freebsd-skq/sys/dev/vinum/vinumconfig.c
1998-09-16 05:56:21 +00:00

1713 lines
56 KiB
C

/* To do:
* Don't store drive configuration on the config DB: read each drive's header
* to decide where it is.
*
* Accept any old crap in the config_<foo> functions, and complain when
* we try to bring it up.
*
* When trying to bring volumes up, check that the complete address range
* is covered.
*/
/*-
* Copyright (c) 1997, 1998
* Nan Yang Computer Services Limited. All rights reserved.
*
* This software is distributed under the so-called ``Berkeley
* License'':
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Nan Yang Computer
* Services Limited.
* 4. Neither the name of the Company nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* This software is provided ``as is'', and any express or implied
* warranties, including, but not limited to, the implied warranties of
* merchantability and fitness for a particular purpose are disclaimed.
* In no event shall the company or contributors be liable for any
* direct, indirect, incidental, special, exemplary, or consequential
* damages (including, but not limited to, procurement of substitute
* goods or services; loss of use, data, or profits; or business
* interruption) however caused and on any theory of liability, whether
* in contract, strict liability, or tort (including negligence or
* otherwise) arising in any way out of the use of this software, even if
* advised of the possibility of such damage.
*
* $Id: config.c,v 1.17 1998/08/14 04:49:26 grog Exp grog $
*/
#define STATIC /* nothing while we're testing XXX */
#define REALLYKERNEL
#include "vinumhdr.h"
extern jmp_buf command_fail; /* return on a failed command */
#if __FreeBSD__ >= 3
/* Why aren't these declared anywhere? XXX */
void longjmp(jmp_buf, int);
#endif
#define MAXTOKEN 64 /* maximum number of tokens in a line */
/* We can afford the luxury of global variables here,
* since start_config ensures that these functions
* are single-threaded. */
/* These are indices in vinum_conf of the last-mentioned of each kind of object */
static int current_drive = -1; /* note the last drive we mention, for
* some defaults */
static int current_plex = -1; /* and the same for the last plex */
static int current_volume = -1; /* and the last volme */
static struct _ioctl_reply *ioctl_reply; /* struct to return via ioctl */
/* These values are used by most of these routines, so set them as globals */
static char *token[MAXTOKEN]; /* pointers to individual tokens */
static int tokens; /* number of tokens */
#define TOCONS 0x01
#define TOTTY 0x02
#define TOLOG 0x04
struct putchar_arg {
int flags;
struct tty *tty;
};
#define MSG_MAX 1024 /* maximum length of a formatted message */
/* Format an error message and return to the user in the reply.
* CARE: This routine is designed to be called only from the
* configuration routines, so it assumes it's the owner of
* the configuration lock, and unlocks it on exit */
void
throw_rude_remark(int error, char *msg,...)
{
BROKEN_GDB;
int retval;
va_list ap;
char *text;
static int finishing; /* don't recurse */
int was_finishing;
va_start(ap, msg);
if ((ioctl_reply != NULL) /* we're called from the user */
&&(!(vinum_conf.flags & VF_KERNELOP))) { /* and we're not doing kernel things: return msg */
/* XXX We can't just format to ioctl_reply, since it
* may contain our input parameters */
text = Malloc(MSG_MAX);
if (text == NULL) {
printf("vinum: can't allocate error message buffer");
printf("vinum: ");
vprintf(msg, ap); /* print to the console */
printf("\n");
} else {
retval = kvprintf(msg, NULL, (void *) text, 10, ap);
text[retval] = '\0'; /* delimit */
strcpy(ioctl_reply->msg, text);
ioctl_reply->error = error; /* first byte is the error number */
Free(text);
}
} else {
printf("vinum: ");
vprintf(msg, ap); /* print to the console */
printf("\n");
}
va_end(ap);
if (vinum_conf.flags & VF_READING_CONFIG) /* go through to the bitter end, */
return;
/* We have a problem here: we want to unlock the
* configuration, which implies tidying up, but
* if we find an error while tidying up, we could
* recurse for ever. Use this kludge to only try
* once */
was_finishing = finishing;
finishing = 1;
finish_config(was_finishing); /* unlock anything we may be holding */
finishing = was_finishing;
longjmp(command_fail, error);
}
/* Function declarations */
int atoi(char *); /* no atoi in the kernel */
/* Minimal version of atoi */
int
atoi(char *s)
{ /* no atoi in the kernel */
BROKEN_GDB;
int r = 0;
int sign = 1;
while (((*s >= '0') && (*s <= '9')) || (*s == '-')) {
if (*s == '-')
sign = -sign;
else
r = r * 10 + (*s - '0');
}
return r;
}
/* Find index of volume in vinum_conf. Return the index
* if found, or -1 if not */
int
volume_index(struct volume *vol)
{
BROKEN_GDB;
int i;
for (i = 0; i < vinum_conf.volumes_used; i++)
if (&VOL[i] == vol)
return i;
return -1;
}
/* Find index of plex in vinum_conf. Return the index
* if found, or -1 if not */
int
plex_index(struct plex *plex)
{
BROKEN_GDB;
int i;
for (i = 0; i < vinum_conf.plexes_used; i++)
if (&PLEX[i] == plex)
return i;
return -1;
}
/* Find index of subdisk in vinum_conf. Return the index
* if found, or -1 if not */
int
sd_index(struct sd *sd)
{
BROKEN_GDB;
int i;
for (i = 0; i < vinum_conf.subdisks_used; i++)
if (&SD[i] == sd)
return i;
return -1;
}
/* Find index of drive in vinum_conf. Return the index
* if found, or -1 if not */
int
drive_index(struct drive *drive)
{
BROKEN_GDB;
int i;
for (i = 0; i < vinum_conf.drives_used; i++)
if (&DRIVE[i] == drive)
return i;
return -1;
}
/* Check a volume to see if the plex is already assigned to it.
* Return index in volume->plex, or -1 if not assigned */
int
my_plex(int volno, int plexno)
{
BROKEN_GDB;
int i;
struct volume *vol;
vol = &VOL[volno]; /* point to volno */
for (i = 0; i < vol->plexes; i++)
if (vol->plex[i] == plexno)
return i;
return -1; /* not found */
}
/* Check a plex to see if the subdisk is already assigned to it.
* Return index in plex->sd, or -1 if not assigned */
int
my_sd(int plexno, int sdno)
{
BROKEN_GDB;
int i;
struct plex *plex;
plex = &PLEX[plexno];
for (i = 0; i < plex->subdisks; i++)
if (plex->sdnos[i] == sdno)
return i;
return -1; /* not found */
}
/* Check that this operation is being done in the kernel.
* longjmp out if not. op the name of the operation. */
void
checkkernel(char *op)
{
BROKEN_GDB;
if (vinum_conf.flags & VF_KERNELOP == 0)
throw_rude_remark(EPERM, "Can't perform '%s' from user space", op);
}
/* Add plex to the volume if possible */
int
give_plex_to_volume(int volno, int plexno)
{
BROKEN_GDB;
struct volume *vol;
/* XXX It's not an error for the plex to already
* belong to the volume, but we need to check a
* number of things to make sure it's done right.
