dd75d1d73b
Submitted by: josh@zipperup.org Submitted by: Robert Drehmel <robd@gmx.net>
1808 lines
48 KiB
C
1808 lines
48 KiB
C
/* $FreeBSD$ */
|
|
/*
|
|
* PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
|
|
* FreeBSD Version.
|
|
*
|
|
* Copyright (c) 1997, 1998, 1999, 2000 by Matthew Jacob
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/bus.h>
|
|
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <dev/isp/isp_freebsd.h>
|
|
|
|
static u_int16_t isp_pci_rd_reg __P((struct ispsoftc *, int));
|
|
static void isp_pci_wr_reg __P((struct ispsoftc *, int, u_int16_t));
|
|
static u_int16_t isp_pci_rd_reg_1080 __P((struct ispsoftc *, int));
|
|
static void isp_pci_wr_reg_1080 __P((struct ispsoftc *, int, u_int16_t));
|
|
static int isp_pci_mbxdma __P((struct ispsoftc *));
|
|
static int isp_pci_dmasetup __P((struct ispsoftc *, XS_T *,
|
|
ispreq_t *, u_int16_t *, u_int16_t));
|
|
static void
|
|
isp_pci_dmateardown __P((struct ispsoftc *, XS_T *, u_int32_t));
|
|
|
|
static void isp_pci_reset1 __P((struct ispsoftc *));
|
|
static void isp_pci_dumpregs __P((struct ispsoftc *, const char *));
|
|
|
|
#ifndef ISP_CODE_ORG
|
|
#define ISP_CODE_ORG 0x1000
|
|
#endif
|
|
|
|
static struct ispmdvec mdvec = {
|
|
isp_pci_rd_reg,
|
|
isp_pci_wr_reg,
|
|
isp_pci_mbxdma,
|
|
isp_pci_dmasetup,
|
|
isp_pci_dmateardown,
|
|
NULL,
|
|
isp_pci_reset1,
|
|
isp_pci_dumpregs,
|
|
NULL,
|
|
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
|
|
};
|
|
|
|
static struct ispmdvec mdvec_1080 = {
|
|
isp_pci_rd_reg_1080,
|
|
isp_pci_wr_reg_1080,
|
|
isp_pci_mbxdma,
|
|
isp_pci_dmasetup,
|
|
isp_pci_dmateardown,
|
|
NULL,
|
|
isp_pci_reset1,
|
|
isp_pci_dumpregs,
|
|
NULL,
|
|
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
|
|
};
|
|
|
|
static struct ispmdvec mdvec_12160 = {
|
|
isp_pci_rd_reg_1080,
|
|
isp_pci_wr_reg_1080,
|
|
isp_pci_mbxdma,
|
|
isp_pci_dmasetup,
|
|
isp_pci_dmateardown,
|
|
NULL,
|
|
isp_pci_reset1,
|
|
isp_pci_dumpregs,
|
|
NULL,
|
|
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
|
|
};
|
|
|
|
static struct ispmdvec mdvec_2100 = {
|
|
isp_pci_rd_reg,
|
|
isp_pci_wr_reg,
|
|
isp_pci_mbxdma,
|
|
isp_pci_dmasetup,
|
|
isp_pci_dmateardown,
|
|
NULL,
|
|
isp_pci_reset1,
|
|
isp_pci_dumpregs
|
|
};
|
|
|
|
static struct ispmdvec mdvec_2200 = {
|
|
isp_pci_rd_reg,
|
|
isp_pci_wr_reg,
|
|
isp_pci_mbxdma,
|
|
isp_pci_dmasetup,
|
|
isp_pci_dmateardown,
|
|
NULL,
|
|
isp_pci_reset1,
|
|
isp_pci_dumpregs
|
|
};
|
|
|
|
#ifndef PCIM_CMD_INVEN
|
|
#define PCIM_CMD_INVEN 0x10
|
|
#endif
|
|
#ifndef PCIM_CMD_BUSMASTEREN
|
|
#define PCIM_CMD_BUSMASTEREN 0x0004
|
|
#endif
|
|
#ifndef PCIM_CMD_PERRESPEN
|
|
#define PCIM_CMD_PERRESPEN 0x0040
|
|
#endif
|
|
#ifndef PCIM_CMD_SEREN
|
|
#define PCIM_CMD_SEREN 0x0100
|
|
#endif
|
|
|
|
#ifndef PCIR_COMMAND
|
|
#define PCIR_COMMAND 0x04
|
|
#endif
|
|
|
|
#ifndef PCIR_CACHELNSZ
|
|
#define PCIR_CACHELNSZ 0x0c
|
|
#endif
|
|
|
|
#ifndef PCIR_LATTIMER
|
|
#define PCIR_LATTIMER 0x0d
|
|
#endif
|
|
|
|
#ifndef PCIR_ROMADDR
|
|
#define PCIR_ROMADDR 0x30
|
|
#endif
|
|
|
|
#ifndef PCI_VENDOR_QLOGIC
|
|
#define PCI_VENDOR_QLOGIC 0x1077
|
|
#endif
|
|
|
|
#ifndef PCI_PRODUCT_QLOGIC_ISP1020
|
|
#define PCI_PRODUCT_QLOGIC_ISP1020 0x1020
|
|
#endif
|
|
|
|
#ifndef PCI_PRODUCT_QLOGIC_ISP1080
|
|
#define PCI_PRODUCT_QLOGIC_ISP1080 0x1080
|
|
#endif
|
|
|
|
#ifndef PCI_PRODUCT_QLOGIC_ISP12160
|
|
#define PCI_PRODUCT_QLOGIC_ISP12160 0x1216
|
|
#endif
|
|
|
|
#ifndef PCI_PRODUCT_QLOGIC_ISP1240
|
|
#define PCI_PRODUCT_QLOGIC_ISP1240 0x1240
|
|
#endif
|
|
|
|
#ifndef PCI_PRODUCT_QLOGIC_ISP1280
|
|
#define PCI_PRODUCT_QLOGIC_ISP1280 0x1280
|
|
#endif
|
|
|
|
#ifndef PCI_PRODUCT_QLOGIC_ISP2100
|
|
#define PCI_PRODUCT_QLOGIC_ISP2100 0x2100
|
|
#endif
|
|
|
|
#ifndef PCI_PRODUCT_QLOGIC_ISP2200
|
|
#define PCI_PRODUCT_QLOGIC_ISP2200 0x2200
|
|
#endif
|
|
|
|
#define PCI_QLOGIC_ISP1020 \
|
|
((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
|
|
|
|
#define PCI_QLOGIC_ISP1080 \
|
|
((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
|
|
|
|
#define PCI_QLOGIC_ISP12160 \
|
|
((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
|
|
|
|
#define PCI_QLOGIC_ISP1240 \
|
|
((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
|
|
|
|
#define PCI_QLOGIC_ISP1280 \
|
|
((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
|
|
|
|
#define PCI_QLOGIC_ISP2100 \
|
|
((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
|
|
|
|
#define PCI_QLOGIC_ISP2200 \
|
|
((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
|
|
|
|
/*
|
|
* Odd case for some AMI raid cards... We need to *not* attach to this.
