freebsd-skq/sys/kern/kern_ktrace.c
Scott Long 316ec49abd Some kernel threads try to do significant work, and the default KSTACK_PAGES
doesn't give them enough stack to do much before blowing away the pcb.
This adds MI and MD code to allow the allocation of an alternate kstack
who's size can be speficied when calling kthread_create.  Passing the
value 0 prevents the alternate kstack from being created.  Note that the
ia64 MD code is missing for now, and PowerPC was only partially written
due to the pmap.c being incomplete there.
Though this patch does not modify anything to make use of the alternate
kstack, acpi and usb are good candidates.

Reviewed by:	jake, peter, jhb
2002-10-02 07:44:29 +00:00

862 lines
20 KiB
C

/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93
* $FreeBSD$
*/
#include "opt_ktrace.h"
#include "opt_mac.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/unistd.h>
#include <sys/vnode.h>
#include <sys/ktrace.h>
#include <sys/sema.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/sysproto.h>
static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
#ifdef KTRACE
#ifndef KTRACE_REQUEST_POOL
#define KTRACE_REQUEST_POOL 100
#endif
struct ktr_request {
struct ktr_header ktr_header;
struct ucred *ktr_cred;
struct vnode *ktr_vp;
union {
struct ktr_syscall ktr_syscall;
struct ktr_sysret ktr_sysret;
struct ktr_genio ktr_genio;
struct ktr_psig ktr_psig;
struct ktr_csw ktr_csw;
} ktr_data;
STAILQ_ENTRY(ktr_request) ktr_list;
};
static int data_lengths[] = {
0, /* none */
offsetof(struct ktr_syscall, ktr_args), /* KTR_SYSCALL */
sizeof(struct ktr_sysret), /* KTR_SYSRET */
0, /* KTR_NAMEI */
sizeof(struct ktr_genio), /* KTR_GENIO */
sizeof(struct ktr_psig), /* KTR_PSIG */
sizeof(struct ktr_csw), /* KTR_CSW */
0 /* KTR_USER */
};
static STAILQ_HEAD(, ktr_request) ktr_todo;
static STAILQ_HEAD(, ktr_request) ktr_free;
SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
static uint ktr_requestpool = KTRACE_REQUEST_POOL;
TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
static uint ktr_geniosize = PAGE_SIZE;
TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
0, "Maximum size of genio event payload");
static int print_message = 1;
struct mtx ktrace_mtx;
static struct sema ktrace_sema;
static void ktrace_init(void *dummy);
static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
static uint ktrace_resize_pool(uint newsize);
static struct ktr_request *ktr_getrequest(int type);
static void ktr_submitrequest(struct ktr_request *req);
static void ktr_freerequest(struct ktr_request *req);
static void ktr_loop(void *dummy);
static void ktr_writerequest(struct ktr_request *req);
static int ktrcanset(struct thread *,struct proc *);
static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
static void
ktrace_init(void *dummy)
{
struct ktr_request *req;
int i;
mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
sema_init(&ktrace_sema, 0, "ktrace");
STAILQ_INIT(&ktr_todo);
STAILQ_INIT(&ktr_free);
for (i = 0; i < ktr_requestpool; i++) {
req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
}
kthread_create(ktr_loop, NULL, NULL, RFHIGHPID, 0, "ktrace");
}
SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
static int
sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
{
struct thread *td;
uint newsize, oldsize, wantsize;
int error;
/* Handle easy read-only case first to avoid warnings from GCC. */
if (!req->newptr) {
mtx_lock(&ktrace_mtx);
oldsize = ktr_requestpool;
