fully-capable socket.
EXPECT_NOTCAPABLE(bind_(cap_sock_rw, (struct sockaddr *)&addr, len));
EXPECT_OK(bind_(cap_sock_all, (struct sockaddr *)&addr, len));
getsockname(cap_sock_all, (struct sockaddr *)&addr, &len);
int port = ntohs(addr.sin_port);
// Now we know the port involved, fork off a child.
pid_t child = fork();
if (child == 0) {
// Child process: wait for server setup
sleep(1);
// Create sockets
int sock = socket(AF_INET, SOCK_STREAM, 0);
EXPECT_OK(sock);
if (sock < 0) return;
int cap_sock_rw = dup(sock);
EXPECT_OK(cap_sock_rw);
EXPECT_OK(cap_rights_limit(cap_sock_rw, &r_rw));
int cap_sock_all = dup(sock);
EXPECT_OK(cap_sock_all);
EXPECT_OK(cap_rights_limit(cap_sock_all, &r_all));
close(sock);
// Connect socket
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port); // Pick unused port
addr.sin_addr.s_addr = inet_addr("127.0.0.1");
socklen_t len = sizeof(addr);
EXPECT_NOTCAPABLE(connect_(cap_sock_rw, (struct sockaddr *)&addr, len));
EXPECT_OK(connect_(cap_sock_all, (struct sockaddr *)&addr, len));
exit(HasFailure());
}
// Can only listen on the fully-capable socket.
EXPECT_NOTCAPABLE(listen(cap_sock_rw, 3));
EXPECT_OK(listen(cap_sock_all, 3));
// Can only do socket operations on the fully-capable socket.
len = sizeof(addr);
EXPECT_NOTCAPABLE(getsockname(cap_sock_rw, (struct sockaddr*)&addr, &len));
int value = 1;
EXPECT_NOTCAPABLE(setsockopt(cap_sock_rw, SOL_SOCKET, SO_REUSEPORT, &value, sizeof(value)));
len = sizeof(value);
EXPECT_NOTCAPABLE(getsockopt(cap_sock_rw, SOL_SOCKET, SO_REUSEPORT, &value, &len));
len = sizeof(addr);
memset(&addr, 0, sizeof(addr));
EXPECT_OK(getsockname(cap_sock_all, (struct sockaddr*)&addr, &len));
EXPECT_EQ(AF_INET, addr.sin_family);
EXPECT_EQ(htons(port), addr.sin_port);
value = 0;
EXPECT_OK(setsockopt(cap_sock_all, SOL_SOCKET, SO_REUSEPORT, &value, sizeof(value)));
len = sizeof(value);
EXPECT_OK(getsockopt(cap_sock_all, SOL_SOCKET, SO_REUSEPORT, &value, &len));
// Accept the incoming connection
len = sizeof(addr);
memset(&addr, 0, sizeof(addr));
EXPECT_NOTCAPABLE(accept(cap_sock_rw, (struct sockaddr *)&addr, &len));
int conn_fd = accept(cap_sock_all, (struct sockaddr *)&addr, &len);
EXPECT_OK(conn_fd);
#ifdef CAP_FROM_ACCEPT
// New connection should also be a capability.
cap_rights_t rights;
cap_rights_init(&rights, 0);
EXPECT_OK(cap_rights_get(conn_fd, &rights));
EXPECT_RIGHTS_IN(&rights, &r_all);
#endif
// Wait for the child.