|
|
*/
|
|
#define AMI_RAID_SUBVENDOR_ID 0x101e
|
|
|
|
#define IO_MAP_REG 0x10
|
|
#define MEM_MAP_REG 0x14
|
|
|
|
#define PCI_DFLT_LTNCY 0x40
|
|
#define PCI_DFLT_LNSZ 0x10
|
|
|
|
static int isp_pci_probe (device_t);
|
|
static int isp_pci_attach (device_t);
|
|
|
|
struct isp_pcisoftc {
|
|
struct ispsoftc pci_isp;
|
|
device_t pci_dev;
|
|
struct resource * pci_reg;
|
|
bus_space_tag_t pci_st;
|
|
bus_space_handle_t pci_sh;
|
|
void * ih;
|
|
int16_t pci_poff[_NREG_BLKS];
|
|
bus_dma_tag_t parent_dmat;
|
|
bus_dma_tag_t cntrol_dmat;
|
|
bus_dmamap_t cntrol_dmap;
|
|
bus_dmamap_t *dmaps;
|
|
};
|
|
ispfwfunc *isp_get_firmware_p = NULL;
|
|
|
|
static device_method_t isp_pci_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, isp_pci_probe),
|
|
DEVMETHOD(device_attach, isp_pci_attach),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t isp_pci_driver = {
|
|
"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
|
|
};
|
|
static devclass_t isp_devclass;
|
|
DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
|
|
MODULE_VERSION(isp, 1);
|
|
|
|
static int
|
|
isp_pci_probe(device_t dev)
|
|
{
|
|
switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
|
|
case PCI_QLOGIC_ISP1020:
|
|
device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
|
|
break;
|
|
case PCI_QLOGIC_ISP1080:
|
|
device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
|
|
break;
|
|
case PCI_QLOGIC_ISP1240:
|
|
device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
|
|
break;
|
|
case PCI_QLOGIC_ISP1280:
|
|
device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
|
|
break;
|
|
case PCI_QLOGIC_ISP12160:
|
|
if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
|
|
return (ENXIO);
|
|
}
|
|
device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
|
|
break;
|
|
case PCI_QLOGIC_ISP2100:
|
|
device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
|
|
break;
|
|
case PCI_QLOGIC_ISP2200:
|
|
device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
|
|
break;
|
|
default:
|
|
return (ENXIO);
|
|
}
|
|
if (device_get_unit(dev) == 0 && bootverbose) {
|
|
printf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
|
|
"Core Version %d.%d\n",
|
|
ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
|
|
ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
|
|
}
|
|
/*
|
|
* XXXX: Here is where we might load the f/w module
|
|
* XXXX: (or increase a reference count to it).
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
isp_pci_attach(device_t dev)
|
|
{
|
|
struct resource *regs, *irq;
|
|
int unit, bitmap, rtp, rgd, iqd, m1, m2, isp_debug;
|
|
u_int32_t data, cmd, linesz, psize, basetype;
|
|
struct isp_pcisoftc *pcs;
|
|
struct ispsoftc *isp = NULL;
|
|
struct ispmdvec *mdvp;
|
|
bus_size_t lim;
|
|
#ifdef ISP_SMPLOCK
|
|
int locksetup = 0;
|
|
#endif
|
|
|
|
/*
|
|
* Figure out if we're supposed to skip this one.
|
|
*/
|
|
unit = device_get_unit(dev);
|
|
if (getenv_int("isp_disable", &bitmap)) {
|
|
if (bitmap & (1 << unit)) {
|
|
device_printf(dev, "not configuring\n");
|
|
return (ENODEV);
|
|
}
|
|
}
|
|
|
|
pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (pcs == NULL) {
|
|
device_printf(dev, "cannot allocate softc\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Figure out which we should try first - memory mapping or i/o mapping?
|
|
*/
|
|
#ifdef __alpha__
|
|
m1 = PCIM_CMD_MEMEN;
|
|
m2 = PCIM_CMD_PORTEN;
|
|
#else
|
|
m1 = PCIM_CMD_PORTEN;
|
|
m2 = PCIM_CMD_MEMEN;
|
|
#endif
|
|
bitmap = 0;
|
|
if (getenv_int("isp_mem_map", &bitmap)) {
|
|
if (bitmap & (1 << unit)) {
|
|
m1 = PCIM_CMD_MEMEN;
|
|
m2 = PCIM_CMD_PORTEN;
|
|
}
|
|
}
|
|
bitmap = 0;
|
|
if (getenv_int("isp_io_map", &bitmap)) {
|
|
if (bitmap & (1 << unit)) {
|
|
m1 = PCIM_CMD_PORTEN;
|
|
m2 = PCIM_CMD_MEMEN;
|
|
}
|
|
}
|
|
|
|
linesz = PCI_DFLT_LNSZ;
|
|
irq = regs = NULL;
|
|
rgd = rtp = iqd = 0;
|
|
|
|
cmd = pci_read_config(dev, PCIR_COMMAND, 1);
|
|
if (cmd & m1) {
|
|
rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
|
|
rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
|
|
regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
|
|
}
|
|
if (regs == NULL && (cmd & m2)) {
|
|
rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
|
|
rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
|
|
regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
|
|
}
|
|
if (regs == NULL) {
|
|
device_printf(dev, "unable to map any ports\n");
|
|
goto bad;
|
|
}
|
|
if (bootverbose)
|
|
device_printf(dev, "using %s space register mapping\n",
|
|
(rgd == IO_MAP_REG)? "I/O" : "Memory");
|
|
pcs->pci_dev = dev;
|
|
pcs->pci_reg = regs;
|
|
pcs->pci_st = rman_get_bustag(regs);
|
|
pcs->pci_sh = rman_get_bushandle(regs);
|
|
|
|
pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
|
|
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
|
|
pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
|
|
pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
|
|
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
|
|
mdvp = &mdvec;
|
|
basetype = ISP_HA_SCSI_UNKNOWN;
|
|
psize = sizeof (sdparam);
|
|
lim = BUS_SPACE_MAXSIZE_32BIT;
|
|
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
|
|
mdvp = &mdvec;
|
|
basetype = ISP_HA_SCSI_UNKNOWN;
|
|
psize = sizeof (sdparam);
|
|
lim = BUS_SPACE_MAXSIZE_24BIT;
|
|
}
|
|
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
|
|
mdvp = &mdvec_1080;
|
|
basetype = ISP_HA_SCSI_1080;
|
|
psize = sizeof (sdparam);
|
|
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
|
|
ISP1080_DMA_REGS_OFF;
|
|
}
|
|
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
|
|
mdvp = &mdvec_1080;
|
|
basetype = ISP_HA_SCSI_1240;
|
|
psize = 2 * sizeof (sdparam);
|
|
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
|
|
ISP1080_DMA_REGS_OFF;
|
|
}
|
|
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
|
|
mdvp = &mdvec_1080;
|
|
basetype = ISP_HA_SCSI_1280;
|
|
psize = 2 * sizeof (sdparam);
|
|
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
|
|
ISP1080_DMA_REGS_OFF;
|
|
}
|
|
if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
|
|
mdvp = &mdvec_12160;
|
|
basetype = ISP_HA_SCSI_12160;
|
|
psize = 2 * sizeof (sdparam);
|
|
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
|
|
ISP1080_DMA_REGS_OFF;
|
|
}
|
|
if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
|
|
mdvp = &mdvec_2100;
|
|
basetype = ISP_HA_FC_2100;
|
|
psize = sizeof (fcparam);
|
|
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
|
|
PCI_MBOX_REGS2100_OFF;
|
|
if (pci_get_revid(dev) < 3) {
|
|
/*
|
|
* XXX: Need to get the actual revision
|
|
* XXX: number of the 2100 FB. At any rate,
|
|
* XXX: lower cache line size for early revision
|
|
* XXX; boards.
|
|
*/
|
|
linesz = 1;
|
|
}
|
|
}
|
|
if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
|
|
mdvp = &mdvec_2200;
|
|
basetype = ISP_HA_FC_2200;
|
|
psize = sizeof (fcparam);
|
|
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
|
|
PCI_MBOX_REGS2100_OFF;
|
|
}
|
|
isp = &pcs->pci_isp;
|
|
isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (isp->isp_param == NULL) {
|
|
device_printf(dev, "cannot allocate parameter data\n");
|
|
goto bad;
|
|
}
|
|
isp->isp_mdvec = mdvp;
|
|
isp->isp_type = basetype;
|
|
isp->isp_revision = pci_get_revid(dev);
|
|
(void) snprintf(isp->isp_name, sizeof (isp->isp_name), "isp%d", unit);
|
|
isp->isp_osinfo.unit = unit;
|
|
|
|
/*
|
|
* Try and find firmware for this device.
|
|
*/
|
|
|
|
if (isp_get_firmware_p) {
|
|
int device = (int) pci_get_device(dev);
|
|
#ifdef ISP_TARGET_MODE
|
|
(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
|
|
#else
|
|
(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
|
|
* are set.
|
|
*/
|
|
cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
|
|
PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
|
|
pci_write_config(dev, PCIR_COMMAND, cmd, 1);
|
|
|
|
/*
|
|
* Make sure the Cache Line Size register is set sensibly.