* Some day. */
if (my_plex(volno, plexno) >= 0)
return plexno; /* that's it */
vol = &VOL[volno]; /* point to volume */
if (vol->plexes == MAXPLEX) /* all plexes allocated */
throw_rude_remark(ENOSPC,
"Too many plexes for volume %s",
vol->name);
vol->plex[vol->plexes] = plexno; /* this one */
vol->plexes++; /* add another plex */
PLEX[plexno].volno = volno; /* note the number of our volume */
return vol->plexes - 1; /* and return its index */
}
/* Add subdisk to a plex if possible */
int
give_sd_to_plex(int plexno, int sdno)
{
BROKEN_GDB;
int i;
struct plex *plex;
struct sd *sd;
/* XXX It's not an error for the sd to already
* belong to the plex, but we need to check a
* number of things to make sure it's done right.
* Some day. */
i = my_sd(plexno, sdno);
if (i >= 0) /* does it already belong to us? */
return i; /* that's it */
plex = &PLEX[plexno]; /* point to the plex */
sd = &SD[sdno]; /* and the subdisk */
/* Do we have an offset? Otherwise put it after the last one */
if (sd->plexoffset < 0) { /* no offset specified */
if (plex->subdisks > 0) {
struct sd *lastsd = &SD[plex->sdnos[plex->subdisks - 1]]; /* last subdisk */
sd->plexoffset = lastsd->sectors + lastsd->plexoffset; /* take it */
} else /* first subdisk */
sd->plexoffset = 0; /* start at the beginning */
}
plex->subdisks++; /* another entry */
if (plex->subdisks >= plex->subdisks_allocated) /* need more space */
EXPAND(plex->sdnos, int, plex->subdisks_allocated, INITIAL_SUBDISKS_IN_PLEX);
/* XXX I'm not sure this makes any sense
* for anything except concatenated plexes,
* and it comes up with the wrong answer for
* RAID-5 plexes, but it's currently needed
* for the calculations. We'll adjust for
* RAID-5 in config_plex */
if ((sd->sectors + sd->plexoffset) > plex->length) { /* gone beyond the end of the plex */
plex->length = sd->sectors + sd->plexoffset; /* adjust the length */
if ((plex->volno >= 0) /* we have a volume */
&&(plex->length > VOL[plex->volno].size)) /* and we're now the longest plex */
VOL[plex->volno].size = plex->length; /* increase the size of the volume */
}
/* We need to check that the subdisks don't overlap,
* but we can't do that until a point where we *must*
* know the size of all the subdisks. That's not
* here. But we need to sort them by offset */
for (i = 0; i < plex->subdisks - 1; i++) {
if (sd->plexoffset < SD[plex->sdnos[i]].plexoffset) { /* it fits before this one */
/* First move any remaining subdisks by one */
int j;
for (j = plex->subdisks - 1; j > i; j--) /* move up one at a time */
plex->sdnos[j] = plex->sdnos[j - 1];
plex->sdnos[i] = sdno;
return i;
}
}
/* The plex doesn't have any subdisk with a larger
* offset. Insert it */
plex->sdnos[i] = sdno;
return i;
}
/* Add a subdisk to drive if possible. The pointer to the drive
* must already be stored in the sd structure, but the drive
* doesn't know about the subdisk yet. */
static void
give_sd_to_drive(int sdno)
{
BROKEN_GDB;
struct sd *sd; /* pointer to subdisk */
struct drive *drive; /* and drive */
int fe; /* index in free list */
sd = &SD[sdno]; /* point to sd */
drive = &DRIVE[sd->driveno]; /* and drive */
if (drive->state != drive_up) /* not up */
throw_rude_remark(EIO, "Drive %s is not accessible", drive->label.name);
else if (sd->sectors > drive->sectors_available) { /* too big, */
sd->driveoffset = -1; /* don't be confusing */
throw_rude_remark(ENOSPC, "No space for %s on %s", sd->name, drive->label.name);
}
drive->subdisks_used++; /* one more subdisk */
/* no offset specified, find one */
if (sd->driveoffset < 0) {
for (fe = 0; fe < drive->freelist_entries; fe++) {
if (drive->freelist[fe].sectors >= sd->sectors) { /* it'll fit here */
sd->driveoffset = drive->freelist[fe].offset;
if (sd->sectors == drive->freelist[fe].sectors) { /* used up the entire entry */
if (fe < (drive->freelist_entries - 1)) /* not the last one, */
bcopy(&drive->freelist[fe + 1],
&drive->freelist[fe],
(drive->freelist_entries - fe) * sizeof(struct drive_freelist));
drive->freelist_entries--; /* one less entry */
} else {
drive->freelist[fe].sectors -= sd->sectors; /* this much less space */
drive->freelist[fe].offset += sd->sectors; /* this much further on */
}
drive->sectors_available -= sd->sectors; /* and note how much less space we have */
break;
}
}
if (fe == drive->freelist_entries)
/* Didn't find anything. Although the drive has
* enough space, it's too fragmented */
{
sd->driveoffset = -1; /* don't be confusing */
throw_rude_remark(ENOSPC, "No space for %s on %s", sd->name, drive->label.name);
}
} else { /* specific offset */
/* For a specific offset to work, the space must be
* entirely in a single freelist entry. Look for it. */
u_int64_t sdend = sd->driveoffset + sd->sectors; /* end of our subdisk */
for (fe = 0; fe < drive->freelist_entries; fe++) {
u_int64_t dend = drive->freelist[fe].offset + drive->freelist[fe].sectors; /* end of entry */
if (dend >= sdend) { /* fits before here */
if (drive->freelist[fe].offset > sd->driveoffset) /* starts after the beginning of sd area */
throw_rude_remark(ENOSPC,
"No space for subdisk %s on drive %s at offset %qd\n",
sd->name,
drive->label.name);
/* We've found the space, and we can allocate it.
* We don't need to say that to the subdisk, which
* already knows about it. We need to tell it to
* the free list, though. We have four possibilities:
*
* 1. The subdisk exactly eats up the entry. That's the
* same as above.
* 2. The subdisk starts at the beginning and leaves space
* at the end.
* 3. The subdisk starts after the beginning and leaves
* space at the end as well: we end up with another
* fragment.
* 4. The subdisk leaves space at the beginning and finishes
* at the end.
