freebsd-skq/sys/dev/sk/if_sk.c
2018-07-27 10:40:48 +00:00

3843 lines
102 KiB
C

/* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */
/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
* the SK-984x series adapters, both single port and dual port.
* References:
* The XaQti XMAC II datasheet,
* https://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
* The SysKonnect GEnesis manual, http://www.syskonnect.com
*
* Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
* XMAC II datasheet online. I have put my copy at people.freebsd.org as a
* convenience to others until Vitesse corrects this problem:
*
* https://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Department of Electrical Engineering
* Columbia University, New York City
*/
/*
* The SysKonnect gigabit ethernet adapters consist of two main
* components: the SysKonnect GEnesis controller chip and the XaQti Corp.
* XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
* components and a PHY while the GEnesis controller provides a PCI
* interface with DMA support. Each card may have between 512K and
* 2MB of SRAM on board depending on the configuration.
*
* The SysKonnect GEnesis controller can have either one or two XMAC
* chips connected to it, allowing single or dual port NIC configurations.
* SysKonnect has the distinction of being the only vendor on the market
* with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
* dual DMA queues, packet/MAC/transmit arbiters and direct access to the
* XMAC registers. This driver takes advantage of these features to allow
* both XMACs to operate as independent interfaces.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#if 0
#define SK_USEIOSPACE
#endif
#include <dev/sk/if_skreg.h>
#include <dev/sk/xmaciireg.h>
#include <dev/sk/yukonreg.h>
MODULE_DEPEND(sk, pci, 1, 1, 1);
MODULE_DEPEND(sk, ether, 1, 1, 1);
MODULE_DEPEND(sk, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
static const struct sk_type sk_devs[] = {
{
VENDORID_SK,
DEVICEID_SK_V1,
"SysKonnect Gigabit Ethernet (V1.0)"
},
{
VENDORID_SK,
DEVICEID_SK_V2,
"SysKonnect Gigabit Ethernet (V2.0)"
},
{
VENDORID_MARVELL,
DEVICEID_SK_V2,
"Marvell Gigabit Ethernet"
},
{
VENDORID_MARVELL,
DEVICEID_BELKIN_5005,
"Belkin F5D5005 Gigabit Ethernet"
},
{
VENDORID_3COM,
DEVICEID_3COM_3C940,
"3Com 3C940 Gigabit Ethernet"
},
{
VENDORID_LINKSYS,
DEVICEID_LINKSYS_EG1032,
"Linksys EG1032 Gigabit Ethernet"
},
{
VENDORID_DLINK,
DEVICEID_DLINK_DGE530T_A1,
"D-Link DGE-530T Gigabit Ethernet"
},
{
VENDORID_DLINK,
DEVICEID_DLINK_DGE530T_B1,
"D-Link DGE-530T Gigabit Ethernet"
},
{ 0, 0, NULL }
};
static int skc_probe(device_t);
static int skc_attach(device_t);
static int skc_detach(device_t);
static int skc_shutdown(device_t);
static int skc_suspend(device_t);
static int skc_resume(device_t);
static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
static int sk_detach(device_t);
static int sk_probe(device_t);
static int sk_attach(device_t);
static void sk_tick(void *);
static void sk_yukon_tick(void *);
static void sk_intr(void *);
static void sk_intr_xmac(struct sk_if_softc *);
static void sk_intr_bcom(struct sk_if_softc *);
static void sk_intr_yukon(struct sk_if_softc *);
static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
static void sk_rxeof(struct sk_if_softc *);
static void sk_jumbo_rxeof(struct sk_if_softc *);
static void sk_txeof(struct sk_if_softc *);
static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
static int sk_encap(struct sk_if_softc *, struct mbuf **);
static void sk_start(struct ifnet *);
static void sk_start_locked(struct ifnet *);
static int sk_ioctl(struct ifnet *, u_long, caddr_t);
static void sk_init(void *);
static void sk_init_locked(struct sk_if_softc *);
static void sk_init_xmac(struct sk_if_softc *);
static void sk_init_yukon(struct sk_if_softc *);
static void sk_stop(struct sk_if_softc *);
static void sk_watchdog(void *);
static int sk_ifmedia_upd(struct ifnet *);
static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void sk_reset(struct sk_softc *);
static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
static int sk_newbuf(struct sk_if_softc *, int);
static int sk_jumbo_newbuf(struct sk_if_softc *, int);
static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int sk_dma_alloc(struct sk_if_softc *);
static int sk_dma_jumbo_alloc(struct sk_if_softc *);
static void sk_dma_free(struct sk_if_softc *);
static void sk_dma_jumbo_free(struct sk_if_softc *);
static int sk_init_rx_ring(struct sk_if_softc *);
static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
static void sk_init_tx_ring(struct sk_if_softc *);
static u_int32_t sk_win_read_4(struct sk_softc *, int);
static u_int16_t sk_win_read_2(struct sk_softc *, int);
static u_int8_t sk_win_read_1(struct sk_softc *, int);
static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
static int sk_miibus_readreg(device_t, int, int);
static int sk_miibus_writereg(device_t, int, int, int);
static void sk_miibus_statchg(device_t);
static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
int);
static void sk_xmac_miibus_statchg(struct sk_if_softc *);
static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
int);
static void sk_marv_miibus_statchg(struct sk_if_softc *);
static uint32_t sk_xmchash(const uint8_t *);
static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
static void sk_rxfilter(struct sk_if_softc *);
static void sk_rxfilter_genesis(struct sk_if_softc *);
static void sk_rxfilter_yukon(struct sk_if_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
/* Tunables. */
static int jumbo_disable = 0;
TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
/*
* It seems that SK-NET GENESIS supports very simple checksum offload
* capability for Tx and I believe it can generate 0 checksum value for
* UDP packets in Tx as the hardware can't differenciate UDP packets from
* TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
* means sender didn't perforam checksum computation. For the safety I
* disabled UDP checksum offload capability at the moment. Alternatively
* we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
* offload routine.
*/
#define SK_CSUM_FEATURES (CSUM_TCP)
/*
* Note that we have newbus methods for both the GEnesis controller
* itself and the XMAC(s). The XMACs are children of the GEnesis, and
* the miibus code is a child of the XMACs. We need to do it this way
* so that the miibus drivers can access the PHY registers on the
* right PHY. It's not quite what I had in mind, but it's the only
* design that achieves the desired effect.
*/
static device_method_t skc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, skc_probe),
DEVMETHOD(device_attach, skc_attach),
DEVMETHOD(device_detach, skc_detach),
DEVMETHOD(device_suspend, skc_suspend),
DEVMETHOD(device_resume, skc_resume),
DEVMETHOD(device_shutdown, skc_shutdown),
DEVMETHOD(bus_get_dma_tag, skc_get_dma_tag),
DEVMETHOD_END
};
static driver_t skc_driver = {
"skc",
skc_methods,
sizeof(struct sk_softc)
};
static devclass_t skc_devclass;
static device_method_t sk_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sk_probe),
DEVMETHOD(device_attach, sk_attach),
DEVMETHOD(device_detach, sk_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, sk_miibus_readreg),
DEVMETHOD(miibus_writereg, sk_miibus_writereg),
DEVMETHOD(miibus_statchg, sk_miibus_statchg),
DEVMETHOD_END
};
static driver_t sk_driver = {
"sk",
sk_methods,
sizeof(struct sk_if_softc)
};
static devclass_t sk_devclass;
DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
static struct resource_spec sk_res_spec_io[] = {
{ SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec sk_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
#define SK_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
#define SK_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
#define SK_WIN_SETBIT_4(sc, reg, x) \
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
#define SK_WIN_CLRBIT_4(sc, reg, x) \
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
#define SK_WIN_SETBIT_2(sc, reg, x) \
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
#define SK_WIN_CLRBIT_2(sc, reg, x) \
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
static u_int32_t
sk_win_read_4(sc, reg)
struct sk_softc *sc;
int reg;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
#else
return(CSR_READ_4(sc, reg));
#endif
}
static u_int16_t
sk_win_read_2(sc, reg)
struct sk_softc *sc;
int reg;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
#else
return(CSR_READ_2(sc, reg));
#endif
}
static u_int8_t
sk_win_read_1(sc, reg)
struct sk_softc *sc;
int reg;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
#else
return(CSR_READ_1(sc, reg));
#endif
}
static void
sk_win_write_4(sc, reg, val)
struct sk_softc *sc;
int reg;
u_int32_t val;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
#else
CSR_WRITE_4(sc, reg, val);
#endif
return;
}
static void
sk_win_write_2(sc, reg, val)
struct sk_softc *sc;
int reg;
u_int32_t val;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
#else
CSR_WRITE_2(sc, reg, val);
#endif
return;
}
static void
sk_win_write_1(sc, reg, val)
struct sk_softc *sc;
int reg;
u_int32_t val;
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
#else
CSR_WRITE_1(sc, reg, val);
#endif
return;
}
static int
sk_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct sk_if_softc *sc_if;
int v;
sc_if = device_get_softc(dev);
SK_IF_MII_LOCK(sc_if);
switch(sc_if->sk_softc->sk_type) {
case SK_GENESIS:
v = sk_xmac_miibus_readreg(sc_if, phy, reg);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
v = sk_marv_miibus_readreg(sc_if, phy, reg);
break;
default:
v = 0;
break;
}
SK_IF_MII_UNLOCK(sc_if);
return (v);
}
static int
sk_miibus_writereg(dev, phy, reg, val)
device_t dev;
int phy, reg, val;
{
struct sk_if_softc *sc_if;
int v;
sc_if = device_get_softc(dev);
SK_IF_MII_LOCK(sc_if);
switch(sc_if->sk_softc->sk_type) {
case SK_GENESIS:
v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
break;
default:
v = 0;
break;
}
SK_IF_MII_UNLOCK(sc_if);
return (v);
}
static void
sk_miibus_statchg(dev)
device_t dev;
{
struct sk_if_softc *sc_if;
sc_if = device_get_softc(dev);
SK_IF_MII_LOCK(sc_if);
switch(sc_if->sk_softc->sk_type) {
case SK_GENESIS:
sk_xmac_miibus_statchg(sc_if);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
sk_marv_miibus_statchg(sc_if);
break;
}
SK_IF_MII_UNLOCK(sc_if);
return;
}
static int
sk_xmac_miibus_readreg(sc_if, phy, reg)
struct sk_if_softc *sc_if;
int phy, reg;
{
int i;
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
SK_XM_READ_2(sc_if, XM_PHY_DATA);
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
XM_MMUCMD_PHYDATARDY)
break;
}
if (i == SK_TIMEOUT) {
if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
return(0);
}
}
DELAY(1);
i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
return(i);
}
static int
sk_xmac_miibus_writereg(sc_if, phy, reg, val)
struct sk_if_softc *sc_if;
int phy, reg, val;
{
int i;
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
for (i = 0; i < SK_TIMEOUT; i++) {
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
if (i == SK_TIMEOUT) {
if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
return (ETIMEDOUT);
}
SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
if (i == SK_TIMEOUT)
if_printf(sc_if->sk_ifp, "phy write timed out\n");
return(0);
}
static void
sk_xmac_miibus_statchg(sc_if)
struct sk_if_softc *sc_if;
{
struct mii_data *mii;
mii = device_get_softc(sc_if->sk_miibus);
/*
* If this is a GMII PHY, manually set the XMAC's
* duplex mode accordingly.