|
|
*/
|
|
data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
|
|
if (data != linesz) {
|
|
data = PCI_DFLT_LNSZ;
|
|
isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
|
|
pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
|
|
}
|
|
|
|
/*
|
|
* Make sure the Latency Timer is sane.
|
|
*/
|
|
data = pci_read_config(dev, PCIR_LATTIMER, 1);
|
|
if (data < PCI_DFLT_LTNCY) {
|
|
data = PCI_DFLT_LTNCY;
|
|
isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
|
|
pci_write_config(dev, PCIR_LATTIMER, data, 1);
|
|
}
|
|
|
|
/*
|
|
* Make sure we've disabled the ROM.
|
|
*/
|
|
data = pci_read_config(dev, PCIR_ROMADDR, 4);
|
|
data &= ~1;
|
|
pci_write_config(dev, PCIR_ROMADDR, data, 4);
|
|
|
|
|
|
if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, lim + 1,
|
|
255, lim, 0, &pcs->parent_dmat) != 0) {
|
|
device_printf(dev, "could not create master dma tag\n");
|
|
free(isp->isp_param, M_DEVBUF);
|
|
free(pcs, M_DEVBUF);
|
|
return (ENXIO);
|
|
}
|
|
|
|
iqd = 0;
|
|
irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
|
|
1, RF_ACTIVE | RF_SHAREABLE);
|
|
if (irq == NULL) {
|
|
device_printf(dev, "could not allocate interrupt\n");
|
|
goto bad;
|
|
}
|
|
|
|
if (getenv_int("isp_no_fwload", &bitmap)) {
|
|
if (bitmap & (1 << unit))
|
|
isp->isp_confopts |= ISP_CFG_NORELOAD;
|
|
}
|
|
if (getenv_int("isp_fwload", &bitmap)) {
|
|
if (bitmap & (1 << unit))
|
|
isp->isp_confopts &= ~ISP_CFG_NORELOAD;
|
|
}
|
|
if (getenv_int("isp_no_nvram", &bitmap)) {
|
|
if (bitmap & (1 << unit))
|
|
isp->isp_confopts |= ISP_CFG_NONVRAM;
|
|
}
|
|
if (getenv_int("isp_nvram", &bitmap)) {
|
|
if (bitmap & (1 << unit))
|
|
isp->isp_confopts &= ~ISP_CFG_NONVRAM;
|
|
}
|
|
if (getenv_int("isp_fcduplex", &bitmap)) {
|
|
if (bitmap & (1 << unit))
|
|
isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
|
|
}
|
|
if (getenv_int("isp_no_fcduplex", &bitmap)) {
|
|
if (bitmap & (1 << unit))
|
|
isp->isp_confopts &= ~ISP_CFG_FULL_DUPLEX;
|
|
}
|
|
if (getenv_int("isp_nport", &bitmap)) {
|
|
if (bitmap & (1 << unit))
|
|
isp->isp_confopts |= ISP_CFG_NPORT;
|
|
}
|
|
/*
|
|
* Look for overriding WWN. This is a Node WWN so it binds to
|
|
* all FC instances. A Port WWN will be constructed from it
|
|
* as appropriate.
|
|
*/
|
|
if (!getenv_quad("isp_wwn", (quad_t *) &isp->isp_osinfo.default_wwn)) {
|
|
int i;
|
|
u_int64_t seed = (u_int64_t) (intptr_t) isp;
|
|
|
|
seed <<= 16;
|
|
seed &= ((1LL << 48) - 1LL);
|
|
/*
|
|
* This isn't very random, but it's the best we can do for
|
|
* the real edge case of cards that don't have WWNs. If
|
|
* you recompile a new vers.c, you'll get a different WWN.
|
|
*/
|
|
for (i = 0; version[i] != 0; i++) {
|
|
seed += version[i];
|
|
}
|
|
/*
|
|
* Make sure the top nibble has something vaguely sensible
|
|
* (NAA == Locally Administered)
|
|
*/
|
|
isp->isp_osinfo.default_wwn |= (3LL << 60) | seed;
|
|
} else {
|
|
isp->isp_confopts |= ISP_CFG_OWNWWN;
|
|
}
|
|
isp_debug = 0;
|
|
(void) getenv_int("isp_debug", &isp_debug);
|
|
if (bus_setup_intr(dev, irq, INTR_TYPE_CAM, (void (*)(void *))isp_intr,
|
|
isp, &pcs->ih)) {
|
|
device_printf(dev, "could not setup interrupt\n");
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Set up logging levels.
|
|
*/
|
|
if (isp_debug) {
|
|
isp->isp_dblev = isp_debug;
|
|
} else {
|
|
isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
|
|
}
|
|
if (bootverbose)
|
|
isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
|
|
|
|
#ifdef ISP_SMPLOCK
|
|
/* Make sure the lock is set up. */
|
|
mtx_init(&isp->isp_osinfo.lock, "isp", MTX_DEF);
|
|
locksetup++;
|
|
#endif
|
|
|
|
/*
|
|
* Make sure we're in reset state.
|
|
*/
|
|
ISP_LOCK(isp);
|
|
isp_reset(isp);
|
|
|
|
if (isp->isp_state != ISP_RESETSTATE) {
|
|
ISP_UNLOCK(isp);
|
|
goto bad;
|
|
}
|
|
isp_init(isp);
|
|
if (isp->isp_state != ISP_INITSTATE) {
|
|
/* If we're a Fibre Channel Card, we allow deferred attach */
|
|
if (IS_SCSI(isp)) {
|
|
isp_uninit(isp);
|
|
ISP_UNLOCK(isp);
|
|
goto bad;
|
|
}
|
|
}
|
|
isp_attach(isp);
|
|
if (isp->isp_state != ISP_RUNSTATE) {
|
|
/* If we're a Fibre Channel Card, we allow deferred attach */
|
|
if (IS_SCSI(isp)) {
|
|
isp_uninit(isp);
|
|
ISP_UNLOCK(isp);
|
|
goto bad;
|
|
}
|
|
}
|
|
/*
|
|
* XXXX: Here is where we might unload the f/w module
|
|
* XXXX: (or decrease the reference count to it).
|
|
*/
|
|
ISP_UNLOCK(isp);
|
|
return (0);
|
|
|
|
bad:
|
|
|
|
if (pcs && pcs->ih) {
|
|
(void) bus_teardown_intr(dev, irq, pcs->ih);
|
|
}
|
|
|
|
#ifdef ISP_SMPLOCK
|
|
if (locksetup && isp) {
|
|
mtx_destroy(&isp->isp_osinfo.lock);
|
|
}
|
|
#endif
|
|
|
|
if (irq) {
|
|
(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
|
|
}
|
|
|
|
|
|
if (regs) {
|
|
(void) bus_release_resource(dev, rtp, rgd, regs);
|
|
}
|
|
|
|
if (pcs) {
|
|
if (pcs->pci_isp.isp_param)
|
|
free(pcs->pci_isp.isp_param, M_DEVBUF);
|
|
free(pcs, M_DEVBUF);
|
|
}
|
|
|
|
/*
|
|
* XXXX: Here is where we might unload the f/w module
|
|
* XXXX: (or decrease the reference count to it).
|
|
*/
|
|
return (ENXIO);
|
|
}
|
|
|
|
static u_int16_t
|
|
isp_pci_rd_reg(isp, regoff)
|
|
struct ispsoftc *isp;
|
|
int regoff;
|
|
{
|
|
u_int16_t rv;
|
|
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
|
|
int offset, oldconf = 0;
|
|
|
|
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
|
|
/*
|
|
* We will assume that someone has paused the RISC processor.
|
|
*/
|
|
oldconf = isp_pci_rd_reg(isp, BIU_CONF1);
|
|
isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP);
|
|
}
|
|
offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
|
|
offset += (regoff & 0xff);
|
|
rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset);
|
|
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
|
|
isp_pci_wr_reg(isp, BIU_CONF1, oldconf);
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
static void
|
|
isp_pci_wr_reg(isp, regoff, val)
|
|
struct ispsoftc *isp;
|
|
int regoff;
|
|
u_int16_t val;
|
|
{
|
|
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
|
|
int offset, oldconf = 0;
|
|
|
|
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
|
|
/*
|
|
* We will assume that someone has paused the RISC processor.