*/
drive->sectors_available -= sd->sectors; /* note how much less space we have */
if (sd->driveoffset == drive->freelist[fe].offset) { /* 1 or 2 */
if (sd->sectors == drive->freelist[fe].sectors) { /* 1: used up the entire entry */
if (fe < (drive->freelist_entries - 1)) /* not the last one, */
bcopy(&drive->freelist[fe + 1],
&drive->freelist[fe],
(drive->freelist_entries - fe) * sizeof(struct drive_freelist));
drive->freelist_entries--; /* one less entry */
} else { /* 2: space at the end */
drive->freelist[fe].sectors -= sd->sectors; /* this much less space */
drive->freelist[fe].offset += sd->sectors; /* this much further on */
}
} else { /* 3 or 4 */
drive->freelist[fe].sectors = sd->driveoffset - drive->freelist[fe].offset;
if (dend > sdend) { /* 3: space at the end as well */
if (fe < (drive->freelist_entries - 1)) /* not the last one */
bcopy(&drive->freelist[fe], /* move the rest down */
&drive->freelist[fe + 1],
(drive->freelist_entries - fe) * sizeof(struct drive_freelist));
drive->freelist_entries++; /* one less entry */
drive->freelist[fe + 1].offset = sdend; /* second entry starts after sd */
drive->freelist[fe + 1].sectors = dend - sdend; /* and is this long */
}
}
break;
}
}
}
drive->opencount++; /* one more subdisk attached */
}
/* Get an empty drive entry from the drive table */
int
get_empty_drive(void)
{
BROKEN_GDB;
int driveno;
struct drive *drive;
/* first see if we have one which has been deallocated */
for (driveno = 0; driveno < vinum_conf.drives_used; driveno++) {
if (DRIVE[driveno].state == drive_unallocated) /* bingo */
break;
}
if (driveno >= vinum_conf.drives_used)
/* Couldn't find a deallocated drive. Allocate a new one */
{
vinum_conf.drives_used++;
if (vinum_conf.drives_used > vinum_conf.drives_allocated) /* we've used all our allocation */
EXPAND(DRIVE, struct drive, vinum_conf.drives_allocated, INITIAL_DRIVES);
}
/* got a drive entry. Make it pretty */
drive = &DRIVE[driveno];
bzero(drive, sizeof(struct drive));
drive->driveno = driveno; /* put number in structure */
return driveno; /* return the index */
}
/* Find the named drive in vinum_conf.drive, return a pointer
* return the index in vinum_conf.drive.
* Don't mark the drive as allocated (XXX MP)
* If create != 0, create an entry if it doesn't exist
*/
/* XXX check if we have it open from attach */
int
find_drive(const char *name, int create)
{
BROKEN_GDB;
int driveno;
struct drive *drive;
if (name != NULL) {
for (driveno = 0; driveno < vinum_conf.drives_used; driveno++) {
drive = &DRIVE[driveno]; /* point to drive */
if ((drive->label.name[0] != '\0') /* it has a name */
&&(strcmp(drive->label.name, name) == 0)) /* and it's this one: found */
return driveno;
}
}
/* the drive isn't in the list. Add it if he wants */
if (create == 0) /* don't want to create */
return -1; /* give up */
driveno = get_empty_drive();
drive = &DRIVE[driveno];
if (name != NULL)
bcopy(name, /* put in its name */
drive->label.name,
min(sizeof(drive->label.name),
strlen(name)));
drive->state = drive_uninit; /* in use, nothing worthwhile there */
return driveno; /* return the index */
}
/* Find a drive given its device name.
* devname must be valid.
* Otherwise the same as find_drive above */
int
find_drive_by_dev(const char *devname, int create)
{
BROKEN_GDB;
int driveno;
struct drive *drive;
for (driveno = 0; driveno < vinum_conf.drives_used; driveno++) {
drive = &DRIVE[driveno]; /* point to drive */
if ((drive->label.name[0] != '\0') /* it has a name */
&&(strcmp(drive->label.name, devname) == 0)) /* and it's this one: found */
return driveno;
}
/* the drive isn't in the list. Add it if he wants */
if (create == 0) /* don't want to create */
return -1; /* give up */
driveno = get_empty_drive();
drive = &DRIVE[driveno];
bcopy(devname, /* put in its name */
drive->devicename,
min(sizeof(drive->devicename),
strlen(devname)));
drive->state = drive_uninit; /* in use, nothing worthwhile there */
return driveno; /* return the index */
}
/* Find an empty subdisk in the subdisk table */
int
get_empty_sd(void)
{
BROKEN_GDB;
int sdno;
struct sd *sd;
/* first see if we have one which has been deallocated */
for (sdno = 0; sdno < vinum_conf.subdisks_used; sdno++) {
if (SD[sdno].state == sd_unallocated) /* bingo */
break;
}
if (sdno >= vinum_conf.subdisks_used) { /* No unused sd found. Allocate a new one */
vinum_conf.subdisks_used++;
if (vinum_conf.subdisks_used > vinum_conf.subdisks_allocated)
EXPAND(SD, struct sd, vinum_conf.subdisks_allocated, INITIAL_SUBDISKS);
}
/* initialize some things */
sd = &SD[sdno]; /* point to it */
bzero(sd, sizeof(struct sd)); /* initialize */
sd->plexno = -1; /* no plex */
sd->driveno = -1; /* and no drive */
sd->plexoffset = -1; /* and no offsets */
sd->driveoffset = -1;
return sdno; /* return the index */
}
/* return a drive to the free pool */
void
free_drive(struct drive *drive)
{
BROKEN_GDB;
if (drive->vp != NULL) /* device open */
vn_close(drive->vp, FREAD | FWRITE, FSCRED, drive->p);
bzero(drive, sizeof(struct drive)); /* this also sets drive_unallocated */
}
/* Find the named subdisk in vinum_conf.sd.
* If create != 0, create an entry if it doesn't exist
*
* Return index in vinum_conf.sd
*/
int
find_subdisk(const char *name, int create)
{
BROKEN_GDB;
int sdno;
struct sd *sd;
for (sdno = 0; sdno < vinum_conf.subdisks_allocated; sdno++) {
if (strcmp(SD[sdno].name, name) == 0) /* found it */
return sdno;
}
/* the subdisk isn't in the list. Add it if he wants */
if (create == 0) /* don't want to create */
return -1; /* give up */
/* Allocate one and insert the name */
sdno = get_empty_sd();
sd = &SD[sdno];
bcopy(name, sd->name, min(sizeof(sd->name), strlen(name))); /* put in its name */
return sdno; /* return the pointer */
}
/* Free an allocated sd entry
* This performs memory management only. remove()
* is responsible for checking relationships.
*/
void
free_sd(int sdno)
{
BROKEN_GDB;
struct sd *sd;
struct drive *drive;
int fe; /* free list entry */
u_int64_t sdend; /* end of our subdisk */
u_int64_t dend; /* end of our freelist entry */
sd = &SD[sdno];
if ((sd->driveno >= 0) /* we have a drive, */
&&(sd->sectors > 0)) { /* and some space on it */
drive = &DRIVE[sd->driveno];
sdend = sd->driveoffset + sd->sectors; /* end of our subdisk */
/* Look for where to return the sd address space */
for (fe = 0;
(fe < drive->freelist_entries) && (drive->freelist[fe].offset < sd->driveoffset);
fe++);
/* Now we are pointing to the last entry, the first
* with a higher offset than the subdisk, or both. */
if ((fe > 1) /* not the first entry */
&&((fe == drive->freelist_entries) /* gone past the end */
||(drive->freelist[fe].offset > sd->driveoffset))) /* or past the block were looking for */
fe--; /* point to the block before */
dend = drive->freelist[fe].offset + drive->freelist[fe].sectors; /* end of the entry */
/* At this point, we are pointing to the correct
* place in the free list. A number of possibilities
* exist:
*
* 1. The block to be freed immediately follows
* the block to which we are pointing. Just
* enlarge it.