*/
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
} else {
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
}
}
}
static int
sk_marv_miibus_readreg(sc_if, phy, reg)
struct sk_if_softc *sc_if;
int phy, reg;
{
u_int16_t val;
int i;
if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
return(0);
}
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
val = SK_YU_READ_2(sc_if, YUKON_SMICR);
if (val & YU_SMICR_READ_VALID)
break;
}
if (i == SK_TIMEOUT) {
if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
return(0);
}
val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
return(val);
}
static int
sk_marv_miibus_writereg(sc_if, phy, reg, val)
struct sk_if_softc *sc_if;
int phy, reg, val;
{
int i;
SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
break;
}
if (i == SK_TIMEOUT)
if_printf(sc_if->sk_ifp, "phy write timeout\n");
return(0);
}
static void
sk_marv_miibus_statchg(sc_if)
struct sk_if_softc *sc_if;
{
return;
}
#define HASH_BITS 6
static u_int32_t
sk_xmchash(addr)
const uint8_t *addr;
{
uint32_t crc;
/* Compute CRC for the address value. */
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
return (~crc & ((1 << HASH_BITS) - 1));
}
static void
sk_setfilt(sc_if, addr, slot)
struct sk_if_softc *sc_if;
u_int16_t *addr;
int slot;
{
int base;
base = XM_RXFILT_ENTRY(slot);
SK_XM_WRITE_2(sc_if, base, addr[0]);
SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
return;
}
static void
sk_rxfilter(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
SK_IF_LOCK_ASSERT(sc_if);
sc = sc_if->sk_softc;
if (sc->sk_type == SK_GENESIS)
sk_rxfilter_genesis(sc_if);
else
sk_rxfilter_yukon(sc_if);
}
static void
sk_rxfilter_genesis(sc_if)
struct sk_if_softc *sc_if;
{
struct ifnet *ifp = sc_if->sk_ifp;
u_int32_t hashes[2] = { 0, 0 }, mode;
int h = 0, i;
struct ifmultiaddr *ifma;
u_int16_t dummy[] = { 0, 0, 0 };
u_int16_t maddr[(ETHER_ADDR_LEN+1)/2];
SK_IF_LOCK_ASSERT(sc_if);
mode = SK_XM_READ_4(sc_if, XM_MODE);
mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
XM_MODE_RX_USE_PERFECT);
/* First, zot all the existing perfect filters. */
for (i = 1; i < XM_RXFILT_MAX; i++)
sk_setfilt(sc_if, dummy, i);
/* Now program new ones. */
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
if (ifp->if_flags & IFF_ALLMULTI)
mode |= XM_MODE_RX_USE_HASH;
if (ifp->if_flags & IFF_PROMISC)
mode |= XM_MODE_RX_PROMISC;
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
i = 1;
if_maddr_rlock(ifp);
/* XXX want to maintain reverse semantics */
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs,
ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/*
* Program the first XM_RXFILT_MAX multicast groups
* into the perfect filter.
*/
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
maddr, ETHER_ADDR_LEN);
if (i < XM_RXFILT_MAX) {
sk_setfilt(sc_if, maddr, i);
mode |= XM_MODE_RX_USE_PERFECT;
i++;
continue;
}
h = sk_xmchash((const uint8_t *)maddr);
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mode |= XM_MODE_RX_USE_HASH;
}
if_maddr_runlock(ifp);
}
SK_XM_WRITE_4(sc_if, XM_MODE, mode);
SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
}
static void
sk_rxfilter_yukon(sc_if)
struct sk_if_softc *sc_if;
{
struct ifnet *ifp;
u_int32_t crc, hashes[2] = { 0, 0 }, mode;
struct ifmultiaddr *ifma;
SK_IF_LOCK_ASSERT(sc_if);
ifp = sc_if->sk_ifp;
mode = SK_YU_READ_2(sc_if, YUKON_RCR);
if (ifp->if_flags & IFF_PROMISC)
mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
else if (ifp->if_flags & IFF_ALLMULTI) {
mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
mode |= YU_RCR_UFLEN;
if_maddr_rlock(ifp);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
hashes[crc >> 5] |= 1 << (crc & 0x1f);
}
if_maddr_runlock(ifp);
if (hashes[0] != 0 || hashes[1] != 0)
mode |= YU_RCR_MUFLEN;
}
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
}
static int
sk_init_rx_ring(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_ring_data *rd;
bus_addr_t addr;
u_int32_t csum_start;
int i;
sc_if->sk_cdata.sk_rx_cons = 0;
csum_start = (ETHER_HDR_LEN + sizeof(struct ip)) << 16 |
ETHER_HDR_LEN;
rd = &sc_if->sk_rdata;
bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
for (i = 0; i < SK_RX_RING_CNT; i++) {
if (sk_newbuf(sc_if, i) != 0)
return (ENOBUFS);
if (i == (SK_RX_RING_CNT - 1))
addr = SK_RX_RING_ADDR(sc_if, 0);
else
addr = SK_RX_RING_ADDR(sc_if, i + 1);
rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
}
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
sc_if->sk_cdata.sk_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return(0);
}
static int
sk_init_jumbo_rx_ring(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_ring_data *rd;
bus_addr_t addr;
u_int32_t csum_start;
int i;
sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
ETHER_HDR_LEN;
rd = &sc_if->sk_rdata;
bzero(rd->sk_jumbo_rx_ring,
sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
if (sk_jumbo_newbuf(sc_if, i) != 0)
return (ENOBUFS);
if (i == (SK_JUMBO_RX_RING_CNT - 1))
addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
else
addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
}
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
sc_if->sk_cdata.sk_jumbo_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
sk_init_tx_ring(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_ring_data *rd;
struct sk_txdesc *txd;
bus_addr_t addr;
int i;
STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
sc_if->sk_cdata.sk_tx_prod = 0;
sc_if->sk_cdata.sk_tx_cons = 0;
sc_if->sk_cdata.sk_tx_cnt = 0;
rd = &sc_if->sk_rdata;
bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
for (i = 0; i < SK_TX_RING_CNT; i++) {
if (i == (SK_TX_RING_CNT - 1))
addr = SK_TX_RING_ADDR(sc_if, 0);
else
addr = SK_TX_RING_ADDR(sc_if, i + 1);
rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
txd = &sc_if->sk_cdata.sk_txdesc[i];
STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
}
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
sc_if->sk_cdata.sk_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static __inline void
sk_discard_rxbuf(sc_if, idx)
struct sk_if_softc *sc_if;
int idx;
{
struct sk_rx_desc *r;
struct sk_rxdesc *rxd;
struct mbuf *m;
r = &sc_if->sk_rdata.sk_rx_ring[idx];
rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
m = rxd->rx_m;
r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
}
static __inline void
sk_discard_jumbo_rxbuf(sc_if, idx)
struct sk_if_softc *sc_if;
int idx;
{
struct sk_rx_desc *r;
struct sk_rxdesc *rxd;
struct mbuf *m;
r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
m = rxd->rx_m;
r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
}
static int
sk_newbuf(sc_if, idx)
struct sk_if_softc *sc_if;
int idx;
{
struct sk_rx_desc *r;
struct sk_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
sc_if->sk_cdata.sk_rx_sparemap = map;
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
r = &sc_if->sk_rdata.sk_rx_ring[idx];
r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
return (0);
}
static int
sk_jumbo_newbuf(sc_if, idx)
struct sk_if_softc *sc_if;
int idx;
{
struct sk_rx_desc *r;
struct sk_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
if (m == NULL)
return (ENOBUFS);
m->m_pkthdr.len = m->m_len = MJUM9BYTES;
/*
* Adjust alignment so packet payload begins on a
* longword boundary. Mandatory for Alpha, useful on
* x86 too.