|
|
*/
|
|
oldconf = isp_pci_rd_reg(isp, BIU_CONF1);
|
|
isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP);
|
|
}
|
|
offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
|
|
offset += (regoff & 0xff);
|
|
bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val);
|
|
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
|
|
isp_pci_wr_reg(isp, BIU_CONF1, oldconf);
|
|
}
|
|
}
|
|
|
|
static u_int16_t
|
|
isp_pci_rd_reg_1080(isp, regoff)
|
|
struct ispsoftc *isp;
|
|
int regoff;
|
|
{
|
|
u_int16_t rv, oc = 0;
|
|
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
|
|
int offset;
|
|
|
|
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
|
|
(regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
|
|
u_int16_t tc;
|
|
/*
|
|
* We will assume that someone has paused the RISC processor.
|
|
*/
|
|
oc = isp_pci_rd_reg(isp, BIU_CONF1);
|
|
tc = oc & ~BIU_PCI1080_CONF1_DMA;
|
|
if (regoff & SXP_BANK1_SELECT)
|
|
tc |= BIU_PCI1080_CONF1_SXP1;
|
|
else
|
|
tc |= BIU_PCI1080_CONF1_SXP0;
|
|
isp_pci_wr_reg(isp, BIU_CONF1, tc);
|
|
} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
|
|
oc = isp_pci_rd_reg(isp, BIU_CONF1);
|
|
isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA);
|
|
}
|
|
offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
|
|
offset += (regoff & 0xff);
|
|
rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset);
|
|
if (oc) {
|
|
isp_pci_wr_reg(isp, BIU_CONF1, oc);
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
static void
|
|
isp_pci_wr_reg_1080(isp, regoff, val)
|
|
struct ispsoftc *isp;
|
|
int regoff;
|
|
u_int16_t val;
|
|
{
|
|
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
|
|
int offset, oc = 0;
|
|
|
|
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
|
|
(regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
|
|
u_int16_t tc;
|
|
/*
|
|
* We will assume that someone has paused the RISC processor.
|
|
*/
|
|
oc = isp_pci_rd_reg(isp, BIU_CONF1);
|
|
tc = oc & ~BIU_PCI1080_CONF1_DMA;
|
|
if (regoff & SXP_BANK1_SELECT)
|
|
tc |= BIU_PCI1080_CONF1_SXP1;
|
|
else
|
|
tc |= BIU_PCI1080_CONF1_SXP0;
|
|
isp_pci_wr_reg(isp, BIU_CONF1, tc);
|
|
} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
|
|
oc = isp_pci_rd_reg(isp, BIU_CONF1);
|
|
isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA);
|
|
}
|
|
offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
|
|
offset += (regoff & 0xff);
|
|
bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val);
|
|
if (oc) {
|
|
isp_pci_wr_reg(isp, BIU_CONF1, oc);
|
|
}
|
|
}
|
|
|
|
static void isp_map_rquest __P((void *, bus_dma_segment_t *, int, int));
|
|
static void isp_map_result __P((void *, bus_dma_segment_t *, int, int));
|
|
static void isp_map_fcscrt __P((void *, bus_dma_segment_t *, int, int));
|
|
|
|
struct imush {
|
|
struct ispsoftc *isp;
|
|
int error;
|
|
};
|
|
|
|
static void
|
|
isp_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct imush *imushp = (struct imush *) arg;
|
|
if (error) {
|
|
imushp->error = error;
|
|
} else {
|
|
imushp->isp->isp_rquest_dma = segs->ds_addr;
|
|
}
|
|
}
|
|
|
|
static void
|
|
isp_map_result(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct imush *imushp = (struct imush *) arg;
|
|
if (error) {
|
|
imushp->error = error;
|
|
} else {
|
|
imushp->isp->isp_result_dma = segs->ds_addr;
|
|
}
|
|
}
|
|
|
|
static void
|
|
isp_map_fcscrt(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct imush *imushp = (struct imush *) arg;
|
|
if (error) {
|
|
imushp->error = error;
|
|
} else {
|
|
fcparam *fcp = imushp->isp->isp_param;
|
|
fcp->isp_scdma = segs->ds_addr;
|
|
}
|
|
}
|
|
|
|
static int
|
|
isp_pci_mbxdma(struct ispsoftc *isp)
|
|
{
|
|
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
|
|
caddr_t base;
|
|
u_int32_t len;
|
|
int i, error;
|
|
bus_size_t lim;
|
|
struct imush im;
|
|
|
|
|
|
/*
|
|
* Already been here? If so, leave...
|
|
*/
|
|
if (isp->isp_rquest) {
|
|
return (0);
|
|
}
|
|
|
|
len = sizeof (XS_T **) * isp->isp_maxcmds;
|
|
isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
|
|
if (isp->isp_xflist == NULL) {
|
|
isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array");
|
|
return (1);
|
|
}
|
|
len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
|
|
pci->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_WAITOK);
|
|
if (pci->dmaps == NULL) {
|
|
isp_prt(isp, ISP_LOGERR, "can't alloc dma maps");
|
|
free(isp->isp_xflist, M_DEVBUF);
|
|
return (1);
|
|
}
|
|
|
|
if (IS_FC(isp) || IS_ULTRA2(isp))
|
|
lim = BUS_SPACE_MAXADDR + 1;
|
|
else
|
|
lim = BUS_SPACE_MAXADDR_24BIT + 1;
|
|
|
|
/*
|
|
* Allocate and map the request, result queues, plus FC scratch area.
|
|
*/
|
|
len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
|
|
len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
|
|
if (IS_FC(isp)) {
|
|
len += ISP2100_SCRLEN;
|
|
}
|
|
if (bus_dma_tag_create(pci->parent_dmat, PAGE_SIZE, lim,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1,
|
|
BUS_SPACE_MAXSIZE_32BIT, 0, &pci->cntrol_dmat) != 0) {
|
|
isp_prt(isp, ISP_LOGERR,
|
|
"cannot create a dma tag for control spaces");
|
|
free(isp->isp_xflist, M_DEVBUF);
|
|
free(pci->dmaps, M_DEVBUF);
|
|
return (1);
|
|
}
|
|
if (bus_dmamem_alloc(pci->cntrol_dmat, (void **)&base,
|
|
BUS_DMA_NOWAIT, &pci->cntrol_dmap) != 0) {
|
|
isp_prt(isp, ISP_LOGERR,
|
|
"cannot allocate %d bytes of CCB memory");
|
|
free(isp->isp_xflist, M_DEVBUF);
|
|
free(pci->dmaps, M_DEVBUF);
|
|
return (1);
|
|
}
|
|
|
|
isp->isp_rquest = base;
|
|
im.isp = isp;
|
|
im.error = 0;
|
|
bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_rquest,
|
|
ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)), isp_map_rquest, &im, 0);
|
|
if (im.error) {
|
|
isp_prt(isp, ISP_LOGERR,
|
|
"error %d loading dma map for DMA request queue", im.error);
|
|
free(isp->isp_xflist, M_DEVBUF);
|
|
free(pci->dmaps, M_DEVBUF);
|
|
isp->isp_rquest = NULL;
|
|
return (1);
|
|
}
|
|
isp->isp_result = base + ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
|
|
im.error = 0;
|
|
bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_result,
|
|
ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)), isp_map_result, &im, 0);
|
|
if (im.error) {
|
|
isp_prt(isp, ISP_LOGERR,
|
|
"error %d loading dma map for DMA result queue", im.error);
|
|
free(isp->isp_xflist, M_DEVBUF);
|
|
free(pci->dmaps, M_DEVBUF);
|
|
isp->isp_rquest = NULL;
|
|
return (1);
|
|
}
|
|
|
|
for (i = 0; i < isp->isp_maxcmds; i++) {
|
|
error = bus_dmamap_create(pci->parent_dmat, 0, &pci->dmaps[i]);
|
|
if (error) {
|
|
isp_prt(isp, ISP_LOGERR,
|
|
"error %d creating per-cmd DMA maps", error);
|
|
free(isp->isp_xflist, M_DEVBUF);
|
|
free(pci->dmaps, M_DEVBUF);
|
|
isp->isp_rquest = NULL;
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
if (IS_FC(isp)) {
|
|
fcparam *fcp = (fcparam *) isp->isp_param;
|
|
fcp->isp_scratch = base +
|
|
ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)) +
|
|
ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
|
|
im.error = 0;
|
|
bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap,
|
|
fcp->isp_scratch, ISP2100_SCRLEN, isp_map_fcscrt, &im, 0);
|
|
if (im.error) {
|
|
isp_prt(isp, ISP_LOGERR,
|
|
"error %d loading FC scratch area", im.error);
|
|
free(isp->isp_xflist, M_DEVBUF);
|
|
free(pci->dmaps, M_DEVBUF);
|
|
isp->isp_rquest = NULL;
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
typedef struct {
|
|
struct ispsoftc *isp;
|
|
void *cmd_token;
|
|
void *rq;
|
|
u_int16_t *iptrp;
|
|
u_int16_t optr;
|
|
u_int error;
|
|
} mush_t;
|
|
|
|
#define MUSHERR_NOQENTRIES -2
|
|
|
|
#ifdef ISP_TARGET_MODE
|
|
/*
|
|
* We need to handle DMA for target mode differently from initiator mode.