int status;
EXPECT_EQ(child, waitpid(child, &status, 0));
int rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1;
EXPECT_EQ(0, rc);
close(conn_fd);
close(cap_sock_rw);
close(cap_sock_all);
}
TEST(Socket, UDP) {
int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
EXPECT_OK(sock);
if (sock < 0) return;
cap_rights_t r_rw;
cap_rights_init(&r_rw, CAP_READ, CAP_WRITE);
cap_rights_t r_all;
cap_rights_init(&r_all, CAP_READ, CAP_WRITE, CAP_SOCK_CLIENT, CAP_SOCK_SERVER);
cap_rights_t r_connect;
cap_rights_init(&r_connect, CAP_READ, CAP_WRITE, CAP_CONNECT);
int cap_sock_rw = dup(sock);
EXPECT_OK(cap_sock_rw);
EXPECT_OK(cap_rights_limit(cap_sock_rw, &r_rw));
int cap_sock_all = dup(sock);
EXPECT_OK(cap_sock_all);
EXPECT_OK(cap_rights_limit(cap_sock_all, &r_all));
close(sock);
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(0);
addr.sin_addr.s_addr = htonl(INADDR_ANY);
socklen_t len = sizeof(addr);
// Can only bind the fully-capable socket.
EXPECT_NOTCAPABLE(bind_(cap_sock_rw, (struct sockaddr *)&addr, len));
EXPECT_OK(bind_(cap_sock_all, (struct sockaddr *)&addr, len));
getsockname(cap_sock_all, (struct sockaddr *)&addr, &len);
int port = ntohs(addr.sin_port);
// Can only do socket operations on the fully-capable socket.
len = sizeof(addr);
EXPECT_NOTCAPABLE(getsockname(cap_sock_rw, (struct sockaddr*)&addr, &len));
int value = 1;
EXPECT_NOTCAPABLE(setsockopt(cap_sock_rw, SOL_SOCKET, SO_REUSEPORT, &value, sizeof(value)));
len = sizeof(value);
EXPECT_NOTCAPABLE(getsockopt(cap_sock_rw, SOL_SOCKET, SO_REUSEPORT, &value, &len));
len = sizeof(addr);
memset(&addr, 0, sizeof(addr));
EXPECT_OK(getsockname(cap_sock_all, (struct sockaddr*)&addr, &len));
EXPECT_EQ(AF_INET, addr.sin_family);
EXPECT_EQ(htons(port), addr.sin_port);
value = 1;
EXPECT_OK(setsockopt(cap_sock_all, SOL_SOCKET, SO_REUSEPORT, &value, sizeof(value)));
len = sizeof(value);
EXPECT_OK(getsockopt(cap_sock_all, SOL_SOCKET, SO_REUSEPORT, &value, &len));
pid_t child = fork();
if (child == 0) {
int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
EXPECT_OK(sock);
int cap_sock_rw = dup(sock);
EXPECT_OK(cap_sock_rw);
EXPECT_OK(cap_rights_limit(cap_sock_rw, &r_rw));
int cap_sock_connect = dup(sock);
EXPECT_OK(cap_sock_connect);
EXPECT_OK(cap_rights_limit(cap_sock_connect, &r_connect));
close(sock);
// Can only sendmsg(2) to an address over a socket with CAP_CONNECT.
unsigned char buffer[256];
struct iovec iov;
memset(&iov, 0, sizeof(iov));
iov.iov_base = buffer;
iov.iov_len = sizeof(buffer);
struct msghdr mh;
memset(&mh, 0, sizeof(mh));
mh.msg_iov = &iov;
mh.msg_iovlen = 1;
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = inet_addr("127.0.0.1");
mh.msg_name = &addr;
mh.msg_namelen = sizeof(addr);
EXPECT_NOTCAPABLE(sendmsg(cap_sock_rw, &mh, 0));
EXPECT_OK(sendmsg(cap_sock_connect, &mh, 0));
#ifdef HAVE_SEND_RECV_MMSG
struct mmsghdr mv;
memset(&mv, 0, sizeof(mv));
memcpy(&mv.msg_hdr, &mh, sizeof(struct msghdr));
EXPECT_NOTCAPABLE(sendmmsg(cap_sock_rw, &mv, 1, 0));
EXPECT_OK(sendmmsg(cap_sock_connect, &mv, 1, 0));
#endif
close(cap_sock_rw);
close(cap_sock_connect);
exit(HasFailure());
}
// Wait for the child.
int status;
EXPECT_EQ(child, waitpid(child, &status, 0));
int rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1;
EXPECT_EQ(0, rc);
close(cap_sock_rw);
close(cap_sock_all);
}