*/
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
return (0);
}
/*
* Set media options.
*/
static int
sk_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc_if->sk_miibus);
sk_init(sc_if);
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
static void
sk_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct sk_if_softc *sc_if;
struct mii_data *mii;
sc_if = ifp->if_softc;
mii = device_get_softc(sc_if->sk_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
sk_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int error, mask;
struct mii_data *mii;
error = 0;
switch(command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
if (sc_if->sk_jumbo_disable != 0 &&
ifr->ifr_mtu > SK_MAX_FRAMELEN)
error = EINVAL;
else {
SK_IF_LOCK(sc_if);
ifp->if_mtu = ifr->ifr_mtu;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sk_init_locked(sc_if);
}
SK_IF_UNLOCK(sc_if);
}
}
break;
case SIOCSIFFLAGS:
SK_IF_LOCK(sc_if);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc_if->sk_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI))
sk_rxfilter(sc_if);
} else
sk_init_locked(sc_if);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
sk_stop(sc_if);
}
sc_if->sk_if_flags = ifp->if_flags;
SK_IF_UNLOCK(sc_if);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
SK_IF_LOCK(sc_if);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
sk_rxfilter(sc_if);
SK_IF_UNLOCK(sc_if);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc_if->sk_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
SK_IF_LOCK(sc_if);
if (sc_if->sk_softc->sk_type == SK_GENESIS) {
SK_IF_UNLOCK(sc_if);
break;
}
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= SK_CSUM_FEATURES;
else
ifp->if_hwassist &= ~SK_CSUM_FEATURES;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(IFCAP_RXCSUM & ifp->if_capabilities) != 0)
ifp->if_capenable ^= IFCAP_RXCSUM;
SK_IF_UNLOCK(sc_if);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
/*
* Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
skc_probe(dev)
device_t dev;
{
const struct sk_type *t = sk_devs;
while(t->sk_name != NULL) {
if ((pci_get_vendor(dev) == t->sk_vid) &&
(pci_get_device(dev) == t->sk_did)) {
/*
* Only attach to rev. 2 of the Linksys EG1032 adapter.
* Rev. 3 is supported by re(4).
*/
if ((t->sk_vid == VENDORID_LINKSYS) &&
(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
(pci_get_subdevice(dev) !=
SUBDEVICEID_LINKSYS_EG1032_REV2)) {
t++;
continue;
}
device_set_desc(dev, t->sk_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return(ENXIO);
}
/*
* Force the GEnesis into reset, then bring it out of reset.
*/
static void
sk_reset(sc)
struct sk_softc *sc;
{
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
if (SK_YUKON_FAMILY(sc->sk_type))
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
DELAY(1000);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
DELAY(2);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
if (SK_YUKON_FAMILY(sc->sk_type))
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
if (sc->sk_type == SK_GENESIS) {
/* Configure packet arbiter */
sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
}
/* Enable RAM interface */
sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
/*
* Configure interrupt moderation. The moderation timer
* defers interrupts specified in the interrupt moderation
* timer mask based on the timeout specified in the interrupt
* moderation timer init register. Each bit in the timer
* register represents one tick, so to specify a timeout in
* microseconds, we have to multiply by the correct number of
* ticks-per-microsecond.
*/
switch (sc->sk_type) {
case SK_GENESIS:
sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
break;
default:
sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
break;
}
if (bootverbose)
device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
sc->sk_int_mod);
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
sc->sk_int_ticks));
sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
return;
}
static int
sk_probe(dev)
device_t dev;
{
struct sk_softc *sc;
sc = device_get_softc(device_get_parent(dev));
/*
* Not much to do here. We always know there will be
* at least one XMAC present, and if there are two,
* skc_attach() will create a second device instance
* for us.
*/
switch (sc->sk_type) {
case SK_GENESIS:
device_set_desc(dev, "XaQti Corp. XMAC II");
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
break;
}
return (BUS_PROBE_DEFAULT);
}
/*
* Each XMAC chip is attached as a separate logical IP interface.
* Single port cards will have only one logical interface of course.
*/
static int
sk_attach(dev)
device_t dev;
{
struct sk_softc *sc;
struct sk_if_softc *sc_if;
struct ifnet *ifp;
u_int32_t r;
int error, i, phy, port;
u_char eaddr[6];
u_char inv_mac[] = {0, 0, 0, 0, 0, 0};
if (dev == NULL)
return(EINVAL);
error = 0;
sc_if = device_get_softc(dev);
sc = device_get_softc(device_get_parent(dev));
port = *(int *)device_get_ivars(dev);
sc_if->sk_if_dev = dev;
sc_if->sk_port = port;
sc_if->sk_softc = sc;
sc->sk_if[port] = sc_if;
if (port == SK_PORT_A)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
if (port == SK_PORT_B)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
if (sk_dma_alloc(sc_if) != 0) {
error = ENOMEM;
goto fail;
}
sk_dma_jumbo_alloc(sc_if);
ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc_if;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
/*
* SK_GENESIS has a bug in checksum offload - From linux.
*/
if (sc_if->sk_softc->sk_type != SK_GENESIS) {
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
ifp->if_hwassist = 0;
} else {
ifp->if_capabilities = 0;
ifp->if_hwassist = 0;
}
ifp->if_capenable = ifp->if_capabilities;
/*
* Some revision of Yukon controller generates corrupted
* frame when TX checksum offloading is enabled. The
* frame has a valid checksum value so payload might be
* modified during TX checksum calculation. Disable TX
* checksum offloading but give users chance to enable it
* when they know their controller works without problems
* with TX checksum offloading.
*/
ifp->if_capenable &= ~IFCAP_TXCSUM;
ifp->if_ioctl = sk_ioctl;
ifp->if_start = sk_start;
ifp->if_init = sk_init;
IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/*
* Get station address for this interface. Note that
* dual port cards actually come with three station
* addresses: one for each port, plus an extra. The
* extra one is used by the SysKonnect driver software
* as a 'virtual' station address for when both ports
* are operating in failover mode. Currently we don't
* use this extra address.
*/
SK_IF_LOCK(sc_if);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] =
sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
/* Verify whether the station address is invalid or not. */
if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
device_printf(sc_if->sk_if_dev,
"Generating random ethernet address\n");
r = arc4random();
/*
* Set OUI to convenient locally assigned address. 'b'
* is 0x62, which has the locally assigned bit set, and
* the broadcast/multicast bit clear.
*/
eaddr[0] = 'b';
eaddr[1] = 's';
eaddr[2] = 'd';
eaddr[3] = (r >> 16) & 0xff;
eaddr[4] = (r >> 8) & 0xff;
eaddr[5] = (r >> 0) & 0xff;
}
/*
* Set up RAM buffer addresses. The NIC will have a certain
* amount of SRAM on it, somewhere between 512K and 2MB. We
* need to divide this up a) between the transmitter and
* receiver and b) between the two XMACs, if this is a
* dual port NIC. Our algotithm is to divide up the memory
* evenly so that everyone gets a fair share.
*
* Just to be contrary, Yukon2 appears to have separate memory
* for each MAC.
*/
if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 2;
val = sc->sk_rboff / sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
} else {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 4;
val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
}
/* Read and save PHY type and set PHY address */
sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
if (!SK_YUKON_FAMILY(sc->sk_type)) {
switch(sc_if->sk_phytype) {
case SK_PHYTYPE_XMAC:
sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
break;
case SK_PHYTYPE_BCOM:
sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
break;
default:
device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
sc_if->sk_phytype);
error = ENODEV;
SK_IF_UNLOCK(sc_if);
goto fail;
}
} else {
if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
sc->sk_pmd != 'S') {
/* not initialized, punt */
sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
sc->sk_coppertype = 1;
}
sc_if->sk_phyaddr = SK_PHYADDR_MARV;
if (!(sc->sk_coppertype))
sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
}
/*
* Call MI attach routine. Can't hold locks when calling into ether_*.