|
|
*
|
|
* DMA mapping and construction and submission of CTIO Request Entries
|
|
* and rendevous for completion are very tightly coupled because we start
|
|
* out by knowing (per platform) how much data we have to move, but we
|
|
* don't know, up front, how many DMA mapping segments will have to be used
|
|
* cover that data, so we don't know how many CTIO Request Entries we
|
|
* will end up using. Further, for performance reasons we may want to
|
|
* (on the last CTIO for Fibre Channel), send status too (if all went well).
|
|
*
|
|
* The standard vector still goes through isp_pci_dmasetup, but the callback
|
|
* for the DMA mapping routines comes here instead with the whole transfer
|
|
* mapped and a pointer to a partially filled in already allocated request
|
|
* queue entry. We finish the job.
|
|
*/
|
|
static void tdma_mk __P((void *, bus_dma_segment_t *, int, int));
|
|
static void tdma_mkfc __P((void *, bus_dma_segment_t *, int, int));
|
|
|
|
static void
|
|
tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
|
|
{
|
|
mush_t *mp;
|
|
struct ccb_scsiio *csio;
|
|
struct isp_pcisoftc *pci;
|
|
bus_dmamap_t *dp;
|
|
u_int8_t scsi_status;
|
|
ct_entry_t *cto;
|
|
u_int32_t handle, totxfr, sflags;
|
|
int nctios, send_status;
|
|
int32_t resid;
|
|
|
|
mp = (mush_t *) arg;
|
|
if (error) {
|
|
mp->error = error;
|
|
return;
|
|
}
|
|
csio = mp->cmd_token;
|
|
cto = mp->rq;
|
|
|
|
cto->ct_xfrlen = 0;
|
|
cto->ct_seg_count = 0;
|
|
cto->ct_header.rqs_entry_count = 1;
|
|
MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
|
|
|
|
if (nseg == 0) {
|
|
cto->ct_header.rqs_seqno = 1;
|
|
ISP_TDQE(mp->isp, "tdma_mk[no data]", *mp->iptrp, cto);
|
|
isp_prt(mp->isp, ISP_LOGTDEBUG1,
|
|
"CTIO lun %d->iid%d flgs 0x%x sts 0x%x ssts 0x%x res %d",
|
|
csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags,
|
|
cto->ct_status, cto->ct_scsi_status, cto->ct_resid);
|
|
ISP_SWIZ_CTIO(mp->isp, cto, cto);
|
|
return;
|
|
}
|
|
|
|
nctios = nseg / ISP_RQDSEG;
|
|
if (nseg % ISP_RQDSEG) {
|
|
nctios++;
|
|
}
|
|
|
|
/*
|
|
* Save handle, and potentially any SCSI status, which we'll reinsert
|
|
* on the last CTIO we're going to send.
|
|
*/
|
|
handle = cto->ct_reserved;
|
|
cto->ct_reserved = 0;
|
|
cto->ct_header.rqs_seqno = 0;
|
|
send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
|
|
|
|
if (send_status) {
|
|
sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
|
|
cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
|
|
/*
|
|
* Preserve residual.
|
|
*/
|
|
resid = cto->ct_resid;
|
|
|
|
/*
|
|
* Save actual SCSI status.
|
|
*/
|
|
scsi_status = cto->ct_scsi_status;
|
|
|
|
/*
|
|
* We can't do a status at the same time as a data CTIO, so
|
|
* we need to synthesize an extra CTIO at this level.
|
|
*/
|
|
nctios++;
|
|
} else {
|
|
sflags = scsi_status = resid = 0;
|
|
}
|
|
|
|
totxfr = cto->ct_resid = 0;
|
|
cto->ct_scsi_status = 0;
|
|
|
|
pci = (struct isp_pcisoftc *)mp->isp;
|
|
dp = &pci->dmaps[isp_handle_index(handle)];
|
|
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
|
|
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
|
|
} else {
|
|
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
|
|
while (nctios--) {
|
|
int seglim;
|
|
|
|
seglim = nseg;
|
|
if (seglim) {
|
|
int seg;
|
|
|
|
if (seglim > ISP_RQDSEG)
|
|
seglim = ISP_RQDSEG;
|
|
|
|
for (seg = 0; seg < seglim; seg++, nseg--) {
|
|
/*
|
|
* Unlike normal initiator commands, we don't
|
|
* do any swizzling here.
|
|
*/
|
|
cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
|
|
cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
|
|
cto->ct_xfrlen += dm_segs->ds_len;
|
|
totxfr += dm_segs->ds_len;
|
|
dm_segs++;
|
|
}
|
|
cto->ct_seg_count = seg;
|
|
} else {
|
|
/*
|
|
* This case should only happen when we're sending an
|
|
* extra CTIO with final status.
|
|
*/
|
|
if (send_status == 0) {
|
|
isp_prt(mp->isp, ISP_LOGWARN,
|
|
"tdma_mk ran out of segments");
|
|
mp->error = EINVAL;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, the fields ct_lun, ct_iid, ct_tagval,
|
|
* ct_tagtype, and ct_timeout have been carried over
|
|
* unchanged from what our caller had set.
|
|
*
|
|
* The dataseg fields and the seg_count fields we just got
|
|
* through setting. The data direction we've preserved all
|
|
* along and only clear it if we're now sending status.
|
|
*/
|
|
|
|
if (nctios == 0) {
|
|
/*
|
|
* We're the last in a sequence of CTIOs, so mark
|
|
* this CTIO and save the handle to the CCB such that
|
|
* when this CTIO completes we can free dma resources
|
|
* and do whatever else we need to do to finish the
|
|
* rest of the command.
|
|
*/
|
|
cto->ct_reserved = handle;
|
|
cto->ct_header.rqs_seqno = 1;
|
|
|
|
if (send_status) {
|
|
cto->ct_scsi_status = scsi_status;
|
|
cto->ct_flags |= sflags | CT_NO_DATA;;
|
|
cto->ct_resid = resid;
|
|
}
|
|
if (send_status) {
|
|
isp_prt(mp->isp, ISP_LOGTDEBUG1,
|
|
"CTIO lun%d for ID %d ct_flags 0x%x scsi "
|
|
"status %x resid %d",
|
|
csio->ccb_h.target_lun,
|
|
cto->ct_iid, cto->ct_flags,
|
|
cto->ct_scsi_status, cto->ct_resid);
|
|
} else {
|
|
isp_prt(mp->isp, ISP_LOGTDEBUG1,
|
|
"CTIO lun%d for ID%d ct_flags 0x%x",
|
|
csio->ccb_h.target_lun,
|
|
cto->ct_iid, cto->ct_flags);
|
|
}
|
|
ISP_TDQE(mp->isp, "last tdma_mk", *mp->iptrp, cto);
|
|
ISP_SWIZ_CTIO(mp->isp, cto, cto);
|
|
} else {
|
|
ct_entry_t *octo = cto;
|
|
|
|
/*
|
|
* Make sure handle fields are clean
|
|
*/
|
|
cto->ct_reserved = 0;
|
|
cto->ct_header.rqs_seqno = 0;
|
|
|
|
isp_prt(mp->isp, ISP_LOGTDEBUG1,
|
|
"CTIO lun%d for ID%d ct_flags 0x%x",
|
|
csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags);
|
|
ISP_TDQE(mp->isp, "tdma_mk", *mp->iptrp, cto);
|
|
|
|
/*
|
|
* Get a new CTIO
|
|
*/
|
|
cto = (ct_entry_t *)
|
|
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
|
|
*mp->iptrp =
|
|
ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp));
|
|
if (*mp->iptrp == mp->optr) {
|
|
isp_prt(mp->isp, ISP_LOGWARN,
|
|
"Queue Overflow in tdma_mk");
|
|
mp->error = MUSHERR_NOQENTRIES;
|
|
return;
|
|
}
|
|
/*
|
|
* Fill in the new CTIO with info from the old one.