mtx_unlock(&ktrace_mtx);
return (SYSCTL_OUT(req, &oldsize, sizeof(uint)));
}
error = SYSCTL_IN(req, &wantsize, sizeof(uint));
if (error)
return (error);
td = curthread;
td->td_inktrace = 1;
mtx_lock(&ktrace_mtx);
oldsize = ktr_requestpool;
newsize = ktrace_resize_pool(wantsize);
mtx_unlock(&ktrace_mtx);
td->td_inktrace = 0;
error = SYSCTL_OUT(req, &oldsize, sizeof(uint));
if (error)
return (error);
if (newsize != wantsize)
return (ENOSPC);
return (0);
}
SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
&ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "");
static uint
ktrace_resize_pool(uint newsize)
{
struct ktr_request *req;
mtx_assert(&ktrace_mtx, MA_OWNED);
print_message = 1;
if (newsize == ktr_requestpool)
return (newsize);
if (newsize < ktr_requestpool)
/* Shrink pool down to newsize if possible. */
while (ktr_requestpool > newsize) {
req = STAILQ_FIRST(&ktr_free);
if (req == NULL)
return (ktr_requestpool);
STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
ktr_requestpool--;
mtx_unlock(&ktrace_mtx);
free(req, M_KTRACE);
mtx_lock(&ktrace_mtx);
}
else
/* Grow pool up to newsize. */
while (ktr_requestpool < newsize) {
mtx_unlock(&ktrace_mtx);
req = malloc(sizeof(struct ktr_request), M_KTRACE,
M_WAITOK);
mtx_lock(&ktrace_mtx);
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
ktr_requestpool++;
}
return (ktr_requestpool);
}
static struct ktr_request *
ktr_getrequest(int type)
{
struct ktr_request *req;
struct thread *td = curthread;
struct proc *p = td->td_proc;
int pm;
td->td_inktrace = 1;
mtx_lock(&ktrace_mtx);
if (!KTRCHECK(td, type)) {
mtx_unlock(&ktrace_mtx);
td->td_inktrace = 0;
return (NULL);
}
req = STAILQ_FIRST(&ktr_free);
if (req != NULL) {
STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
req->ktr_header.ktr_type = type;
KASSERT(p->p_tracep != NULL, ("ktrace: no trace vnode"));
req->ktr_vp = p->p_tracep;
VREF(p->p_tracep);
mtx_unlock(&ktrace_mtx);
microtime(&req->ktr_header.ktr_time);
req->ktr_header.ktr_pid = p->p_pid;
bcopy(p->p_comm, req->ktr_header.ktr_comm, MAXCOMLEN + 1);
req->ktr_cred = crhold(td->td_ucred);
req->ktr_header.ktr_buffer = NULL;
req->ktr_header.ktr_len = 0;
} else {
pm = print_message;
print_message = 0;
mtx_unlock(&ktrace_mtx);
if (pm)
printf("Out of ktrace request objects.\n");
td->td_inktrace = 0;
}
return (req);
}
static void
ktr_submitrequest(struct ktr_request *req)
{
mtx_lock(&ktrace_mtx);
STAILQ_INSERT_TAIL(&ktr_todo, req, ktr_list);
sema_post(&ktrace_sema);
mtx_unlock(&ktrace_mtx);
curthread->td_inktrace = 0;
}
static void
ktr_freerequest(struct ktr_request *req)
{
crfree(req->ktr_cred);
if (req->ktr_vp != NULL) {
mtx_lock(&Giant);
vrele(req->ktr_vp);
mtx_unlock(&Giant);
}
if (req->ktr_header.ktr_buffer != NULL)
free(req->ktr_header.ktr_buffer, M_KTRACE);
mtx_lock(&ktrace_mtx);
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
mtx_unlock(&ktrace_mtx);
}
static void
ktr_loop(void *dummy)
{
struct ktr_request *req;
struct thread *td;
struct ucred *cred;
/* Only cache these values once. */
td = curthread;
cred = td->td_ucred;
for (;;) {
sema_wait(&ktrace_sema);
mtx_lock(&ktrace_mtx);
req = STAILQ_FIRST(&ktr_todo);
STAILQ_REMOVE_HEAD(&ktr_todo, ktr_list);
KASSERT(req != NULL, ("got a NULL request"));
mtx_unlock(&ktrace_mtx);
/*
* It is not enough just to pass the cached cred
* to the VOP's in ktr_writerequest(). Some VFS
* operations use curthread->td_ucred, so we need
* to modify our thread's credentials as well.
* Evil.