*/
SK_IF_UNLOCK(sc_if);
ether_ifattach(ifp, eaddr);
SK_IF_LOCK(sc_if);
/*
* The hardware should be ready for VLAN_MTU by default:
* XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
* YU_SMR_MFL_VLAN is set by this driver in Yukon.
*
*/
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU;
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
/*
* Do miibus setup.
*/
phy = MII_PHY_ANY;
switch (sc->sk_type) {
case SK_GENESIS:
sk_init_xmac(sc_if);
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
phy = 0;
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
sk_init_yukon(sc_if);
phy = 0;
break;
}
SK_IF_UNLOCK(sc_if);
error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error) {
/* Access should be ok even though lock has been dropped */
sc->sk_if[port] = NULL;
sk_detach(dev);
}
return(error);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
skc_attach(dev)
device_t dev;
{
struct sk_softc *sc;
int error = 0, *port;
uint8_t skrs;
const char *pname = NULL;
char *revstr;
sc = device_get_softc(dev);
sc->sk_dev = dev;
mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
/* Allocate resources */
#ifdef SK_USEIOSPACE
sc->sk_res_spec = sk_res_spec_io;
#else
sc->sk_res_spec = sk_res_spec_mem;
#endif
error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
if (error) {
if (sc->sk_res_spec == sk_res_spec_mem)
sc->sk_res_spec = sk_res_spec_io;
else
sc->sk_res_spec = sk_res_spec_mem;
error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
if (error) {
device_printf(dev, "couldn't allocate %s resources\n",
sc->sk_res_spec == sk_res_spec_mem ? "memory" :
"I/O");
goto fail;
}
}
sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
/* Bail out if chip is not recognized. */
if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
sc->sk_type, sc->sk_rev);
error = ENXIO;
goto fail;
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
"SK interrupt moderation");
/* Pull in device tunables. */
sc->sk_int_mod = SK_IM_DEFAULT;
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
"int_mod", &sc->sk_int_mod);
if (error == 0) {
if (sc->sk_int_mod < SK_IM_MIN ||
sc->sk_int_mod > SK_IM_MAX) {
device_printf(dev, "int_mod value out of range; "
"using default: %d\n", SK_IM_DEFAULT);
sc->sk_int_mod = SK_IM_DEFAULT;
}
}
/* Reset the adapter. */
sk_reset(sc);
skrs = sk_win_read_1(sc, SK_EPROM0);
if (sc->sk_type == SK_GENESIS) {
/* Read and save RAM size and RAMbuffer offset */
switch(skrs) {
case SK_RAMSIZE_512K_64:
sc->sk_ramsize = 0x80000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_1024K_64:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_80000;
break;
case SK_RAMSIZE_1024K_128:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_2048K_128:
sc->sk_ramsize = 0x200000;
sc->sk_rboff = SK_RBOFF_0;
break;
default:
device_printf(dev, "unknown ram size: %d\n", skrs);
error = ENXIO;
goto fail;
}
} else { /* SK_YUKON_FAMILY */
if (skrs == 0x00)
sc->sk_ramsize = 0x20000;
else
sc->sk_ramsize = skrs * (1<<12);
sc->sk_rboff = SK_RBOFF_0;
}
/* Read and save physical media type */
sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
sc->sk_coppertype = 1;
else
sc->sk_coppertype = 0;
/* Determine whether to name it with VPD PN or just make it up.
* Marvell Yukon VPD PN seems to freqently be bogus. */
switch (pci_get_device(dev)) {
case DEVICEID_SK_V1:
case DEVICEID_BELKIN_5005:
case DEVICEID_3COM_3C940:
case DEVICEID_LINKSYS_EG1032:
case DEVICEID_DLINK_DGE530T_A1:
case DEVICEID_DLINK_DGE530T_B1:
/* Stay with VPD PN. */
(void) pci_get_vpd_ident(dev, &pname);
break;
case DEVICEID_SK_V2:
/* YUKON VPD PN might bear no resemblance to reality. */
switch (sc->sk_type) {
case SK_GENESIS:
/* Stay with VPD PN. */
(void) pci_get_vpd_ident(dev, &pname);
break;
case SK_YUKON:
pname = "Marvell Yukon Gigabit Ethernet";
break;
case SK_YUKON_LITE:
pname = "Marvell Yukon Lite Gigabit Ethernet";
break;
case SK_YUKON_LP:
pname = "Marvell Yukon LP Gigabit Ethernet";
break;
default:
pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
break;
}
/* Yukon Lite Rev. A0 needs special test. */
if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
u_int32_t far;
u_int8_t testbyte;
/* Save flash address register before testing. */
far = sk_win_read_4(sc, SK_EP_ADDR);
sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
if (testbyte != 0x00) {
/* Yukon Lite Rev. A0 detected. */
sc->sk_type = SK_YUKON_LITE;
sc->sk_rev = SK_YUKON_LITE_REV_A0;
/* Restore flash address register. */
sk_win_write_4(sc, SK_EP_ADDR, far);
}
}
break;
default:
device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
"chipver=%02x, rev=%x\n",
pci_get_vendor(dev), pci_get_device(dev),
sc->sk_type, sc->sk_rev);
error = ENXIO;
goto fail;
}
if (sc->sk_type == SK_YUKON_LITE) {
switch (sc->sk_rev) {
case SK_YUKON_LITE_REV_A0:
revstr = "A0";
break;
case SK_YUKON_LITE_REV_A1:
revstr = "A1";
break;
case SK_YUKON_LITE_REV_A3:
revstr = "A3";
break;
default:
revstr = "";
break;
}
} else {
revstr = "";
}
/* Announce the product name and more VPD data if there. */
if (pname != NULL)
device_printf(dev, "%s rev. %s(0x%x)\n",
pname, revstr, sc->sk_rev);
if (bootverbose) {
device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type);
device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev);
device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
}
sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
if (sc->sk_devs[SK_PORT_A] == NULL) {
device_printf(dev, "failed to add child for PORT_A\n");
error = ENXIO;
goto fail;
}
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
if (port == NULL) {
device_printf(dev, "failed to allocate memory for "
"ivars of PORT_A\n");
error = ENXIO;
goto fail;
}
*port = SK_PORT_A;
device_set_ivars(sc->sk_devs[SK_PORT_A], port);
if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
if (sc->sk_devs[SK_PORT_B] == NULL) {
device_printf(dev, "failed to add child for PORT_B\n");
error = ENXIO;
goto fail;
}
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
if (port == NULL) {
device_printf(dev, "failed to allocate memory for "
"ivars of PORT_B\n");
error = ENXIO;
goto fail;
}
*port = SK_PORT_B;
device_set_ivars(sc->sk_devs[SK_PORT_B], port);
}
/* Turn on the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
error = bus_generic_attach(dev);
if (error) {
device_printf(dev, "failed to attach port(s)\n");
goto fail;
}
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
NULL, sk_intr, sc, &sc->sk_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
goto fail;
}
fail:
if (error)
skc_detach(dev);
return(error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
sk_detach(dev)
device_t dev;
{
struct sk_if_softc *sc_if;
struct ifnet *ifp;
sc_if = device_get_softc(dev);
KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
("sk mutex not initialized in sk_detach"));
SK_IF_LOCK(sc_if);
ifp = sc_if->sk_ifp;
/* These should only be active if attach_xmac succeeded */
if (device_is_attached(dev)) {
sk_stop(sc_if);
/* Can't hold locks while calling detach */
SK_IF_UNLOCK(sc_if);
callout_drain(&sc_if->sk_tick_ch);
callout_drain(&sc_if->sk_watchdog_ch);
ether_ifdetach(ifp);
SK_IF_LOCK(sc_if);
}
/*
* We're generally called from skc_detach() which is using
* device_delete_child() to get to here. It's already trashed
* miibus for us, so don't do it here or we'll panic.
*/
/*
if (sc_if->sk_miibus != NULL)
device_delete_child(dev, sc_if->sk_miibus);
*/
bus_generic_detach(dev);
sk_dma_jumbo_free(sc_if);
sk_dma_free(sc_if);
SK_IF_UNLOCK(sc_if);
if (ifp)
if_free(ifp);
return(0);
}
static int
skc_detach(dev)
device_t dev;
{
struct sk_softc *sc;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
if (device_is_alive(dev)) {
if (sc->sk_devs[SK_PORT_A] != NULL) {
free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
}
if (sc->sk_devs[SK_PORT_B] != NULL) {
free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
}
bus_generic_detach(dev);
}
if (sc->sk_intrhand)
bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
mtx_destroy(&sc->sk_mii_mtx);
mtx_destroy(&sc->sk_mtx);
return(0);
}
static bus_dma_tag_t
skc_get_dma_tag(device_t bus, device_t child __unused)
{
return (bus_get_dma_tag(bus));
}
struct sk_dmamap_arg {
bus_addr_t sk_busaddr;
};
static void
sk_dmamap_cb(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
int error;
{
struct sk_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->sk_busaddr = segs[0].ds_addr;
}
/*
* Allocate jumbo buffer storage. The SysKonnect adapters support
* "jumbograms" (9K frames), although SysKonnect doesn't currently
* use them in their drivers. In order for us to use them, we need
* large 9K receive buffers, however standard mbuf clusters are only
* 2048 bytes in size. Consequently, we need to allocate and manage
* our own jumbo buffer pool. Fortunately, this does not require an
* excessive amount of additional code.