|
|
*/
|
|
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
|
|
cto->ct_header.rqs_entry_count = 1;
|
|
cto->ct_header.rqs_flags = 0;
|
|
cto->ct_lun = octo->ct_lun;
|
|
cto->ct_iid = octo->ct_iid;
|
|
cto->ct_reserved2 = octo->ct_reserved2;
|
|
cto->ct_tgt = octo->ct_tgt;
|
|
cto->ct_flags = octo->ct_flags;
|
|
cto->ct_status = 0;
|
|
cto->ct_scsi_status = 0;
|
|
cto->ct_tag_val = octo->ct_tag_val;
|
|
cto->ct_tag_type = octo->ct_tag_type;
|
|
cto->ct_xfrlen = 0;
|
|
cto->ct_resid = 0;
|
|
cto->ct_timeout = octo->ct_timeout;
|
|
cto->ct_seg_count = 0;
|
|
MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
|
|
/*
|
|
* Now swizzle the old one for the consumption of the
|
|
* chip.
|
|
*/
|
|
ISP_SWIZ_CTIO(mp->isp, octo, octo);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
|
|
{
|
|
mush_t *mp;
|
|
struct ccb_scsiio *csio;
|
|
struct isp_pcisoftc *pci;
|
|
bus_dmamap_t *dp;
|
|
ct2_entry_t *cto;
|
|
u_int16_t scsi_status, send_status, send_sense;
|
|
u_int32_t handle, totxfr, datalen;
|
|
u_int8_t sense[QLTM_SENSELEN];
|
|
int nctios;
|
|
|
|
mp = (mush_t *) arg;
|
|
if (error) {
|
|
mp->error = error;
|
|
return;
|
|
}
|
|
|
|
csio = mp->cmd_token;
|
|
cto = mp->rq;
|
|
|
|
if (nseg == 0) {
|
|
if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
|
|
isp_prt(mp->isp, ISP_LOGWARN,
|
|
"dma2_tgt_fc, a status CTIO2 without MODE1 "
|
|
"set (0x%x)", cto->ct_flags);
|
|
mp->error = EINVAL;
|
|
return;
|
|
}
|
|
cto->ct_header.rqs_entry_count = 1;
|
|
cto->ct_header.rqs_seqno = 1;
|
|
/* ct_reserved contains the handle set by caller */
|
|
/*
|
|
* We preserve ct_lun, ct_iid, ct_rxid. We set the data
|
|
* flags to NO DATA and clear relative offset flags.
|
|
* We preserve the ct_resid and the response area.
|
|
*/
|
|
cto->ct_flags |= CT2_NO_DATA;
|
|
if (cto->ct_resid > 0)
|
|
cto->ct_flags |= CT2_DATA_UNDER;
|
|
else if (cto->ct_resid < 0)
|
|
cto->ct_flags |= CT2_DATA_OVER;
|
|
cto->ct_seg_count = 0;
|
|
cto->ct_reloff = 0;
|
|
ISP_TDQE(mp->isp, "dma2_tgt_fc[no data]", *mp->iptrp, cto);
|
|
isp_prt(mp->isp, ISP_LOGTDEBUG1,
|
|
"CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x sts 0x%x ssts "
|
|
"0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
|
|
cto->ct_iid, cto->ct_flags, cto->ct_status,
|
|
cto->rsp.m1.ct_scsi_status, cto->ct_resid);
|
|
ISP_SWIZ_CTIO2(isp, cto, cto);
|
|
return;
|
|
}
|
|
|
|
if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
|
|
isp_prt(mp->isp, ISP_LOGWARN,
|
|
"dma2_tgt_fc, a data CTIO2 without MODE0 set "
|
|
"(0x%x)", cto->ct_flags);
|
|
mp->error = EINVAL;
|
|
return;
|
|
}
|
|
|
|
|
|
nctios = nseg / ISP_RQDSEG_T2;
|
|
if (nseg % ISP_RQDSEG_T2) {
|
|
nctios++;
|
|
}
|
|
|
|
/*
|
|
* Save the handle, status, reloff, and residual. We'll reinsert the
|
|
* handle into the last CTIO2 we're going to send, and reinsert status
|
|
* and residual (and possibly sense data) if that's to be sent as well.
|
|
*
|
|
* We preserve ct_reloff and adjust it for each data CTIO2 we send past
|
|
* the first one. This is needed so that the FCP DATA IUs being sent
|
|
* out have the correct offset (they can arrive at the other end out
|
|
* of order).
|
|
*/
|
|
|
|
handle = cto->ct_reserved;
|
|
cto->ct_reserved = 0;
|
|
|
|
if ((send_status = (cto->ct_flags & CT2_SENDSTATUS)) != 0) {
|
|
cto->ct_flags &= ~CT2_SENDSTATUS;
|
|
|
|
/*
|
|
* Preserve residual, which is actually the total count.
|
|
*/
|
|
datalen = cto->ct_resid;
|
|
|
|
/*
|
|
* Save actual SCSI status. We'll reinsert the
|
|
* CT2_SNSLEN_VALID later if appropriate.
|
|
*/
|
|
scsi_status = cto->rsp.m0.ct_scsi_status & 0xff;
|
|
send_sense = cto->rsp.m0.ct_scsi_status & CT2_SNSLEN_VALID;
|
|
|
|
/*
|
|
* If we're sending status and have a CHECK CONDTION and
|
|
* have sense data, we send one more CTIO2 with just the
|
|
* status and sense data. The upper layers have stashed
|
|
* the sense data in the dataseg structure for us.
|
|
*/
|
|
|
|
if ((scsi_status & 0xf) == SCSI_STATUS_CHECK_COND &&
|
|
send_sense) {
|
|
bcopy(cto->rsp.m0.ct_dataseg, sense, QLTM_SENSELEN);
|
|
nctios++;
|
|
}
|
|
} else {
|
|
scsi_status = send_sense = datalen = 0;
|
|
}
|
|
|
|
totxfr = cto->ct_resid = 0;
|
|
cto->rsp.m0.ct_scsi_status = 0;
|
|
bzero(&cto->rsp, sizeof (cto->rsp));
|
|
|
|
pci = (struct isp_pcisoftc *)mp->isp;
|
|
dp = &pci->dmaps[isp_handle_index(handle)];
|
|
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
|
|
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
|
|
} else {
|
|
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
while (nctios--) {
|
|
int seg, seglim;
|
|
|
|
seglim = nseg;
|
|
if (seglim) {
|
|
if (seglim > ISP_RQDSEG_T2)
|
|
seglim = ISP_RQDSEG_T2;
|
|
|
|
for (seg = 0; seg < seglim; seg++) {
|
|
cto->rsp.m0.ct_dataseg[seg].ds_base =
|
|
dm_segs->ds_addr;
|
|
cto->rsp.m0.ct_dataseg[seg].ds_count =
|
|
dm_segs->ds_len;
|
|
cto->rsp.m0.ct_xfrlen += dm_segs->ds_len;
|
|
totxfr += dm_segs->ds_len;
|
|
dm_segs++;
|
|
}
|
|
cto->ct_seg_count = seg;
|
|
} else {
|
|
/*
|
|
* This case should only happen when we're sending a
|
|
* synthesized MODE1 final status with sense data.
|
|
*/
|
|
if (send_sense == 0) {
|
|
isp_prt(mp->isp, ISP_LOGWARN,
|
|
"dma2_tgt_fc ran out of segments, "
|
|
"no SENSE DATA");
|
|
mp->error = EINVAL;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, the fields ct_lun, ct_iid, ct_rxid,
|
|
* ct_timeout have been carried over unchanged from what
|
|
* our caller had set.