* 2. The block to be freed starts at the end of
* the current block and ends at the beginning
* of the following block. Merge the three
* areas into a single block.
* 3. The block to be freed starts after the end
* of the block and ends before the start of
* the following block. Create a new free block.
* 4. The block to be freed starts after the end
* of the block, but ends at the start of the
* following block. Enlarge the following block
* downwards.
*
*/
if (sd->driveoffset == dend) { /* it starts after the end of this block */
if ((fe < drive->freelist_entries - 1) /* we're not the last block in the free list */
&&(sdend == drive->freelist[fe + 1].offset)) { /* and the subdisk ends at the start of the
* next block */
drive->freelist[fe].sectors = drive->freelist[fe + 1].sectors; /* 2: merge all three blocks */
if (fe < drive->freelist_entries - 2) /* still more blocks after next */
bcopy(&drive->freelist[fe + 2], /* move down one */
&drive->freelist[fe + 1],
(drive->freelist_entries - 2 - fe) * sizeof(struct drive_freelist));
drive->freelist_entries--; /* one less entry in the free list */
} else /* 1: just enlarge this block */
drive->freelist[fe].sectors += sd->sectors;
} else {
if (sd->driveoffset > dend) /* it starts after this block */
fe++; /* so look at the next block */
if ((fe < drive->freelist_entries) /* we're not the last block in the free list */
&&(sdend == drive->freelist[fe].offset)) { /* and the subdisk ends at the start of
* this block: case 4 */
drive->freelist[fe].offset = sd->driveoffset; /* it starts where the sd was */
drive->freelist[fe].sectors += sd->sectors; /* and it's this much bigger */
} else { /* case 3: non-contiguous */
if (fe < drive->freelist_entries) /* not after the last block, */
bcopy(&drive->freelist[fe], /* move the rest up one entry */
&drive->freelist[fe + 1],
(drive->freelist_entries - fe) * sizeof(struct drive_freelist));
drive->freelist_entries++; /* one less entry */
drive->freelist[fe].offset = sd->driveoffset; /* this entry represents the sd */
drive->freelist[fe].sectors = sd->sectors;
}
}
drive->opencount--; /* one less subdisk attached */
}
bzero(sd, sizeof(struct sd)); /* and clear it out */
sd->state = sd_unallocated;
}
/* Find an empty plex in the plex table */
int
get_empty_plex(void)
{
BROKEN_GDB;
int plexno;
struct plex *plex; /* if we allocate one */
/* first see if we have one which has been deallocated */
for (plexno = 0; plexno < vinum_conf.plexes_used; plexno++) {
if (PLEX[plexno].state == plex_unallocated) /* bingo */
break; /* and get out of here */
}
if (plexno >= vinum_conf.plexes_used) {
/* Couldn't find a deallocated plex. Allocate a new one */
vinum_conf.plexes_used++;
if (vinum_conf.plexes_used > vinum_conf.plexes_allocated)
EXPAND(PLEX, struct plex, vinum_conf.plexes_allocated, INITIAL_PLEXES);
}
/* Found a plex. Give it an sd structure */
plex = &PLEX[plexno]; /* this one is ours */
bzero(plex, sizeof(struct plex)); /* polish it up */
plex->sdnos = (int *) Malloc(sizeof(int) * INITIAL_SUBDISKS_IN_PLEX); /* allocate sd table */
CHECKALLOC(plex->sdnos, "vinum: Can't allocate plex subdisk table");
bzero(plex->sdnos, (sizeof(int) * INITIAL_SUBDISKS_IN_PLEX)); /* do we need this? */
plex->subdisks = 0; /* no subdisks in use */
plex->subdisks_allocated = INITIAL_SUBDISKS_IN_PLEX; /* and we have space for this many */
plex->organization = plex_disorg; /* and it's not organized */
plex->volno = -1; /* no volume yet */
return plexno; /* return the index */
}
/* Find the named plex in vinum_conf.plex
* If create != 0, create an entry if it doesn't exist
* return index in vinum_conf.plex
*/
int
find_plex(const char *name, int create)
{
BROKEN_GDB;
int plexno;
struct plex *plex;
for (plexno = 0; plexno < vinum_conf.plexes_allocated; plexno++) {
if (strcmp(PLEX[plexno].name, name) == 0) /* found it */
return plexno;
}
/* the plex isn't in the list. Add it if he wants */
if (create == 0) /* don't want to create */
return -1; /* give up */
/* Allocate one and insert the name */
plexno = get_empty_plex();
plex = &PLEX[plexno]; /* point to it */
bcopy(name, plex->name, min(sizeof(plex->name), strlen(name))); /* put in its name */
return plexno; /* return the pointer */
}
/* Free an allocated plex entry
* and its associated memory areas */
void
free_plex(int plexno)
{
BROKEN_GDB;
struct plex *plex;
plex = &PLEX[plexno];
if (plex->sdnos)
Free(plex->sdnos);
if (plex->lock)
Free(plex->lock);
if (plex->defective_region)
Free(plex->defective_region);
if (plex->unmapped_region)
Free(plex->unmapped_region);
bzero(plex, sizeof(struct plex)); /* and clear it out */
plex->state = plex_unallocated;
}
/* Find an empty volume in the volume table */
int
get_empty_volume(void)
{
BROKEN_GDB;
int volno;
struct volume *vol;
/* first see if we have one which has been deallocated */
for (volno = 0; volno < vinum_conf.volumes_used; volno++) {
if (VOL[volno].state == volume_unallocated) /* bingo */
break;
}
if (volno >= vinum_conf.volumes_used)
/* Couldn't find a deallocated volume. Allocate a new one */
{
vinum_conf.volumes_used++;
if (vinum_conf.volumes_used > vinum_conf.volumes_allocated)
EXPAND(VOL, struct volume, vinum_conf.volumes_allocated, INITIAL_VOLUMES);
}
/* Now initialize fields */
vol = &VOL[volno];
bzero(vol, sizeof(struct volume));
vol->preferred_plex = -1; /* default to round robin */
vol->preferred_plex = ROUND_ROBIN_READPOL; /* round robin */
return volno; /* return the index */
}
/* Find the named volume in vinum_conf.volume.