*/
static int
sk_dma_alloc(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_dmamap_arg ctx;
struct sk_txdesc *txd;
struct sk_rxdesc *rxd;
int error, i;
/* create parent tag */
/*
* XXX
* This driver should use BUS_SPACE_MAXADDR for lowaddr argument
* in bus_dma_tag_create(9) as the NIC would support DAC mode.
* However bz@ reported that it does not work on amd64 with > 4GB
* RAM. Until we have more clues of the breakage, disable DAC mode
* by limiting DMA address to be in 32bit address space.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->sk_cdata.sk_parent_tag);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to create parent DMA tag\n");
goto fail;
}
/* create tag for Tx ring */
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
SK_RING_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SK_TX_RING_SZ, /* maxsize */
1, /* nsegments */
SK_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->sk_cdata.sk_tx_ring_tag);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to allocate Tx ring DMA tag\n");
goto fail;
}
/* create tag for Rx ring */
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
SK_RING_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SK_RX_RING_SZ, /* maxsize */
1, /* nsegments */
SK_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->sk_cdata.sk_rx_ring_tag);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to allocate Rx ring DMA tag\n");
goto fail;
}
/* create tag for Tx buffers */
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * SK_MAXTXSEGS, /* maxsize */
SK_MAXTXSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->sk_cdata.sk_tx_tag);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to allocate Tx DMA tag\n");
goto fail;
}
/* create tag for Rx buffers */
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->sk_cdata.sk_rx_tag);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to allocate Rx DMA tag\n");
goto fail;
}
/* allocate DMA'able memory and load the DMA map for Tx ring */
error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
(void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.sk_busaddr = 0;
error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
/* allocate DMA'able memory and load the DMA map for Rx ring */
error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
(void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.sk_busaddr = 0;
error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
/* create DMA maps for Tx buffers */
for (i = 0; i < SK_TX_RING_CNT; i++) {
txd = &sc_if->sk_cdata.sk_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* create DMA maps for Rx buffers */
if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
&sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
device_printf(sc_if->sk_if_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < SK_RX_RING_CNT; i++) {
rxd = &sc_if->sk_cdata.sk_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static int
sk_dma_jumbo_alloc(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_dmamap_arg ctx;
struct sk_rxdesc *jrxd;
int error, i;
if (jumbo_disable != 0) {
device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
sc_if->sk_jumbo_disable = 1;
return (0);
}
/* create tag for jumbo Rx ring */
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
SK_RING_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SK_JUMBO_RX_RING_SZ, /* maxsize */
1, /* nsegments */
SK_JUMBO_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to allocate jumbo Rx ring DMA tag\n");
goto jumbo_fail;
}
/* create tag for jumbo Rx buffers */
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUM9BYTES, /* maxsize */
1, /* nsegments */
MJUM9BYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->sk_cdata.sk_jumbo_rx_tag);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to allocate jumbo Rx DMA tag\n");
goto jumbo_fail;
}
/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
(void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc_if->sk_cdata.sk_jumbo_rx_ring_map);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to allocate DMA'able memory for jumbo Rx ring\n");
goto jumbo_fail;
}
ctx.sk_busaddr = 0;
error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
sc_if->sk_cdata.sk_jumbo_rx_ring_map,
sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
&ctx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to load DMA'able memory for jumbo Rx ring\n");
goto jumbo_fail;
}
sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
/* create DMA maps for jumbo Rx buffers */
if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
&sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
device_printf(sc_if->sk_if_dev,
"failed to create spare jumbo Rx dmamap\n");
goto jumbo_fail;
}
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
jrxd->rx_m = NULL;
jrxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
&jrxd->rx_dmamap);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"failed to create jumbo Rx dmamap\n");
goto jumbo_fail;
}
}
return (0);
jumbo_fail:
sk_dma_jumbo_free(sc_if);
device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
"resource shortage\n");
sc_if->sk_jumbo_disable = 1;
return (0);
}
static void
sk_dma_free(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_txdesc *txd;
struct sk_rxdesc *rxd;
int i;
/* Tx ring */
if (sc_if->sk_cdata.sk_tx_ring_tag) {
if (sc_if->sk_rdata.sk_tx_ring_paddr)
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
sc_if->sk_cdata.sk_tx_ring_map);
if (sc_if->sk_rdata.sk_tx_ring)
bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
sc_if->sk_rdata.sk_tx_ring,
sc_if->sk_cdata.sk_tx_ring_map);
sc_if->sk_rdata.sk_tx_ring = NULL;
sc_if->sk_rdata.sk_tx_ring_paddr = 0;
bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
sc_if->sk_cdata.sk_tx_ring_tag = NULL;
}
/* Rx ring */
if (sc_if->sk_cdata.sk_rx_ring_tag) {
if (sc_if->sk_rdata.sk_rx_ring_paddr)
bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
sc_if->sk_cdata.sk_rx_ring_map);
if (sc_if->sk_rdata.sk_rx_ring)
bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
sc_if->sk_rdata.sk_rx_ring,
sc_if->sk_cdata.sk_rx_ring_map);
sc_if->sk_rdata.sk_rx_ring = NULL;
sc_if->sk_rdata.sk_rx_ring_paddr = 0;
bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
sc_if->sk_cdata.sk_rx_ring_tag = NULL;
}
/* Tx buffers */
if (sc_if->sk_cdata.sk_tx_tag) {
for (i = 0; i < SK_TX_RING_CNT; i++) {
txd = &sc_if->sk_cdata.sk_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
sc_if->sk_cdata.sk_tx_tag = NULL;
}
/* Rx buffers */
if (sc_if->sk_cdata.sk_rx_tag) {
for (i = 0; i < SK_RX_RING_CNT; i++) {
rxd = &sc_if->sk_cdata.sk_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc_if->sk_cdata.sk_rx_sparemap) {
bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
sc_if->sk_cdata.sk_rx_sparemap);
sc_if->sk_cdata.sk_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
sc_if->sk_cdata.sk_rx_tag = NULL;
}
if (sc_if->sk_cdata.sk_parent_tag) {
bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
sc_if->sk_cdata.sk_parent_tag = NULL;
}
}
static void
sk_dma_jumbo_free(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_rxdesc *jrxd;
int i;
/* jumbo Rx ring */
if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
sc_if->sk_cdata.sk_jumbo_rx_ring_map);
if (sc_if->sk_rdata.sk_jumbo_rx_ring)
bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
sc_if->sk_rdata.sk_jumbo_rx_ring,
sc_if->sk_cdata.sk_jumbo_rx_ring_map);
sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
}
/* jumbo Rx buffers */
if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
if (jrxd->rx_dmamap) {
bus_dmamap_destroy(
sc_if->sk_cdata.sk_jumbo_rx_tag,
jrxd->rx_dmamap);
jrxd->rx_dmamap = NULL;
}
}
if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
sc_if->sk_cdata.sk_jumbo_rx_sparemap);
sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
}
}
static void
sk_txcksum(ifp, m, f)
struct ifnet *ifp;
struct mbuf *m;
struct sk_tx_desc *f;
{
struct ip *ip;
u_int16_t offset;
u_int8_t *p;
offset = sizeof(struct ip) + ETHER_HDR_LEN;
for(; m && m->m_len == 0; m = m->m_next)
;
if (m == NULL || m->m_len < ETHER_HDR_LEN) {
if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
/* checksum may be corrupted */
goto sendit;
}
if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
if (m->m_len != ETHER_HDR_LEN) {
if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
__func__);
/* checksum may be corrupted */
goto sendit;
}
for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
;
if (m == NULL) {
offset = sizeof(struct ip) + ETHER_HDR_LEN;
/* checksum may be corrupted */
goto sendit;
}
ip = mtod(m, struct ip *);
} else {
p = mtod(m, u_int8_t *);
p += ETHER_HDR_LEN;
ip = (struct ip *)p;
}
offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
sendit:
f->sk_csum_startval = 0;
f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
(offset << 16));
}
static int
sk_encap(sc_if, m_head)
struct sk_if_softc *sc_if;
struct mbuf **m_head;
{
struct sk_txdesc *txd;
struct sk_tx_desc *f = NULL;
struct mbuf *m;
bus_dma_segment_t txsegs[SK_MAXTXSEGS];
u_int32_t cflags, frag, si, sk_ctl;
int error, i, nseg;
SK_IF_LOCK_ASSERT(sc_if);
if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
return (ENOBUFS);
error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
if (error == EFBIG) {
m = m_defrag(*m_head, M_NOWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nseg == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
m = *m_head;
if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
cflags = SK_OPCODE_CSUM;
else
cflags = SK_OPCODE_DEFAULT;
si = frag = sc_if->sk_cdata.sk_tx_prod;
for (i = 0; i < nseg; i++) {
f = &sc_if->sk_rdata.sk_tx_ring[frag];
f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
sk_ctl = txsegs[i].ds_len | cflags;
if (i == 0) {
if (cflags == SK_OPCODE_CSUM)
sk_txcksum(sc_if->sk_ifp, m, f);
sk_ctl |= SK_TXCTL_FIRSTFRAG;
} else
sk_ctl |= SK_TXCTL_OWN;
f->sk_ctl = htole32(sk_ctl);
sc_if->sk_cdata.sk_tx_cnt++;
SK_INC(frag, SK_TX_RING_CNT);
}
sc_if->sk_cdata.sk_tx_prod = frag;
/* set EOF on the last desciptor */
frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
f = &sc_if->sk_rdata.sk_tx_ring[frag];
f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
/* turn the first descriptor ownership to NIC */
f = &sc_if->sk_rdata.sk_tx_ring[si];
f->sk_ctl |= htole32(SK_TXCTL_OWN);
STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
txd->tx_m = m;
/* sync descriptors */
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
sc_if->sk_cdata.sk_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
sk_start(ifp)
struct ifnet *ifp;
{
struct sk_if_softc *sc_if;
sc_if = ifp->if_softc;
SK_IF_LOCK(sc_if);
sk_start_locked(ifp);
SK_IF_UNLOCK(sc_if);
return;
}
static void
sk_start_locked(ifp)
struct ifnet *ifp;
{
struct sk_softc *sc;
struct sk_if_softc *sc_if;
struct mbuf *m_head;
int enq;
sc_if = ifp->if_softc;
sc = sc_if->sk_softc;
SK_IF_LOCK_ASSERT(sc_if);
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (sk_encap(sc_if, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Transmit */
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
/* Set a timeout in case the chip goes out to lunch. */
sc_if->sk_watchdog_timer = 5;
}
}
static void
sk_watchdog(arg)
void *arg;
{
struct sk_if_softc *sc_if;
struct ifnet *ifp;
ifp = arg;
sc_if = ifp->if_softc;
SK_IF_LOCK_ASSERT(sc_if);
if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
goto done;
/*
* Reclaim first as there is a possibility of losing Tx completion
* interrupts.