|
|
*
|
|
* The field ct_reloff is either what the caller set, or
|
|
* what we've added to below.
|
|
*
|
|
* The dataseg fields and the seg_count fields we just got
|
|
* through setting. The data direction we've preserved all
|
|
* along and only clear it if we're sending a MODE1 status
|
|
* as the last CTIO.
|
|
*
|
|
*/
|
|
|
|
if (nctios == 0) {
|
|
|
|
/*
|
|
* We're the last in a sequence of CTIO2s, so mark this
|
|
* CTIO2 and save the handle to the CCB such that when
|
|
* this CTIO2 completes we can free dma resources and
|
|
* do whatever else we need to do to finish the rest
|
|
* of the command.
|
|
*/
|
|
|
|
cto->ct_reserved = handle;
|
|
cto->ct_header.rqs_seqno = 1;
|
|
|
|
if (send_status) {
|
|
if (send_sense) {
|
|
bcopy(sense, cto->rsp.m1.ct_resp,
|
|
QLTM_SENSELEN);
|
|
cto->rsp.m1.ct_senselen =
|
|
QLTM_SENSELEN;
|
|
scsi_status |= CT2_SNSLEN_VALID;
|
|
cto->rsp.m1.ct_scsi_status =
|
|
scsi_status;
|
|
cto->ct_flags &= CT2_FLAG_MMASK;
|
|
cto->ct_flags |= CT2_FLAG_MODE1 |
|
|
CT2_NO_DATA| CT2_SENDSTATUS;
|
|
} else {
|
|
cto->rsp.m0.ct_scsi_status =
|
|
scsi_status;
|
|
cto->ct_flags |= CT2_SENDSTATUS;
|
|
}
|
|
/*
|
|
* Get 'real' residual and set flags based
|
|
* on it.
|
|
*/
|
|
cto->ct_resid = datalen - totxfr;
|
|
if (cto->ct_resid > 0)
|
|
cto->ct_flags |= CT2_DATA_UNDER;
|
|
else if (cto->ct_resid < 0)
|
|
cto->ct_flags |= CT2_DATA_OVER;
|
|
}
|
|
ISP_TDQE(mp->isp, "last dma2_tgt_fc", *mp->iptrp, cto);
|
|
isp_prt(mp->isp, ISP_LOGTDEBUG1,
|
|
"CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x sts 0x%x"
|
|
" ssts 0x%x res %d", cto->ct_rxid,
|
|
csio->ccb_h.target_lun, (int) cto->ct_iid,
|
|
cto->ct_flags, cto->ct_status,
|
|
cto->rsp.m1.ct_scsi_status, cto->ct_resid);
|
|
ISP_SWIZ_CTIO2(isp, cto, cto);
|
|
} else {
|
|
ct2_entry_t *octo = cto;
|
|
|
|
/*
|
|
* Make sure handle fields are clean
|
|
*/
|
|
cto->ct_reserved = 0;
|
|
cto->ct_header.rqs_seqno = 0;
|
|
|
|
ISP_TDQE(mp->isp, "dma2_tgt_fc", *mp->iptrp, cto);
|
|
isp_prt(mp->isp, ISP_LOGTDEBUG1,
|
|
"CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x",
|
|
cto->ct_rxid, csio->ccb_h.target_lun,
|
|
(int) cto->ct_iid, cto->ct_flags);
|
|
/*
|
|
* Get a new CTIO2
|
|
*/
|
|
cto = (ct2_entry_t *)
|
|
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
|
|
*mp->iptrp =
|
|
ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp));
|
|
if (*mp->iptrp == mp->optr) {
|
|
isp_prt(mp->isp, ISP_LOGWARN,
|
|
"Queue Overflow in dma2_tgt_fc");
|
|
mp->error = MUSHERR_NOQENTRIES;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Fill in the new CTIO2 with info from the old one.
|
|
*/
|
|
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
|
|
cto->ct_header.rqs_entry_count = 1;
|
|
cto->ct_header.rqs_flags = 0;
|
|
/* ct_header.rqs_seqno && ct_reserved done later */
|
|
cto->ct_lun = octo->ct_lun;
|
|
cto->ct_iid = octo->ct_iid;
|
|
cto->ct_rxid = octo->ct_rxid;
|
|
cto->ct_flags = octo->ct_flags;
|
|
cto->ct_status = 0;
|
|
cto->ct_resid = 0;
|
|
cto->ct_timeout = octo->ct_timeout;
|
|
cto->ct_seg_count = 0;
|
|
/*
|
|
* Adjust the new relative offset by the amount which
|
|
* is recorded in the data segment of the old CTIO2 we
|
|
* just finished filling out.
|
|
*/
|
|
cto->ct_reloff += octo->rsp.m0.ct_xfrlen;
|
|
bzero(&cto->rsp, sizeof (cto->rsp));
|
|
ISP_SWIZ_CTIO2(isp, cto, cto);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void dma2 __P((void *, bus_dma_segment_t *, int, int));
|
|
|
|
static void
|
|
dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
|
|
{
|
|
mush_t *mp;
|
|
struct ccb_scsiio *csio;
|
|
struct isp_pcisoftc *pci;
|
|
bus_dmamap_t *dp;
|
|
bus_dma_segment_t *eseg;
|
|
ispreq_t *rq;
|
|
ispcontreq_t *crq;
|
|
int seglim, datalen;
|
|
|
|
mp = (mush_t *) arg;
|
|
if (error) {
|
|
mp->error = error;
|
|
return;
|
|
}
|
|
|
|
if (nseg < 1) {
|
|
isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
|
|
mp->error = EFAULT;
|
|
return;
|
|
}
|
|
csio = mp->cmd_token;
|
|
rq = mp->rq;
|
|
pci = (struct isp_pcisoftc *)mp->isp;
|
|
dp = &pci->dmaps[isp_handle_index(rq->req_handle)];
|
|
|
|
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
|
|
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
|
|
} else {
|
|
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
datalen = XS_XFRLEN(csio);
|
|
|
|
/*
|
|
* We're passed an initial partially filled in entry that
|
|
* has most fields filled in except for data transfer
|
|
* related values.
|
|
*
|
|
* Our job is to fill in the initial request queue entry and
|
|
* then to start allocating and filling in continuation entries
|
|
* until we've covered the entire transfer.