* If create != 0, create an entry if it doesn't exist
* return the index in vinum_conf
*/
int
find_volume(const char *name, int create)
{
BROKEN_GDB;
int volno;
struct volume *vol;
for (volno = 0; volno < vinum_conf.volumes_used; volno++) {
if (strcmp(VOL[volno].name, name) == 0) /* found it */
return volno;
}
/* the volume isn't in the list. Add it if he wants */
if (create == 0) /* don't want to create */
return -1; /* give up */
/* Allocate one and insert the name */
volno = get_empty_volume();
vol = &VOL[volno];
bcopy(name, vol->name, min(sizeof(vol->name), strlen(name))); /* put in its name */
vol->blocksize = DEV_BSIZE; /* block size of this volume */
return volno; /* return the pointer */
}
/* Free an allocated volume entry
* and its associated memory areas */
void
free_volume(int volno)
{
BROKEN_GDB;
struct volume *vol;
vol = &VOL[volno];
bzero(vol, sizeof(struct volume)); /* and clear it out */
vol->state = volume_unallocated;
}
/* Handle a drive definition. We store the information in the global variable
* drive, so we don't need to allocate.
*
* If we find an error, print a message and return
*/
void
config_drive(void)
{
BROKEN_GDB;
enum drive_label_info partition_status; /* info about the partition */
int parameter;
int driveno; /* index of drive in vinum_conf */
struct drive *drive; /* and pointer to it */
if (tokens < 2) /* not enough tokens */
throw_rude_remark(EINVAL, "Drive has no name");
driveno = find_drive(token[1], 1); /* allocate a drive to initialize */
drive = &DRIVE[driveno]; /* and get a pointer */
if (drive->state != drive_uninit) { /* we already know this drive */
/* XXX Check which definition is more up-to-date. Give
* preference for the definition on its own drive */
return; /* XXX */
}
for (parameter = 2; parameter < tokens; parameter++) { /* look at the other tokens */
switch (get_keyword(token[parameter], &keyword_set)) {
case kw_device:
parameter++;
if (drive->devicename[0] != '\0') { /* we know this drive... */
if (strcmp(drive->devicename, token[parameter])) /* different name */
close_drive(drive); /* close it if it's open */
else /* no change */
break;
}
bcopy(token[parameter], /* insert device information */
drive->devicename,
min(sizeof(drive->devicename),
strlen(token[parameter])));
/* open the device and get the configuration */
partition_status = read_drive_label(drive);
if (partition_status == DL_CANT_OPEN) { /* not our kind */
close_drive(drive);
if (drive->lasterror == EFTYPE) /* wrong kind of partition */
throw_rude_remark(drive->lasterror,
"Drive %s has invalid partition type",
drive->label.name);
else /* I/O error of some kind */
throw_rude_remark(drive->lasterror,
"Can't initialize drive %s",
drive->label.name);
} else if (partition_status == DL_WRONG_DRIVE) { /* valid drive, not ours */
close_drive(drive);
throw_rude_remark(drive->lasterror,
"Incorrect drive name %s specified for drive %s",
token[1],
drive->label.name);
}
break;
case kw_state:
checkkernel(token[++parameter]); /* must be a kernel user */
drive->state = DriveState(token[parameter]); /* set the state */
break;
default:
close_drive(drive);
throw_rude_remark(EINVAL,
"Drive %s, invalid keyword: %s",
token[1],
token[parameter]);
}
}
if (drive->devicename[0] == '\0')
throw_rude_remark(EINVAL, "No device name for %s", drive->label.name);
}
/* Handle a subdisk definition. We store the information in the global variable
* sd, so we don't need to allocate.
*
* If we find an error, print a message and return
*/
void
config_subdisk(void)
{
BROKEN_GDB;
int parameter;
int sdno; /* index of sd in vinum_conf */
struct sd *sd; /* and pointer to it */
u_int64_t size;
int sectors; /* sector offset value */
int detached = 0; /* set to 1 if this is a detached subdisk */
int sdindex = -1; /* index in plexes subdisk table */
sdno = get_empty_sd(); /* allocate an SD to initialize */
sd = &SD[sdno]; /* and get a pointer */
for (parameter = 1; parameter < tokens; parameter++) { /* look at the other tokens */
switch (get_keyword(token[parameter], &keyword_set)) {
case kw_detached:
detached = 1;
break;
case kw_plexoffset:
size = sizespec(token[++parameter]);
if ((size % DEV_BSIZE) != 0)
throw_rude_remark(EINVAL, "sd %s, bad plex offset alignment: %qd", sd->name, size);
else
sd->plexoffset = size / DEV_BSIZE;
break;
case kw_driveoffset:
size = sizespec(token[++parameter]);
if ((size % DEV_BSIZE) != 0)
throw_rude_remark(EINVAL, "sd %s, bad drive offset alignment: %qd", sd->name, size);
else
sd->driveoffset = size / DEV_BSIZE;
break;
case kw_name:
++parameter;
bcopy(token[parameter],
sd->name,
min(sizeof(sd->name), strlen(token[parameter])));
break;
case kw_len:
size = sizespec(token[++parameter]);
if ((size % DEV_BSIZE) != 0)
throw_rude_remark(EINVAL, "sd %s, length %d not multiple of sector size", sd->name, size);
else
sd->sectors = size / DEV_BSIZE;
break;
case kw_drive:
sd->driveno = find_drive(token[++parameter], 1); /* insert drive information */
break;
case kw_plex:
sd->plexno = find_plex(token[++parameter], 1); /* insert plex information */
break;
case kw_state:
checkkernel(token[++parameter]); /* must be a kernel user */
sd->state = SdState(token[parameter]); /* set the state */
break;
default:
throw_rude_remark(EINVAL, "sd %s, invalid keyword: %s", sd->name, token[parameter]);
}
}
/* Check we have a drive name */
if (sd->driveno < 0) { /* didn't specify a drive */
sd->driveno = current_drive; /* set to the current drive */
if (sd->driveno < 0) /* no current drive? */
throw_rude_remark(EINVAL, "Subdisk %s is not associated with a drive", sd->name);
}
/* Check for a plex name */
if ((sd->plexno < 0) /* didn't specify a plex */
&&(!detached)) /* and didn't say not to, */
sd->plexno = current_plex; /* set to the current plex */
if (sd->plexno >= 0)
sdindex = give_sd_to_plex(sd->plexno, sdno); /* now tell the plex that it has this sd */
sd->sdno = sdno; /* point to our entry in the table */
/* Does the subdisk have a name? If not, give it one */
if (sd->name[0] == '\0') { /* no name */
char sdsuffix[8]; /* form sd name suffix here */
/* Do we have a plex name? */
if (sdindex >= 0) /* we have a plex */
strcpy(sd->name, PLEX[sd->plexno].name); /* take it from there */
else /* no way */
throw_rude_remark(EINVAL, "Unnamed sd is not associated with a plex");
sprintf(sdsuffix, ".s%d", sdindex); /* form the suffix */
strcat(sd->name, sdsuffix); /* and add it to the name */
}
/* do we have complete info for this subdisk? */
if (sd->sectors == 0)
throw_rude_remark(EINVAL, "sd %s has no length spec", sd->name);
if (sd->state == sd_unallocated) /* no state decided, */
sd->state = sd_init; /* at least we're in the game */
/* register the subdisk with the drive. This action
* will have the side effect of setting the offset if
* we haven't specified one, and causing an error
* message if it overlaps with another subdisk. */
give_sd_to_drive(sdno);
}
/* Handle a plex definition.