*/
sk_txeof(sc_if);
if (sc_if->sk_cdata.sk_tx_cnt != 0) {
if_printf(sc_if->sk_ifp, "watchdog timeout\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sk_init_locked(sc_if);
}
done:
callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
return;
}
static int
skc_shutdown(dev)
device_t dev;
{
struct sk_softc *sc;
sc = device_get_softc(dev);
SK_LOCK(sc);
/* Turn off the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
/*
* Reset the GEnesis controller. Doing this should also
* assert the resets on the attached XMAC(s).
*/
sk_reset(sc);
SK_UNLOCK(sc);
return (0);
}
static int
skc_suspend(dev)
device_t dev;
{
struct sk_softc *sc;
struct sk_if_softc *sc_if0, *sc_if1;
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
sc = device_get_softc(dev);
SK_LOCK(sc);
sc_if0 = sc->sk_if[SK_PORT_A];
sc_if1 = sc->sk_if[SK_PORT_B];
if (sc_if0 != NULL)
ifp0 = sc_if0->sk_ifp;
if (sc_if1 != NULL)
ifp1 = sc_if1->sk_ifp;
if (ifp0 != NULL)
sk_stop(sc_if0);
if (ifp1 != NULL)
sk_stop(sc_if1);
sc->sk_suspended = 1;
SK_UNLOCK(sc);
return (0);
}
static int
skc_resume(dev)
device_t dev;
{
struct sk_softc *sc;
struct sk_if_softc *sc_if0, *sc_if1;
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
sc = device_get_softc(dev);
SK_LOCK(sc);
sc_if0 = sc->sk_if[SK_PORT_A];
sc_if1 = sc->sk_if[SK_PORT_B];
if (sc_if0 != NULL)
ifp0 = sc_if0->sk_ifp;
if (sc_if1 != NULL)
ifp1 = sc_if1->sk_ifp;
if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
sk_init_locked(sc_if0);
if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
sk_init_locked(sc_if1);
sc->sk_suspended = 0;
SK_UNLOCK(sc);
return (0);
}
/*
* According to the data sheet from SK-NET GENESIS the hardware can compute
* two Rx checksums at the same time(Each checksum start position is
* programmed in Rx descriptors). However it seems that TCP/UDP checksum
* does not work at least on my Yukon hardware. I tried every possible ways
* to get correct checksum value but couldn't get correct one. So TCP/UDP
* checksum offload was disabled at the moment and only IP checksum offload
* was enabled.
* As nomral IP header size is 20 bytes I can't expect it would give an
* increase in throughput. However it seems it doesn't hurt performance in
* my testing. If there is a more detailed information for checksum secret
* of the hardware in question please contact yongari@FreeBSD.org to add
* TCP/UDP checksum offload support.
*/
static __inline void
sk_rxcksum(ifp, m, csum)
struct ifnet *ifp;
struct mbuf *m;
u_int32_t csum;
{
struct ether_header *eh;
struct ip *ip;
int32_t hlen, len, pktlen;
u_int16_t csum1, csum2, ipcsum;
pktlen = m->m_pkthdr.len;
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
return;
eh = mtod(m, struct ether_header *);
if (eh->ether_type != htons(ETHERTYPE_IP))
return;
ip = (struct ip *)(eh + 1);
if (ip->ip_v != IPVERSION)
return;
hlen = ip->ip_hl << 2;
pktlen -= sizeof(struct ether_header);
if (hlen < sizeof(struct ip))
return;
if (ntohs(ip->ip_len) < hlen)
return;
if (ntohs(ip->ip_len) != pktlen)
return;
csum1 = htons(csum & 0xffff);
csum2 = htons((csum >> 16) & 0xffff);
ipcsum = in_addword(csum1, ~csum2 & 0xffff);
/* checksum fixup for IP options */
len = hlen - sizeof(struct ip);
if (len > 0) {
/*
* If the second checksum value is correct we can compute IP
* checksum with simple math. Unfortunately the second checksum
* value is wrong so we can't verify the checksum from the
* value(It seems there is some magic here to get correct
* value). If the second checksum value is correct it also
* means we can get TCP/UDP checksum) here. However, it still
* needs pseudo header checksum calculation due to hardware
* limitations.
*/
return;
}
m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
if (ipcsum == 0xffff)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
static __inline int
sk_rxvalid(sc, stat, len)
struct sk_softc *sc;
u_int32_t stat, len;
{
if (sc->sk_type == SK_GENESIS) {
if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
XM_RXSTAT_BYTES(stat) != len)
return (0);
} else {
if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
YU_RXSTAT_JABBER)) != 0 ||
(stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
YU_RXSTAT_BYTES(stat) != len)
return (0);
}
return (1);
}
static void
sk_rxeof(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
struct mbuf *m;
struct ifnet *ifp;
struct sk_rx_desc *cur_rx;
struct sk_rxdesc *rxd;
int cons, prog;
u_int32_t csum, rxstat, sk_ctl;
sc = sc_if->sk_softc;
ifp = sc_if->sk_ifp;
SK_IF_LOCK_ASSERT(sc_if);
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
prog = 0;
for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
prog++, SK_INC(cons, SK_RX_RING_CNT)) {
cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
sk_ctl = le32toh(cur_rx->sk_ctl);
if ((sk_ctl & SK_RXCTL_OWN) != 0)
break;
rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
rxstat = le32toh(cur_rx->sk_xmac_rxstat);
if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
sk_discard_rxbuf(sc_if, cons);
continue;
}
m = rxd->rx_m;
csum = le32toh(cur_rx->sk_csum);
if (sk_newbuf(sc_if, cons) != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
/* reuse old buffer */
sk_discard_rxbuf(sc_if, cons);
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
sk_rxcksum(ifp, m, csum);
SK_IF_UNLOCK(sc_if);
(*ifp->if_input)(ifp, m);
SK_IF_LOCK(sc_if);
}
if (prog > 0) {
sc_if->sk_cdata.sk_rx_cons = cons;
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
sc_if->sk_cdata.sk_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static void
sk_jumbo_rxeof(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
struct mbuf *m;
struct ifnet *ifp;
struct sk_rx_desc *cur_rx;
struct sk_rxdesc *jrxd;
int cons, prog;
u_int32_t csum, rxstat, sk_ctl;
sc = sc_if->sk_softc;
ifp = sc_if->sk_ifp;
SK_IF_LOCK_ASSERT(sc_if);
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
prog = 0;
for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
prog < SK_JUMBO_RX_RING_CNT;
prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
sk_ctl = le32toh(cur_rx->sk_ctl);
if ((sk_ctl & SK_RXCTL_OWN) != 0)
break;
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
rxstat = le32toh(cur_rx->sk_xmac_rxstat);
if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
sk_discard_jumbo_rxbuf(sc_if, cons);
continue;
}
m = jrxd->rx_m;
csum = le32toh(cur_rx->sk_csum);
if (sk_jumbo_newbuf(sc_if, cons) != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
/* reuse old buffer */
sk_discard_jumbo_rxbuf(sc_if, cons);
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
sk_rxcksum(ifp, m, csum);
SK_IF_UNLOCK(sc_if);
(*ifp->if_input)(ifp, m);
SK_IF_LOCK(sc_if);
}
if (prog > 0) {
sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
sc_if->sk_cdata.sk_jumbo_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static void
sk_txeof(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_txdesc *txd;
struct sk_tx_desc *cur_tx;
struct ifnet *ifp;
u_int32_t idx, sk_ctl;
ifp = sc_if->sk_ifp;
txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
if (txd == NULL)
return;
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
if (sc_if->sk_cdata.sk_tx_cnt <= 0)
break;
cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
sk_ctl = le32toh(cur_tx->sk_ctl);
if (sk_ctl & SK_TXCTL_OWN)
break;
sc_if->sk_cdata.sk_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
continue;
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
m_freem(txd->tx_m);
txd->tx_m = NULL;
STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
}
sc_if->sk_cdata.sk_tx_cons = idx;
sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
sc_if->sk_cdata.sk_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
sk_tick(xsc_if)
void *xsc_if;
{
struct sk_if_softc *sc_if;
struct mii_data *mii;
struct ifnet *ifp;
int i;
sc_if = xsc_if;
ifp = sc_if->sk_ifp;
mii = device_get_softc(sc_if->sk_miibus);
if (!(ifp->if_flags & IFF_UP))
return;
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
sk_intr_bcom(sc_if);
return;
}
/*
* According to SysKonnect, the correct way to verify that
* the link has come back up is to poll bit 0 of the GPIO
* register three times. This pin has the signal from the
* link_sync pin connected to it; if we read the same link
* state 3 times in a row, we know the link is up.