*/
td->td_ucred = req->ktr_cred;
ktr_writerequest(req);
td->td_ucred = cred;
ktr_freerequest(req);
}
}
/*
* MPSAFE
*/
void
ktrsyscall(code, narg, args)
int code, narg;
register_t args[];
{
struct ktr_request *req;
struct ktr_syscall *ktp;
size_t buflen;
char *buf = NULL;
buflen = sizeof(register_t) * narg;
if (buflen > 0) {
buf = malloc(buflen, M_KTRACE, M_WAITOK);
bcopy(args, buf, buflen);
}
req = ktr_getrequest(KTR_SYSCALL);
if (req == NULL) {
if (buf != NULL)
free(buf, M_KTRACE);
return;
}
ktp = &req->ktr_data.ktr_syscall;
ktp->ktr_code = code;
ktp->ktr_narg = narg;
if (buflen > 0) {
req->ktr_header.ktr_len = buflen;
req->ktr_header.ktr_buffer = buf;
}
ktr_submitrequest(req);
}
/*
* MPSAFE
*/
void
ktrsysret(code, error, retval)
int code, error;
register_t retval;
{
struct ktr_request *req;
struct ktr_sysret *ktp;
req = ktr_getrequest(KTR_SYSRET);
if (req == NULL)
return;
ktp = &req->ktr_data.ktr_sysret;
ktp->ktr_code = code;
ktp->ktr_error = error;
ktp->ktr_retval = retval; /* what about val2 ? */
ktr_submitrequest(req);
}
void
ktrnamei(path)
char *path;
{
struct ktr_request *req;
int namelen;
char *buf = NULL;
namelen = strlen(path);
if (namelen > 0) {
buf = malloc(namelen, M_KTRACE, M_WAITOK);
bcopy(path, buf, namelen);
}
req = ktr_getrequest(KTR_NAMEI);
if (req == NULL) {
if (buf != NULL)
free(buf, M_KTRACE);
return;
}
if (namelen > 0) {
req->ktr_header.ktr_len = namelen;
req->ktr_header.ktr_buffer = buf;
}
ktr_submitrequest(req);
}
/*
* Since the uio may not stay valid, we can not hand off this request to
* the thread and need to process it synchronously. However, we wish to
* keep the relative order of records in a trace file correct, so we
* do put this request on the queue (if it isn't empty) and then block.
* The ktrace thread waks us back up when it is time for this event to
* be posted and blocks until we have completed writing out the event
* and woken it back up.
*/
void
ktrgenio(fd, rw, uio, error)
int fd;
enum uio_rw rw;
struct uio *uio;
int error;
{
struct ktr_request *req;
struct ktr_genio *ktg;
int datalen;
char *buf;
if (error)
return;
uio->uio_offset = 0;
uio->uio_rw = UIO_WRITE;
datalen = imin(uio->uio_resid, ktr_geniosize);
buf = malloc(datalen, M_KTRACE, M_WAITOK);
if (uiomove(buf, datalen, uio)) {
free(buf, M_KTRACE);
return;
}
req = ktr_getrequest(KTR_GENIO);
if (req == NULL) {
free(buf, M_KTRACE);
return;
}
ktg = &req->ktr_data.ktr_genio;
ktg->ktr_fd = fd;
ktg->ktr_rw = rw;
req->ktr_header.ktr_len = datalen;
req->ktr_header.ktr_buffer = buf;
ktr_submitrequest(req);
}
void
ktrpsig(sig, action, mask, code)
int sig;
sig_t action;
sigset_t *mask;
int code;
{
struct ktr_request *req;
struct ktr_psig *kp;
req = ktr_getrequest(KTR_PSIG);
if (req == NULL)
return;
kp = &req->ktr_data.ktr_psig;
kp->signo = (char)sig;
kp->action = action;
kp->mask = *mask;
kp->code = code;
ktr_submitrequest(req);
}
void
ktrcsw(out, user)
int out, user;
{
struct ktr_request *req;
struct ktr_csw *kc;
req = ktr_getrequest(KTR_CSW);
if (req == NULL)
return;
kc = &req->ktr_data.ktr_csw;
kc->out = out;
kc->user = user;
ktr_submitrequest(req);
}
#endif
/* Interface and common routines */
/*
* ktrace system call
*/
#ifndef _SYS_SYSPROTO_H_
struct ktrace_args {
char *fname;
int ops;
int facs;
int pid;
};
#endif
/* ARGSUSED */
int
ktrace(td, uap)
struct thread *td;
register struct ktrace_args *uap;
{
#ifdef KTRACE
register struct vnode *vp = NULL;
register struct proc *p;
struct pgrp *pg;
int facs = uap->facs & ~KTRFAC_ROOT;
int ops = KTROP(uap->ops);
int descend = uap->ops & KTRFLAG_DESCEND;
int ret = 0;
int flags, error = 0;
struct nameidata nd;
td->td_inktrace = 1;
if (ops != KTROP_CLEAR) {
/*
* an operation which requires a file argument.
*/
NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
flags = FREAD | FWRITE | O_NOFOLLOW;
error = vn_open(&nd, &flags, 0);
if (error) {
td->td_inktrace = 0;
return (error);
}
NDFREE(&nd, NDF_ONLY_PNBUF);
vp = nd.ni_vp;
VOP_UNLOCK(vp, 0, td);
if (vp->v_type != VREG) {
(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
td->td_inktrace = 0;
return (EACCES);
}
}
/*
* Clear all uses of the tracefile.