* If we find an error, print a message, deallocate the nascent plex, and return
*/
void
config_plex(void)
{
BROKEN_GDB;
int parameter;
int plexno; /* index of plex in vinum_conf */
struct plex *plex; /* and pointer to it */
int pindex = MAXPLEX; /* index in volume's plex list */
int detached = 0; /* don't give it to a volume */
current_plex = -1; /* forget the previous plex */
plexno = get_empty_plex(); /* allocate a plex */
plex = &PLEX[plexno]; /* and point to it */
plex->plexno = plexno; /* and back to the config */
for (parameter = 1; parameter < tokens; parameter++) { /* look at the other tokens */
switch (get_keyword(token[parameter], &keyword_set)) {
case kw_detached:
detached = 1;
break;
case kw_name:
{
int namedplexno;
namedplexno = find_plex(token[++parameter], 0); /* find an existing plex with this name */
if (namedplexno >= 0)
throw_rude_remark(EINVAL, "Duplicate plex %s", token[parameter]);
}
bcopy(token[parameter], /* put in the name */
plex->name,
min(MAXPLEXNAME, strlen(token[parameter])));
break;
case kw_org: /* plex organization */
switch (get_keyword(token[++parameter], &keyword_set)) {
case kw_concat:
plex->organization = plex_concat;
break;
case kw_striped:
{
int stripesize = sizespec(token[++parameter]);
plex->organization = plex_striped;
if (stripesize % DEV_BSIZE != 0) /* not a multiple of block size, */
throw_rude_remark(EINVAL, "plex %s: stripe size %d not a multiple of sector size",
plex->name,
stripesize);
else
plex->stripesize = stripesize / DEV_BSIZE;
break;
}
default:
throw_rude_remark(EINVAL, "Invalid plex organization");
}
if (((plex->organization == plex_striped)
)
&& (plex->stripesize == 0)) /* didn't specify a valid stripe size */
throw_rude_remark(EINVAL, "Need a stripe size parameter");
break;
case kw_volume:
plex->volno = find_volume(token[++parameter], 1); /* insert a pointer to the volume */
break;
case kw_sd: /* add a subdisk */
{
int sdno;
sdno = find_subdisk(token[++parameter], 1); /* find a subdisk */
SD[sdno].plexoffset = sizespec(token[++parameter]); /* get the offset */
give_sd_to_plex(plexno, sdno); /* and insert it there */
break;
}
case kw_state:
checkkernel(token[++parameter]); /* only for kernel use */
plex->state = PlexState(token[parameter]); /* set the state */
break;
default:
throw_rude_remark(EINVAL, "plex %s, invalid keyword: %s",
plex->name,
token[parameter]);
}
}
if ((plex->volno < 0) /* we don't have a volume */
&&(!detached)) /* and we wouldn't object */
plex->volno = current_volume;
if (plex->volno >= 0)
pindex = give_plex_to_volume(plex->volno, plexno); /* Now tell the volume that it has this plex */
/* Does the plex have a name? If not, give it one */
if (plex->name[0] == '\0') { /* no name */
char plexsuffix[8]; /* form plex name suffix here */
/* Do we have a volume name? */
if (plex->volno >= 0) /* we have a volume */
strcpy(plex->name, /* take it from there */
VOL[plex->volno].name);
else /* no way */
throw_rude_remark(EINVAL, "Unnamed plex is not associated with a volume");
sprintf(plexsuffix, ".p%d", pindex); /* form the suffix */
strcat(plex->name, plexsuffix); /* and add it to the name */
}
/* Note the last plex we configured */
current_plex = plexno;
if (plex->state == plex_unallocated) /* we haven't changed the state, */
plex->state = plex_init; /* we're initialized now */
}
/* Handle a volume definition.
* If we find an error, print a message, deallocate the nascent volume, and return
*/
void
config_volume(void)
{
BROKEN_GDB;
int parameter;
int volno;
struct volume *vol; /* collect volume info here */
int i;
if (tokens < 2) /* not enough tokens */
throw_rude_remark(EINVAL, "Volume has no name");
current_volume = -1; /* forget the previous volume */
volno = find_volume(token[1], 1); /* allocate a volume to initialize */
vol = &VOL[volno]; /* and get a pointer */
for (parameter = 2; parameter < tokens; parameter++) { /* look at all tokens */
switch (get_keyword(token[parameter], &keyword_set)) {
case kw_plex:
{
int plexno; /* index of this plex */
plexno = find_plex(token[++parameter], 1); /* find a plex */
if (plexno < 0) /* couldn't */
break; /* we've already had an error message */
plexno = my_plex(volno, plexno); /* does it already belong to us? */
if (plexno > 0) /* yes, shouldn't get it again */
throw_rude_remark(EINVAL,
"Plex %s already belongs to volume %s",
token[parameter],
vol->name);
else if (++vol->plexes > 8) /* another entry */
throw_rude_remark(EINVAL,
"Too many plexes for volume %s",
vol->name);
vol->plex[vol->plexes - 1] = plexno;
}
break;
case kw_readpol:
switch (get_keyword(token[++parameter], &keyword_set)) { /* decide what to do */
case kw_round:
vol->preferred_plex = ROUND_ROBIN_READPOL; /* default */
break;
case kw_prefer:
{
int myplexno; /* index of this plex */
myplexno = find_plex(token[++parameter], 1); /* find a plex */
if (myplexno < 0) /* couldn't */
break; /* we've already had an error message */
myplexno = my_plex(volno, myplexno); /* does it already belong to us? */
if (myplexno > 0) /* yes */
vol->preferred_plex = myplexno; /* just note the index */
else if (++vol->plexes > 8) /* another entry */
throw_rude_remark(EINVAL, "Too many plexes");
else { /* space for the new plex */
vol->plex[vol->plexes - 1] = myplexno; /* add it to our list */
vol->preferred_plex = vol->plexes - 1; /* and note the index */
}
}
break;
default:
throw_rude_remark(EINVAL, "Invalid read policy");
}
case kw_setupstate:
vol->flags |= VF_CONFIG_SETUPSTATE; /* set the volume up later on */
break;
case kw_state:
checkkernel(token[++parameter]); /* must be a kernel user */
vol->state = VolState(token[parameter]); /* set the state */
break;
/* XXX experimental ideas. These are not
* documented, and will not be until I
* decide they're worth keeping */
case kw_writethrough: /* set writethrough mode */
vol->flags |= VF_WRITETHROUGH;
break;
case kw_writeback: /* set writeback mode */
vol->flags &= ~VF_WRITETHROUGH;
break;
case kw_raw:
vol->flags |= VF_RAW; /* raw volume (no label) */
break;
default:
throw_rude_remark(EINVAL, "volume %s, invalid keyword: %s",
vol->name,
token[parameter]);
}
}
current_volume = volno; /* note last referred volume */
vol->devno = VINUMBDEV(volno, 0, 0, VINUM_VOLUME_TYPE); /* also note device number */
/* Before we can actually use the volume, we need
* a volume label. We could start to fake one here,
* but it will be a lot easier when we have some
* to copy from the drives, so defer it until we
* set up the configuration. XXX */
if (vol->state == volume_unallocated)
vol->state = volume_down; /* now ready to bring up at the end */
/* Find out how big our volume is */
for (i = 0; i < vol->plexes; i++)
vol->size = max(vol->size, PLEX[vol->plex[i]].length);
}
/* Parse a config entry. CARE! This destroys the original contents of the
* config entry, which we don't really need after this. More specifically, it
* places \0 characters at the end of each token.