*/
for (i = 0; i < 3; i++) {
if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
break;
}
if (i != 3) {
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
return;
}
/* Turn the GP0 interrupt back on. */
SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
SK_XM_READ_2(sc_if, XM_ISR);
mii_tick(mii);
callout_stop(&sc_if->sk_tick_ch);
}
static void
sk_yukon_tick(xsc_if)
void *xsc_if;
{
struct sk_if_softc *sc_if;
struct mii_data *mii;
sc_if = xsc_if;
mii = device_get_softc(sc_if->sk_miibus);
mii_tick(mii);
callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
}
static void
sk_intr_bcom(sc_if)
struct sk_if_softc *sc_if;
{
struct mii_data *mii;
struct ifnet *ifp;
int status;
mii = device_get_softc(sc_if->sk_miibus);
ifp = sc_if->sk_ifp;
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
/*
* Read the PHY interrupt register to make sure
* we clear any pending interrupts.
*/
status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
sk_init_xmac(sc_if);
return;
}
if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
int lstat;
lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
BRGPHY_MII_AUXSTS);
if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
mii_mediachg(mii);
/* Turn off the link LED. */
SK_IF_WRITE_1(sc_if, 0,
SK_LINKLED1_CTL, SK_LINKLED_OFF);
sc_if->sk_link = 0;
} else if (status & BRGPHY_ISR_LNK_CHG) {
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
BRGPHY_MII_IMR, 0xFF00);
mii_tick(mii);
sc_if->sk_link = 1;
/* Turn on the link LED. */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
SK_LINKLED_BLINK_OFF);
} else {
mii_tick(mii);
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
}
}
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
return;
}
static void
sk_intr_xmac(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
u_int16_t status;
sc = sc_if->sk_softc;
status = SK_XM_READ_2(sc_if, XM_ISR);
/*
* Link has gone down. Start MII tick timeout to
* watch for link resync.
*/
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
if (status & XM_ISR_GP0_SET) {
SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
}
if (status & XM_ISR_AUTONEG_DONE) {
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
}
}
if (status & XM_IMR_TX_UNDERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
if (status & XM_IMR_RX_OVERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
status = SK_XM_READ_2(sc_if, XM_ISR);
return;
}
static void
sk_intr_yukon(sc_if)
struct sk_if_softc *sc_if;
{
u_int8_t status;
status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
/* RX overrun */
if ((status & SK_GMAC_INT_RX_OVER) != 0) {
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
SK_RFCTL_RX_FIFO_OVER);
}
/* TX underrun */
if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
SK_TFCTL_TX_FIFO_UNDER);
}
}
static void
sk_intr(xsc)
void *xsc;
{
struct sk_softc *sc = xsc;
struct sk_if_softc *sc_if0, *sc_if1;
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
u_int32_t status;
SK_LOCK(sc);
status = CSR_READ_4(sc, SK_ISSR);
if (status == 0 || status == 0xffffffff || sc->sk_suspended)
goto done_locked;
sc_if0 = sc->sk_if[SK_PORT_A];
sc_if1 = sc->sk_if[SK_PORT_B];
if (sc_if0 != NULL)
ifp0 = sc_if0->sk_ifp;
if (sc_if1 != NULL)
ifp1 = sc_if1->sk_ifp;
for (; (status &= sc->sk_intrmask) != 0;) {
/* Handle receive interrupts first. */
if (status & SK_ISR_RX1_EOF) {
if (ifp0->if_mtu > SK_MAX_FRAMELEN)
sk_jumbo_rxeof(sc_if0);
else
sk_rxeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
if (status & SK_ISR_RX2_EOF) {
if (ifp1->if_mtu > SK_MAX_FRAMELEN)
sk_jumbo_rxeof(sc_if1);
else
sk_rxeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
/* Then transmit interrupts. */
if (status & SK_ISR_TX1_S_EOF) {
sk_txeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
}
if (status & SK_ISR_TX2_S_EOF) {
sk_txeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
}
/* Then MAC interrupts. */
if (status & SK_ISR_MAC1 &&
ifp0->if_drv_flags & IFF_DRV_RUNNING) {
if (sc->sk_type == SK_GENESIS)
sk_intr_xmac(sc_if0);
else
sk_intr_yukon(sc_if0);
}
if (status & SK_ISR_MAC2 &&
ifp1->if_drv_flags & IFF_DRV_RUNNING) {
if (sc->sk_type == SK_GENESIS)
sk_intr_xmac(sc_if1);
else
sk_intr_yukon(sc_if1);
}
if (status & SK_ISR_EXTERNAL_REG) {
if (ifp0 != NULL &&
sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
sk_intr_bcom(sc_if0);
if (ifp1 != NULL &&
sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
sk_intr_bcom(sc_if1);
}
status = CSR_READ_4(sc, SK_ISSR);
}
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
sk_start_locked(ifp0);
if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
sk_start_locked(ifp1);
done_locked:
SK_UNLOCK(sc);
}
static void
sk_init_xmac(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
struct ifnet *ifp;
u_int16_t eaddr[(ETHER_ADDR_LEN+1)/2];
static const struct sk_bcom_hack bhack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
{ 0, 0 } };
SK_IF_LOCK_ASSERT(sc_if);
sc = sc_if->sk_softc;
ifp = sc_if->sk_ifp;
/* Unreset the XMAC. */
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
DELAY(1000);
/* Reset the XMAC's internal state. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
/* Save the XMAC II revision */
sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
/*
* Perform additional initialization for external PHYs,
* namely for the 1000baseTX cards that use the XMAC's
* GMII mode.
*/
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
int i = 0;
u_int32_t val;
/* Take PHY out of reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A)
val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
else
val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
sk_win_write_4(sc, SK_GPIO, val);
/* Enable GMII mode on the XMAC. */
SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
DELAY(10000);
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
BRGPHY_MII_IMR, 0xFFF0);
/*
* Early versions of the BCM5400 apparently have
* a bug that requires them to have their reserved
* registers initialized to some magic values. I don't
* know what the numbers do, I'm just the messenger.
*/
if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
== 0x6041) {
while(bhack[i].reg) {
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
bhack[i].reg, bhack[i].val);
i++;
}
}
}
/* Set station address */
bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
if (ifp->if_flags & IFF_BROADCAST) {
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
} else {
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
}
/* We don't need the FCS appended to the packet. */
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
/* We want short frames padded to 60 bytes. */
SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
/*
* Enable the reception of all error frames. This is is
* a necessary evil due to the design of the XMAC. The
* XMAC's receive FIFO is only 8K in size, however jumbo
* frames can be up to 9000 bytes in length. When bad
* frame filtering is enabled, the XMAC's RX FIFO operates
* in 'store and forward' mode. For this to work, the
* entire frame has to fit into the FIFO, but that means
* that jumbo frames larger than 8192 bytes will be
* truncated. Disabling all bad frame filtering causes
* the RX FIFO to operate in streaming mode, in which
* case the XMAC will start transferring frames out of the
* RX FIFO as soon as the FIFO threshold is reached.
*/
if (ifp->if_mtu > SK_MAX_FRAMELEN) {
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
XM_MODE_RX_INRANGELEN);
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
} else
SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
/*
* Bump up the transmit threshold. This helps hold off transmit
* underruns when we're blasting traffic from both ports at once.