*/
if (ops == KTROP_CLEARFILE) {
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
PROC_LOCK(p);
if (p->p_tracep == vp) {
if (ktrcanset(td, p)) {
mtx_lock(&ktrace_mtx);
p->p_tracep = NULL;
p->p_traceflag = 0;
mtx_unlock(&ktrace_mtx);
PROC_UNLOCK(p);
(void) vn_close(vp, FREAD|FWRITE,
td->td_ucred, td);
} else {
PROC_UNLOCK(p);
error = EPERM;
}
} else
PROC_UNLOCK(p);
}
sx_sunlock(&allproc_lock);
goto done;
}
/*
* need something to (un)trace (XXX - why is this here?)
*/
if (!facs) {
error = EINVAL;
goto done;
}
/*
* do it
*/
if (uap->pid < 0) {
/*
* by process group
*/
sx_slock(&proctree_lock);
pg = pgfind(-uap->pid);
if (pg == NULL) {
sx_sunlock(&proctree_lock);
error = ESRCH;
goto done;
}
/*
* ktrops() may call vrele(). Lock pg_members
* by the proctree_lock rather than pg_mtx.
*/
PGRP_UNLOCK(pg);
LIST_FOREACH(p, &pg->pg_members, p_pglist)
if (descend)
ret |= ktrsetchildren(td, p, ops, facs, vp);
else
ret |= ktrops(td, p, ops, facs, vp);
sx_sunlock(&proctree_lock);
} else {
/*
* by pid
*/
p = pfind(uap->pid);
if (p == NULL) {
error = ESRCH;
goto done;
}
PROC_UNLOCK(p);
/* XXX: UNLOCK above has a race */
if (descend)
ret |= ktrsetchildren(td, p, ops, facs, vp);
else
ret |= ktrops(td, p, ops, facs, vp);
}
if (!ret)
error = EPERM;
done:
if (vp != NULL)
(void) vn_close(vp, FWRITE, td->td_ucred, td);
td->td_inktrace = 0;
return (error);
#else
return ENOSYS;
#endif
}
/*
* utrace system call
*/
/* ARGSUSED */
int
utrace(td, uap)
struct thread *td;
register struct utrace_args *uap;
{
#ifdef KTRACE
struct ktr_request *req;
void *cp;
int error;
if (!KTRPOINT(td, KTR_USER))
return (0);
if (uap->len > KTR_USER_MAXLEN)
return (EINVAL);
cp = malloc(uap->len, M_KTRACE, M_WAITOK);
error = copyin(uap->addr, cp, uap->len);
if (error) {
free(cp, M_KTRACE);
return (error);
}
req = ktr_getrequest(KTR_USER);
if (req == NULL) {
free(cp, M_KTRACE);
return (0);
}
req->ktr_header.ktr_buffer = cp;
req->ktr_header.ktr_len = uap->len;
ktr_submitrequest(req);
return (0);
#else
return (ENOSYS);
#endif
}
#ifdef KTRACE
static int
ktrops(td, p, ops, facs, vp)
struct thread *td;
struct proc *p;
int ops, facs;
struct vnode *vp;
{
struct vnode *tracevp = NULL;
PROC_LOCK(p);
if (!ktrcanset(td, p)) {
PROC_UNLOCK(p);
return (0);
}
mtx_lock(&ktrace_mtx);
if (ops == KTROP_SET) {
if (p->p_tracep != vp) {
/*
* if trace file already in use, relinquish below
*/
tracevp = p->p_tracep;
VREF(vp);
p->p_tracep = vp;
}
p->p_traceflag |= facs;
if (td->td_ucred->cr_uid == 0)
p->p_traceflag |= KTRFAC_ROOT;
} else {
/* KTROP_CLEAR */
if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
/* no more tracing */
p->p_traceflag = 0;
tracevp = p->p_tracep;
p->p_tracep = NULL;
}
}
mtx_unlock(&ktrace_mtx);
PROC_UNLOCK(p);
if (tracevp != NULL)
vrele(tracevp);
return (1);
}
static int
ktrsetchildren(td, top, ops, facs, vp)
struct thread *td;
struct proc *top;
int ops, facs;
struct vnode *vp;
{
register struct proc *p;
register int ret = 0;
p = top;
sx_slock(&proctree_lock);
for (;;) {
ret |= ktrops(td, p, ops, facs, vp);
/*
* If this process has children, descend to them next,
* otherwise do any siblings, and if done with this level,
* follow back up the tree (but not past top).