*
* Return 0 if all is well, otherwise EINVAL */
int
parse_config(char *cptr, struct keywordset *keyset)
{
BROKEN_GDB;
int status;
status = 0; /* until proven otherwise */
tokens = tokenize(cptr, token); /* chop up into tokens */
if (tokens <= 0) /* screwed up or empty line */
return tokens; /* give up */
if (token[0][0] == '#') /* comment line */
return 0;
switch (get_keyword(token[0], keyset)) { /* decide what to do */
case kw_read: /* read config from a specified drive */
vinum_conf.flags |= VF_KERNELOP | VF_READING_CONFIG; /* kernel operation: reading config */
status = check_drive(token[1]); /* check the drive info */
vinum_conf.flags &= ~(VF_KERNELOP | VF_READING_CONFIG);
if (status != 0) {
char *msg = "Can't read configuration from %s";
if (status == ENODEV)
msg = "No vinum configuration on %s";
throw_rude_remark(status, msg, token[1]);
}
updateconfig(VF_KERNELOP); /* update from kernel space */
break;
case kw_drive:
config_drive();
break;
case kw_subdisk:
config_subdisk();
break;
case kw_plex:
config_plex();
break;
case kw_volume:
config_volume();
break;
/* Anything else is invalid in this context */
default:
throw_rude_remark(EINVAL, /* should we die? */
"Invalid configuration information: %s",
token[0]);
}
return status;
}
/* parse a line handed in from userland via ioctl.
* This differs only by the error reporting mechanism:
* we return the error indication in the reply to the
* ioctl, so we need to set a global static pointer in
* this file. This technique works because we have
* ensured that configuration is performed in a single-
* threaded manner */
int
parse_user_config(char *cptr, struct keywordset *keyset)
{
BROKEN_GDB;
int status;
ioctl_reply = (struct _ioctl_reply *) cptr;
status = parse_config(cptr, keyset);
ioctl_reply = NULL; /* don't do this again */
return status;
}
/* Remove an object */
void
remove(struct vinum_ioctl_msg *msg)
{
struct vinum_ioctl_msg message = *msg; /* make a copy to hand on */
ioctl_reply = (struct _ioctl_reply *) msg; /* reinstate the address to reply to */
ioctl_reply->error = 0; /* no error, */
ioctl_reply->msg[0] = '\0'; /* no message */
switch (message.type) {
case drive_object:
remove_drive_entry(message.index, message.force, message.recurse);
updateconfig(0);
return;
case sd_object:
remove_sd_entry(message.index, message.force, message.recurse);
updateconfig(0);
return;
case plex_object:
remove_plex_entry(message.index, message.force, message.recurse);
updateconfig(0);
return;
case volume_object:
remove_volume_entry(message.index, message.force, message.recurse);
updateconfig(0);
return;
default:
ioctl_reply->error = EINVAL;
strcpy(ioctl_reply->msg, "Invalid object type");
}
}
/* Remove a drive. */
void
remove_drive_entry(int driveno, int force, int recurse)
{
struct drive *drive = &DRIVE[driveno];
if ((driveno > vinum_conf.drives_used) /* not a valid drive */
||(drive->state == drive_unallocated)) { /* or nothing there */
ioctl_reply->error = EINVAL;
strcpy(ioctl_reply->msg, "No such drive");
} else if (drive->opencount > 0) { /* we have subdisks */
if (force) { /* do it at any cost */
int sdno;
struct vinum_ioctl_msg sdmsg;
for (sdno = 0; sdno < vinum_conf.subdisks_used; sdno++) {
if ((SD[sdno].state != sd_unallocated) /* subdisk is allocated */
&&(SD[sdno].driveno == driveno)) { /* and it belongs to this drive */
sdmsg.type = sd_object;
sdmsg.recurse = 1;
sdmsg.force = force;
remove(&sdmsg); /* remove the subdisk by force */
}
}
remove_drive(driveno); /* now remove it */
} else
ioctl_reply->error = EBUSY; /* can't do that */
} else
remove_drive(driveno); /* just remove it */
}
/* remove a subdisk */
void
remove_sd_entry(int sdno, int force, int recurse)
{
struct sd *sd = &SD[sdno];
if ((sdno > vinum_conf.subdisks_used) /* not a valid sd */
||(sd->state == sd_unallocated)) { /* or nothing there */
ioctl_reply->error = EINVAL;
strcpy(ioctl_reply->msg, "No such subdisk");
} else if (sd->plexno >= 0) { /* we have a plex */
if (force) { /* do it at any cost */
struct plex *plex = &PLEX[sd->plexno]; /* point to our plex */
int mysdno;
for (mysdno = 0; /* look for ourselves */
mysdno < plex->subdisks && &SD[plex->sdnos[mysdno]] != sd;
mysdno++);
if (mysdno == plex->subdisks) /* didn't find it */
throw_rude_remark(ENOENT, "plex %s does not contain subdisk %s", plex->name, sd->name);
if (mysdno < (plex->subdisks - 1)) /* not the last subdisk */
bcopy(&plex->sdnos[mysdno + 1],
&plex->sdnos[mysdno],
(plex->subdisks - 1 - mysdno) * sizeof(int));
plex->subdisks--;
/* removing a subdisk from a striped or
* RAID-5 plex really tears the hell out
* of the structure, and it needs to be
* reinitialized */
if (plex->organization != plex_concat) /* not concatenated, */
set_plex_state(plex->plexno, plex_faulty, setstate_force); /* need to reinitialize */
rebuild_plex_unmappedlist(plex); /* and see what remains */
free_sd(sdno);
} else
ioctl_reply->error = EBUSY; /* can't do that */
} else
free_sd(sdno);
}
/* remove a plex */
void
remove_plex_entry(int plexno, int force, int recurse)
{
struct plex *plex = &PLEX[plexno];
int sdno;
if ((plexno > vinum_conf.plexes_used) /* not a valid plex */
||(plex->state == plex_unallocated)) { /* or nothing there */
ioctl_reply->error = EINVAL;
strcpy(ioctl_reply->msg, "No such plex");
} else if (plex->pid) { /* we're open */
ioctl_reply->error = EBUSY; /* no getting around that */
return;
}
if (plex->subdisks) {
if (force) { /* do it anyway */
if (recurse) { /* remove all below */
for (sdno = 0; sdno < plex->subdisks; sdno++)
free_sd(plex->sdnos[sdno]); /* free all subdisks */
} else { /* just tear them out */
for (sdno = 0; sdno < plex->subdisks; sdno++)
SD[plex->sdnos[sdno]].plexno = -1; /* no plex any more */
}
} else { /* can't do it without force */
ioctl_reply->error = EBUSY; /* can't do that */
return;
}
}
if (plex->volno >= 0) { /* we are part of a volume */