*/
SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
/* Set Rx filter */
sk_rxfilter_genesis(sc_if);
/* Clear and enable interrupts */
SK_XM_READ_2(sc_if, XM_ISR);
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
else
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Configure MAC arbiter */
switch(sc_if->sk_xmac_rev) {
case XM_XMAC_REV_B2:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
case XM_XMAC_REV_C1:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
default:
break;
}
sk_win_write_2(sc, SK_MACARB_CTL,
SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
sc_if->sk_link = 1;
return;
}
static void
sk_init_yukon(sc_if)
struct sk_if_softc *sc_if;
{
u_int32_t phy, v;
u_int16_t reg;
struct sk_softc *sc;
struct ifnet *ifp;
u_int8_t *eaddr;
int i;
SK_IF_LOCK_ASSERT(sc_if);
sc = sc_if->sk_softc;
ifp = sc_if->sk_ifp;
if (sc->sk_type == SK_YUKON_LITE &&
sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
/*
* Workaround code for COMA mode, set PHY reset.
* Otherwise it will not correctly take chip out of
* powerdown (coma)
*/
v = sk_win_read_4(sc, SK_GPIO);
v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
sk_win_write_4(sc, SK_GPIO, v);
}
/* GMAC and GPHY Reset */
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
DELAY(1000);
if (sc->sk_type == SK_YUKON_LITE &&
sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
/*
* Workaround code for COMA mode, clear PHY reset
*/
v = sk_win_read_4(sc, SK_GPIO);
v |= SK_GPIO_DIR9;
v &= ~SK_GPIO_DAT9;
sk_win_write_4(sc, SK_GPIO, v);
}
phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
if (sc->sk_coppertype)
phy |= SK_GPHY_COPPER;
else
phy |= SK_GPHY_FIBER;
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
DELAY(1000);
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
/* unused read of the interrupt source register */
SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
reg = SK_YU_READ_2(sc_if, YUKON_PAR);
/* MIB Counter Clear Mode set */
reg |= YU_PAR_MIB_CLR;
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
/* MIB Counter Clear Mode clear */
reg &= ~YU_PAR_MIB_CLR;
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
/* receive control reg */
SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
/* transmit parameter register */
SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
/* serial mode register */
reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
if (ifp->if_mtu > SK_MAX_FRAMELEN)
reg |= YU_SMR_MFL_JUMBO;
SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
/* Setup Yukon's station address */
eaddr = IF_LLADDR(sc_if->sk_ifp);
for (i = 0; i < 3; i++)
SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
/* Set GMAC source address of flow control. */
for (i = 0; i < 3; i++)
SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
/* Set GMAC virtual address. */
for (i = 0; i < 3; i++)
SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
/* Set Rx filter */
sk_rxfilter_yukon(sc_if);
/* enable interrupt mask for counter overflows */
SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
/* Configure RX MAC FIFO Flush Mask */
v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
YU_RXSTAT_JABBER;
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
v = SK_TFCTL_OPERATION_ON;
else
v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
/* Configure RX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
/* Increase flush threshould to 64 bytes */
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
SK_RFCTL_FIFO_THRESHOLD + 1);
/* Configure TX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
}
/*
* Note that to properly initialize any part of the GEnesis chip,
* you first have to take it out of reset mode.
*/
static void
sk_init(xsc)
void *xsc;
{
struct sk_if_softc *sc_if = xsc;
SK_IF_LOCK(sc_if);
sk_init_locked(sc_if);
SK_IF_UNLOCK(sc_if);
return;
}
static void
sk_init_locked(sc_if)
struct sk_if_softc *sc_if;
{
struct sk_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
u_int16_t reg;
u_int32_t imr;
int error;
SK_IF_LOCK_ASSERT(sc_if);
ifp = sc_if->sk_ifp;
sc = sc_if->sk_softc;
mii = device_get_softc(sc_if->sk_miibus);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
/* Cancel pending I/O and free all RX/TX buffers. */
sk_stop(sc_if);
if (sc->sk_type == SK_GENESIS) {
/* Configure LINK_SYNC LED */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
SK_LINKLED_LINKSYNC_ON);
/* Configure RX LED */
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
SK_RXLEDCTL_COUNTER_START);
/* Configure TX LED */
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
SK_TXLEDCTL_COUNTER_START);
}
/*
* Configure descriptor poll timer
*
* SK-NET GENESIS data sheet says that possibility of losing Start
* transmit command due to CPU/cache related interim storage problems
* under certain conditions. The document recommends a polling
* mechanism to send a Start transmit command to initiate transfer
* of ready descriptors regulary. To cope with this issue sk(4) now
* enables descriptor poll timer to initiate descriptor processing
* periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
* issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
* command instead of waiting for next descriptor polling time.
* The same rule may apply to Rx side too but it seems that is not
* needed at the moment.
* Since sk(4) uses descriptor polling as a last resort there is no
* need to set smaller polling time than maximum allowable one.
*/
SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
/* Configure I2C registers */
/* Configure XMAC(s) */
switch (sc->sk_type) {
case SK_GENESIS:
sk_init_xmac(sc_if);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
sk_init_yukon(sc_if);
break;
}
mii_mediachg(mii);
if (sc->sk_type == SK_GENESIS) {
/* Configure MAC FIFOs */
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
}
/* Configure transmit arbiter(s) */
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
/* Configure RAMbuffers */
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
/* Configure BMUs */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
if (ifp->if_mtu > SK_MAX_FRAMELEN) {
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
} else {
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
}
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
/* Init descriptors */
if (ifp->if_mtu > SK_MAX_FRAMELEN)
error = sk_init_jumbo_rx_ring(sc_if);
else
error = sk_init_rx_ring(sc_if);
if (error != 0) {
device_printf(sc_if->sk_if_dev,
"initialization failed: no memory for rx buffers\n");
sk_stop(sc_if);
return;
}
sk_init_tx_ring(sc_if);
/* Set interrupt moderation if changed via sysctl. */
imr = sk_win_read_4(sc, SK_IMTIMERINIT);
if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
sc->sk_int_ticks));
if (bootverbose)
device_printf(sc_if->sk_if_dev,
"interrupt moderation is %d us.\n",
sc->sk_int_mod);
}
/* Configure interrupt handling */
CSR_READ_4(sc, SK_ISSR);
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask |= SK_INTRS1;
else
sc->sk_intrmask |= SK_INTRS2;
sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
/* Start BMUs. */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
switch(sc->sk_type) {
case SK_GENESIS:
/* Enable XMACs TX and RX state machines */
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
#if 0
/* XXX disable 100Mbps and full duplex mode? */
reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
#endif
SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
}
/* Activate descriptor polling timer */
SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
/* start transfer of Tx descriptors */
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
switch (sc->sk_type) {
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
break;
}
callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
return;
}
static void
sk_stop(sc_if)
struct sk_if_softc *sc_if;
{
int i;
struct sk_softc *sc;
struct sk_txdesc *txd;
struct sk_rxdesc *rxd;
struct sk_rxdesc *jrxd;
struct ifnet *ifp;
u_int32_t val;
SK_IF_LOCK_ASSERT(sc_if);
sc = sc_if->sk_softc;
ifp = sc_if->sk_ifp;
callout_stop(&sc_if->sk_tick_ch);
callout_stop(&sc_if->sk_watchdog_ch);
/* stop Tx descriptor polling timer */
SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
/* stop transfer of Tx descriptors */
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
for (i = 0; i < SK_TIMEOUT; i++) {
val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
if ((val & SK_TXBMU_TX_STOP) == 0)
break;
DELAY(1);
}
if (i == SK_TIMEOUT)
device_printf(sc_if->sk_if_dev,
"can not stop transfer of Tx descriptor\n");
/* stop transfer of Rx descriptors */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
for (i = 0; i < SK_TIMEOUT; i++) {
val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
if ((val & SK_RXBMU_RX_STOP) == 0)
break;
DELAY(1);
}
if (i == SK_TIMEOUT)
device_printf(sc_if->sk_if_dev,
"can not stop transfer of Rx descriptor\n");
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
/* Put PHY back into reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A) {
val |= SK_GPIO_DIR0;
val &= ~SK_GPIO_DAT0;
} else {
val |= SK_GPIO_DIR2;
val &= ~SK_GPIO_DAT2;
}
sk_win_write_4(sc, SK_GPIO, val);
}
/* Turn off various components of this interface. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
switch (sc->sk_type) {
case SK_GENESIS:
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
break;
}
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
/* Disable interrupts */
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask &= ~SK_INTRS1;
else
sc->sk_intrmask &= ~SK_INTRS2;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
SK_XM_READ_2(sc_if, XM_ISR);
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Free RX and TX mbufs still in the queues. */
for (i = 0; i < SK_RX_RING_CNT; i++) {
rxd = &sc_if->sk_cdata.sk_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
if (jrxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
jrxd->rx_dmamap);
m_freem(jrxd->rx_m);
jrxd->rx_m = NULL;
}
}
for (i = 0; i < SK_TX_RING_CNT; i++) {
txd = &sc_if->sk_cdata.sk_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
return;
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (!arg1)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
}