|
|
*/
|
|
|
|
if (IS_FC(mp->isp)) {
|
|
seglim = ISP_RQDSEG_T2;
|
|
((ispreqt2_t *)rq)->req_totalcnt = datalen;
|
|
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
|
|
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
|
|
} else {
|
|
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
|
|
}
|
|
} else {
|
|
if (csio->cdb_len > 12) {
|
|
seglim = 0;
|
|
} else {
|
|
seglim = ISP_RQDSEG;
|
|
}
|
|
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
|
|
rq->req_flags |= REQFLAG_DATA_IN;
|
|
} else {
|
|
rq->req_flags |= REQFLAG_DATA_OUT;
|
|
}
|
|
}
|
|
|
|
eseg = dm_segs + nseg;
|
|
|
|
while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
|
|
if (IS_FC(mp->isp)) {
|
|
ispreqt2_t *rq2 = (ispreqt2_t *)rq;
|
|
rq2->req_dataseg[rq2->req_seg_count].ds_base =
|
|
dm_segs->ds_addr;
|
|
rq2->req_dataseg[rq2->req_seg_count].ds_count =
|
|
dm_segs->ds_len;
|
|
} else {
|
|
rq->req_dataseg[rq->req_seg_count].ds_base =
|
|
dm_segs->ds_addr;
|
|
rq->req_dataseg[rq->req_seg_count].ds_count =
|
|
dm_segs->ds_len;
|
|
}
|
|
datalen -= dm_segs->ds_len;
|
|
#if 0
|
|
if (IS_FC(mp->isp)) {
|
|
ispreqt2_t *rq2 = (ispreqt2_t *)rq;
|
|
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
|
|
mp->isp->isp_name, rq->req_seg_count,
|
|
rq2->req_dataseg[rq2->req_seg_count].ds_count,
|
|
rq2->req_dataseg[rq2->req_seg_count].ds_base);
|
|
} else {
|
|
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
|
|
mp->isp->isp_name, rq->req_seg_count,
|
|
rq->req_dataseg[rq->req_seg_count].ds_count,
|
|
rq->req_dataseg[rq->req_seg_count].ds_base);
|
|
}
|
|
#endif
|
|
rq->req_seg_count++;
|
|
dm_segs++;
|
|
}
|
|
|
|
while (datalen > 0 && dm_segs != eseg) {
|
|
crq = (ispcontreq_t *)
|
|
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
|
|
*mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp));
|
|
if (*mp->iptrp == mp->optr) {
|
|
#if 0
|
|
printf("%s: Request Queue Overflow++\n",
|
|
mp->isp->isp_name);
|
|
#endif
|
|
mp->error = MUSHERR_NOQENTRIES;
|
|
return;
|
|
}
|
|
rq->req_header.rqs_entry_count++;
|
|
bzero((void *)crq, sizeof (*crq));
|
|
crq->req_header.rqs_entry_count = 1;
|
|
crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
|
|
|
|
seglim = 0;
|
|
while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
|
|
crq->req_dataseg[seglim].ds_base =
|
|
dm_segs->ds_addr;
|
|
crq->req_dataseg[seglim].ds_count =
|
|
dm_segs->ds_len;
|
|
#if 0
|
|
printf("%s: seg%d[%d] cnt 0x%x paddr 0x%08x\n",
|
|
mp->isp->isp_name, rq->req_header.rqs_entry_count-1,
|
|
seglim, crq->req_dataseg[seglim].ds_count,
|
|
crq->req_dataseg[seglim].ds_base);
|
|
#endif
|
|
rq->req_seg_count++;
|
|
dm_segs++;
|
|
seglim++;
|
|
datalen -= dm_segs->ds_len;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
|
|
u_int16_t *iptrp, u_int16_t optr)
|
|
{
|
|
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
|
|
bus_dmamap_t *dp = NULL;
|
|
mush_t mush, *mp;
|
|
void (*eptr) __P((void *, bus_dma_segment_t *, int, int));
|
|
|
|
#ifdef ISP_TARGET_MODE
|
|
if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
|
|
if (IS_FC(isp)) {
|
|
eptr = tdma_mkfc;
|
|
} else {
|
|
eptr = tdma_mk;
|
|
}
|
|
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
|
|
(csio->dxfer_len == 0)) {
|
|
rq->req_seg_count = 1;
|
|
mp = &mush;
|
|
mp->isp = isp;
|
|
mp->cmd_token = csio;
|
|
mp->rq = rq;
|
|
mp->iptrp = iptrp;
|
|
mp->optr = optr;
|
|
mp->error = 0;
|
|
(*eptr)(mp, NULL, 0, 0);
|
|
goto exit;
|
|
}
|
|
} else
|
|
#endif
|
|
eptr = dma2;
|
|
|
|
/*
|
|
* NB: if we need to do request queue entry swizzling,
|
|
* NB: this is where it would need to be done for cmds
|
|
* NB: that move no data. For commands that move data,
|
|
* NB: swizzling would take place in those functions.
|
|
*/
|
|
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
|
|
(csio->dxfer_len == 0)) {
|
|
rq->req_seg_count = 1;
|
|
return (CMD_QUEUED);
|
|
}
|
|
|
|
/*
|
|
* Do a virtual grapevine step to collect info for
|
|
* the callback dma allocation that we have to use...
|
|
*/
|
|
mp = &mush;
|
|
mp->isp = isp;
|
|
mp->cmd_token = csio;
|
|
mp->rq = rq;
|
|
mp->iptrp = iptrp;
|
|
mp->optr = optr;
|
|
mp->error = 0;
|
|
|
|
if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
|
|
if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
|
|
int error, s;
|
|
dp = &pci->dmaps[isp_handle_index(rq->req_handle)];
|
|
s = splsoftvm();
|
|
error = bus_dmamap_load(pci->parent_dmat, *dp,
|
|
csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
|
|
if (error == EINPROGRESS) {
|
|
bus_dmamap_unload(pci->parent_dmat, *dp);
|
|
mp->error = EINVAL;
|
|
isp_prt(isp, ISP_LOGERR,
|
|
"deferred dma allocation not supported");
|
|
} else if (error && mp->error == 0) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("%s: error %d in dma mapping code\n",
|
|
isp->isp_name, error);
|
|
#endif
|
|
mp->error = error;
|
|
}
|
|
splx(s);
|
|
} else {
|
|
/* Pointer to physical buffer */
|
|
struct bus_dma_segment seg;
|
|
seg.ds_addr = (bus_addr_t)csio->data_ptr;
|
|
seg.ds_len = csio->dxfer_len;
|
|
(*eptr)(mp, &seg, 1, 0);
|
|
}
|
|
} else {
|
|
struct bus_dma_segment *segs;
|
|
|
|
if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
|
|
isp_prt(isp, ISP_LOGERR,
|
|
"Physical segment pointers unsupported");
|
|
mp->error = EINVAL;
|
|
} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
|
|
isp_prt(isp, ISP_LOGERR,
|
|
"Virtual segment addresses unsupported");
|
|
mp->error = EINVAL;
|
|
} else {
|
|
/* Just use the segments provided */
|
|
segs = (struct bus_dma_segment *) csio->data_ptr;
|
|
(*eptr)(mp, segs, csio->sglist_cnt, 0);
|
|
}
|
|
}
|
|
#ifdef ISP_TARGET_MODE
|
|
exit:
|
|
#endif
|
|
if (mp->error) {
|
|
int retval = CMD_COMPLETE;
|
|
if (mp->error == MUSHERR_NOQENTRIES) {
|
|
retval = CMD_EAGAIN;
|
|
} else if (mp->error == EFBIG) {
|
|
XS_SETERR(csio, CAM_REQ_TOO_BIG);
|
|
} else if (mp->error == EINVAL) {
|
|
XS_SETERR(csio, CAM_REQ_INVALID);
|
|
} else {
|
|
XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
|
|
}
|
|
return (retval);
|
|
} else {
|
|
/*
|
|
* Check to see if we weren't cancelled while sleeping on
|
|
* getting DMA resources...
|
|
*/
|
|
if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
|
|
if (dp) {
|
|
bus_dmamap_unload(pci->parent_dmat, *dp);
|
|
}
|
|
return (CMD_COMPLETE);
|
|
}
|
|
return (CMD_QUEUED);
|
|
}
|
|
}
|
|
|
|
static void
|
|
isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int32_t handle)
|
|
{
|
|
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
|
|
bus_dmamap_t *dp = &pci->dmaps[isp_handle_index(handle)];
|
|
if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
|
|
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTREAD);
|
|
} else {
|
|
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
bus_dmamap_unload(pci->parent_dmat, *dp);
|
|
}
|
|
|
|
|
|
static void
|
|
isp_pci_reset1(struct ispsoftc *isp)
|
|
{
|
|
/* Make sure the BIOS is disabled */
|
|
isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
|
|
/* and enable interrupts */
|
|
ENABLE_INTS(isp);
|
|
}
|
|
|
|
static void
|
|
isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
|
|
{
|
|
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
|
|
if (msg)
|
|
printf("%s: %s\n", isp->isp_name, msg);
|
|
if (IS_SCSI(isp))
|
|
printf(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
|
|
else
|
|
printf(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
|
|
printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
|
|
ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
|
|
printf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
|
|
|
|
|
|
if (IS_SCSI(isp)) {
|
|
ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
|
|
printf(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
|
|
ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
|
|
ISP_READ(isp, CDMA_FIFO_STS));
|
|
printf(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
|
|
ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
|
|
ISP_READ(isp, DDMA_FIFO_STS));
|
|
printf(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
|
|
ISP_READ(isp, SXP_INTERRUPT),
|
|
ISP_READ(isp, SXP_GROSS_ERR),
|
|
ISP_READ(isp, SXP_PINS_CTRL));
|
|
ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
|
|
}
|
|
printf(" mbox regs: %x %x %x %x %x\n",
|
|
ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
|
|
ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
|
|
ISP_READ(isp, OUTMAILBOX4));
|
|
printf(" PCI Status Command/Status=%x\n",
|
|
pci_read_config(pci->pci_dev, PCIR_COMMAND, 1));
|
|
}
|