/* XXX This should be more intelligent. We should
* be able to remove a plex as long as the volume
* does not lose any data, which is normally the
* case when it has more than one plex. To do it
* right we must compare the completeness of the
* mapping of all the plexes in the volume */
if (force) { /* do it at any cost */
struct volume *vol = &VOL[plex->volno];
int myplexno;
for (myplexno = 0; myplexno < vol->plexes; myplexno++)
if (vol->plex[myplexno] == plexno) /* found it */
break;
if (myplexno == vol->plexes) /* didn't find it. Huh? */
throw_rude_remark(ENOENT, "volume %s does not contain plex %s", vol->name, plex->name);
if (myplexno < (vol->plexes - 1)) /* not the last plex in the list */
bcopy(&vol->plex[myplexno + 1], &vol->plex[myplexno], vol->plexes - 1 - myplexno);
vol->plexes--;
} else {
ioctl_reply->error = EBUSY; /* can't do that */
return;
}
}
free_plex(plexno);
}
/* remove a volume */
void
remove_volume_entry(int volno, int force, int recurse)
{
struct volume *vol = &VOL[volno];
int plexno;
if ((volno > vinum_conf.volumes_used) /* not a valid volume */
||(vol->state == volume_unallocated)) { /* or nothing there */
ioctl_reply->error = EINVAL;
strcpy(ioctl_reply->msg, "No such volume");
} else if (vol->opencount) /* we're open */
ioctl_reply->error = EBUSY; /* no getting around that */
else if (vol->plexes) {
if (recurse && force) { /* remove all below */
struct vinum_ioctl_msg plexmsg;
plexmsg.type = plex_object;
plexmsg.recurse = 1;
plexmsg.force = force;
for (plexno = 0; plexno < vol->plexes; plexno++) {
plexmsg.index = vol->plex[plexno]; /* plex number */
remove(&plexmsg);
}
free_volume(volno);
} else
ioctl_reply->error = EBUSY; /* can't do that */
} else
free_volume(volno);
}
void
update_sd_config(int sdno, int kernelstate)
{
if (!kernelstate)
set_sd_state(sdno, sd_up, setstate_configuring | setstate_norecurse);
}
void
update_plex_config(int plexno, int kernelstate)
{
int error = 0;
int size;
int sdno;
struct plex *plex = &PLEX[plexno];
enum plexstate state = plex_up; /* state we want the plex in */
/* XXX Insert checks here for sparse plexes and volumes */
/* Check that our subdisks make sense. For
* striped and RAID5 plexes, we need at least
* two subdisks, and they must all be the same
* size */
if (((plex->organization == plex_striped)
)
&& (plex->subdisks < 2)) {
error = 1;
printf("vinum: plex %s does not have at least 2 subdisks\n", plex->name);
if (!kernelstate)
set_plex_state(plexno, plex_down, setstate_force | setstate_configuring | setstate_norecurse);
}
size = 0;
for (sdno = 0; sdno < plex->subdisks; sdno++) {
if (((plex->organization == plex_striped)
)
&& (sdno > 0)
&& (SD[plex->sdnos[sdno]].sectors != SD[plex->sdnos[sdno - 1]].sectors)) {
error = 1;
printf("vinum: plex %s must have equal sized subdisks\n", plex->name);
set_plex_state(plexno, plex_down, setstate_force | setstate_configuring | setstate_norecurse);
}
size += SD[plex->sdnos[sdno]].sectors;
}
if (plex->subdisks) { /* plex has subdisks, calculate size */
rebuild_plex_unmappedlist(plex); /* rebuild the unmapped list first */
plex->length = size;
} else { /* no subdisks, */
plex->length = 0; /* no size */
state = plex_down; /* take it down */
}
if (!(kernelstate || error))
set_plex_state(plexno, state, setstate_none | setstate_configuring | setstate_norecurse);
}
void
update_volume_config(int volno, int kernelstate)
{
struct volume *vol = &VOL[volno];
struct plex *plex;
int plexno;
if (vol->state != volume_unallocated)
/* Recalculate the size of the volume */
{
vol->size = 0;
for (plexno = 0; plexno < vol->plexes; plexno++) {
plex = &PLEX[vol->plex[plexno]];
vol->size = max(plex->length, vol->size); /* maximum size */
plex->volplexno = plexno; /* note it in the plex */
}
}
if (!kernelstate) /* try to bring it up */
set_volume_state(volno, volume_up, setstate_configuring | setstate_norecurse);
}
/* Update the global configuration.
* kernelstate is != 0 if we're reading in a config
* from disk. In this case, we don't try to
* bring the devices up, though we will bring
* them down if there's some error which got
* missed when writing to disk.
*/
void
updateconfig(int kernelstate)
{
BROKEN_GDB;
int sdno;
int plexno;
int volno;
struct volume *vol;
struct plex *plex;
for (sdno = 0; sdno < vinum_conf.subdisks_used; sdno++)
update_sd_config(sdno, kernelstate);
for (plexno = 0; plexno < vinum_conf.plexes_used; plexno++)
update_plex_config(plexno, kernelstate);
for (volno = 0; volno < vinum_conf.volumes_used; volno++)
update_volume_config(volno, kernelstate);
save_config();
}
/* Start manual changes to the configuration and lock out
* others who may wish to do so.
* XXX why do we need this and lock_config too? */
int
start_config(void)
{
int error;
while ((vinum_conf.flags & VF_CONFIGURING) != 0) {
vinum_conf.flags |= VF_WILL_CONFIGURE;
if ((error = tsleep(&vinum_conf, PRIBIO | PCATCH, "vincfg", 0)) != 0)
return error;
}
/* We need two flags here: VF_CONFIGURING
* tells other processes to hold off (this
* function), and VF_CONFIG_INCOMPLETE
* tells the state change routines not to
* propagate incrememntal state changes */
vinum_conf.flags |= VF_CONFIGURING | VF_CONFIG_INCOMPLETE;
current_drive = -1; /* reset the defaults */
current_plex = -1; /* and the same for the last plex */
current_volume = -1; /* and the last volme */
return 0;
}
/* Update the config if update is 1, and unlock
* it. We won't update the configuration if we
* are called in a recursive loop via throw_rude_remark.
*/
void
finish_config(int update)
{
vinum_conf.flags &= ~VF_CONFIG_INCOMPLETE; /* we've finished our config */
if (update)
updateconfig(0); /* so update things */
else
updateconfig(1); /* do some updates only */
vinum_conf.flags &= ~VF_CONFIGURING; /* and now other people can take a turn */
if ((vinum_conf.flags & VF_WILL_CONFIGURE) != 0) {
vinum_conf.flags &= ~VF_WILL_CONFIGURE;
wakeup(&vinum_conf);
}
}