*/
if (!LIST_EMPTY(&p->p_children))
p = LIST_FIRST(&p->p_children);
else for (;;) {
if (p == top) {
sx_sunlock(&proctree_lock);
return (ret);
}
if (LIST_NEXT(p, p_sibling)) {
p = LIST_NEXT(p, p_sibling);
break;
}
p = p->p_pptr;
}
}
/*NOTREACHED*/
}
static void
ktr_writerequest(struct ktr_request *req)
{
struct ktr_header *kth;
struct vnode *vp;
struct proc *p;
struct thread *td;
struct ucred *cred;
struct uio auio;
struct iovec aiov[3];
struct mount *mp;
int datalen, buflen, vrele_count;
int error;
vp = req->ktr_vp;
/*
* If vp is NULL, the vp has been cleared out from under this
* request, so just drop it.
*/
if (vp == NULL)
return;
kth = &req->ktr_header;
datalen = data_lengths[kth->ktr_type];
buflen = kth->ktr_len;
cred = req->ktr_cred;
td = curthread;
auio.uio_iov = &aiov[0];
auio.uio_offset = 0;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_WRITE;
aiov[0].iov_base = (caddr_t)kth;
aiov[0].iov_len = sizeof(struct ktr_header);
auio.uio_resid = sizeof(struct ktr_header);
auio.uio_iovcnt = 1;
auio.uio_td = td;
if (datalen != 0) {
aiov[1].iov_base = (caddr_t)&req->ktr_data;
aiov[1].iov_len = datalen;
auio.uio_resid += datalen;
auio.uio_iovcnt++;
kth->ktr_len += datalen;
}
if (buflen != 0) {
KASSERT(kth->ktr_buffer != NULL, ("ktrace: nothing to write"));
aiov[auio.uio_iovcnt].iov_base = kth->ktr_buffer;
aiov[auio.uio_iovcnt].iov_len = buflen;
auio.uio_resid += buflen;
auio.uio_iovcnt++;
}
mtx_lock(&Giant);
vn_start_write(vp, &mp, V_WAIT);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
(void)VOP_LEASE(vp, td, cred, LEASE_WRITE);
#ifdef MAC
error = mac_check_vnode_write(cred, NOCRED, vp);
if (error == 0)
#endif
error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
VOP_UNLOCK(vp, 0, td);
vn_finished_write(mp);
mtx_unlock(&Giant);
if (!error)
return;
/*
* If error encountered, give up tracing on this vnode. We defer
* all the vrele()'s on the vnode until after we are finished walking
* the various lists to avoid needlessly holding locks.
*/
log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
error);
vrele_count = 0;
/*
* First, clear this vnode from being used by any processes in the
* system.
* XXX - If one process gets an EPERM writing to the vnode, should
* we really do this? Other processes might have suitable
* credentials for the operation.
*/
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
PROC_LOCK(p);
if (p->p_tracep == vp) {
mtx_lock(&ktrace_mtx);
p->p_tracep = NULL;
p->p_traceflag = 0;
mtx_unlock(&ktrace_mtx);
vrele_count++;
}
PROC_UNLOCK(p);
}
sx_sunlock(&allproc_lock);
/*
* Second, clear this vnode from any pending requests.
*/
mtx_lock(&ktrace_mtx);
STAILQ_FOREACH(req, &ktr_todo, ktr_list) {
if (req->ktr_vp == vp) {
req->ktr_vp = NULL;
vrele_count++;
}
}
mtx_unlock(&ktrace_mtx);
mtx_lock(&Giant);
while (vrele_count-- > 0)
vrele(vp);
mtx_unlock(&Giant);
}
/*
* Return true if caller has permission to set the ktracing state
* of target. Essentially, the target can't possess any
* more permissions than the caller. KTRFAC_ROOT signifies that
* root previously set the tracing status on the target process, and
* so, only root may further change it.
*/
static int
ktrcanset(td, targetp)
struct thread *td;
struct proc *targetp;
{
PROC_LOCK_ASSERT(targetp, MA_OWNED);
if (targetp->p_traceflag & KTRFAC_ROOT &&
suser_cred(td->td_ucred, PRISON_ROOT))
return (0);
if (p_candebug(td, targetp) != 0)
return (0);
return (1);
}
#endif /* KTRACE */