4446570abf
The process allocator now caches and hands out complete process structures *including substructures* . i.e. it get's the process structure with the first thread (and soon KSE) already allocated and attached, all in one hit. For the average non threaded program (non KSE that is) the allocated thread and its stack remain attached to the process, even when the process is unused and in the process cache. This saves having to allocate and attach it later, effectively bringing us (hopefully) close to the efficiency of pre-KSE systems where these were a single structure. Reviewed by: davidxu@freebsd.org, peter@freebsd.org
845 lines
21 KiB
C
845 lines
21 KiB
C
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/shm.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/unistd.h>
|
|
|
|
#include <machine/limits.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pager.h>
|
|
|
|
#include <sys/user.h>
|
|
|
|
extern int maxslp;
|
|
|
|
/*
|
|
* System initialization
|
|
*
|
|
* Note: proc0 from proc.h
|
|
*/
|
|
static void vm_init_limits(void *);
|
|
SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
|
|
|
|
/*
|
|
* THIS MUST BE THE LAST INITIALIZATION ITEM!!!
|
|
*
|
|
* Note: run scheduling should be divorced from the vm system.
|
|
*/
|
|
static void scheduler(void *);
|
|
SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
|
|
|
|
#ifndef NO_SWAPPING
|
|
static void swapout(struct proc *);
|
|
static void vm_proc_swapin(struct proc *p);
|
|
static void vm_proc_swapout(struct proc *p);
|
|
#endif
|
|
|
|
/*
|
|
* MPSAFE
|
|
*/
|
|
int
|
|
kernacc(addr, len, rw)
|
|
caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
boolean_t rv;
|
|
vm_offset_t saddr, eaddr;
|
|
vm_prot_t prot;
|
|
|
|
KASSERT((rw & ~VM_PROT_ALL) == 0,
|
|
("illegal ``rw'' argument to kernacc (%x)\n", rw));
|
|
prot = rw;
|
|
saddr = trunc_page((vm_offset_t)addr);
|
|
eaddr = round_page((vm_offset_t)addr + len);
|
|
rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
|
|
return (rv == TRUE);
|
|
}
|
|
|
|
/*
|
|
* MPSAFE
|
|
*/
|
|
int
|
|
useracc(addr, len, rw)
|
|
caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
boolean_t rv;
|
|
vm_prot_t prot;
|
|
|
|
KASSERT((rw & ~VM_PROT_ALL) == 0,
|
|
("illegal ``rw'' argument to useracc (%x)\n", rw));
|
|
prot = rw;
|
|
/*
|
|
* XXX - check separately to disallow access to user area and user
|
|
* page tables - they are in the map.
|
|
*
|
|
* XXX - VM_MAXUSER_ADDRESS is an end address, not a max. It was once
|
|
* only used (as an end address) in trap.c. Use it as an end address
|
|
* here too. This bogusness has spread. I just fixed where it was
|
|
* used as a max in vm_mmap.c.
|
|
*/
|
|
if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
|
|
|| (vm_offset_t) addr + len < (vm_offset_t) addr) {
|
|
return (FALSE);
|
|
}
|
|
rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
|
|
trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
|
|
prot);
|
|
return (rv == TRUE);
|
|
}
|
|
|
|
/*
|
|
* MPSAFE
|
|
*/
|
|
void
|
|
vslock(addr, len)
|
|
caddr_t addr;
|
|
u_int len;
|
|
{
|
|
|
|
vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
|
|
round_page((vm_offset_t)addr + len), FALSE);
|
|
}
|
|
|
|
/*
|
|
* MPSAFE
|
|
*/
|
|
void
|
|
vsunlock(addr, len)
|
|
caddr_t addr;
|
|
u_int len;
|
|
{
|
|
|
|
vm_map_unwire(&curproc->p_vmspace->vm_map,
|
|
trunc_page((vm_offset_t)addr),
|
|
round_page((vm_offset_t)addr + len), FALSE);
|
|
}
|
|
|
|
/*
|
|
* Create the U area for a new process.
|
|
* This routine directly affects the fork perf for a process.
|
|
*/
|
|
void
|
|
vm_proc_new(struct proc *p)
|
|
{
|
|
vm_page_t ma[UAREA_PAGES];
|
|
vm_object_t upobj;
|
|
vm_offset_t up;
|
|
vm_page_t m;
|
|
u_int i;
|
|
|
|
/*
|
|
* Allocate object for the upage.
|
|
*/
|
|
upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
|
|
p->p_upages_obj = upobj;
|
|
|
|
/*
|
|
* Get a kernel virtual address for the U area for this process.
|
|
*/
|
|
up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
|
|
if (up == 0)
|
|
panic("vm_proc_new: upage allocation failed");
|
|
p->p_uarea = (struct user *)up;
|
|
|
|
for (i = 0; i < UAREA_PAGES; i++) {
|
|
/*
|
|
* Get a uarea page.
|
|
*/
|
|
m = vm_page_grab(upobj, i,
|
|
VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
|
|
ma[i] = m;
|
|
|
|
vm_page_wakeup(m);
|
|
vm_page_flag_clear(m, PG_ZERO);
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
}
|
|
|
|
/*
|
|
* Enter the pages into the kernel address space.
|
|
*/
|
|
pmap_qenter(up, ma, UAREA_PAGES);
|
|
}
|
|
|
|
/*
|
|
* Dispose the U area for a process that has exited.
|
|
* This routine directly impacts the exit perf of a process.
|
|
* XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
|
|
*/
|
|
void
|
|
vm_proc_dispose(struct proc *p)
|
|
{
|
|
vm_object_t upobj;
|
|
vm_offset_t up;
|
|
vm_page_t m;
|
|
|
|
upobj = p->p_upages_obj;
|
|
if (upobj->resident_page_count != UAREA_PAGES)
|
|
panic("vm_proc_dispose: incorrect number of pages in upobj");
|
|
vm_page_lock_queues();
|
|
while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
|
|
vm_page_busy(m);
|
|
vm_page_unwire(m, 0);
|
|
vm_page_free(m);
|
|
}
|
|
vm_page_unlock_queues();
|
|
up = (vm_offset_t)p->p_uarea;
|
|
pmap_qremove(up, UAREA_PAGES);
|
|
kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
|
|
vm_object_deallocate(upobj);
|
|
}
|
|
|
|
#ifndef NO_SWAPPING
|
|
/*
|
|
* Allow the U area for a process to be prejudicially paged out.
|
|
*/
|
|
void
|
|
vm_proc_swapout(struct proc *p)
|
|
{
|
|
vm_object_t upobj;
|
|
vm_offset_t up;
|
|
vm_page_t m;
|
|
|
|
upobj = p->p_upages_obj;
|
|
if (upobj->resident_page_count != UAREA_PAGES)
|
|
panic("vm_proc_dispose: incorrect number of pages in upobj");
|
|
vm_page_lock_queues();
|
|
TAILQ_FOREACH(m, &upobj->memq, listq) {
|
|
vm_page_dirty(m);
|
|
vm_page_unwire(m, 0);
|
|
}
|
|
vm_page_unlock_queues();
|
|
up = (vm_offset_t)p->p_uarea;
|
|
pmap_qremove(up, UAREA_PAGES);
|
|
}
|
|
|
|
/*
|
|
* Bring the U area for a specified process back in.
|
|
*/
|
|
void
|
|
vm_proc_swapin(struct proc *p)
|
|
{
|
|
vm_page_t ma[UAREA_PAGES];
|
|
vm_object_t upobj;
|
|
vm_offset_t up;
|
|
vm_page_t m;
|
|
int rv;
|
|
int i;
|
|
|
|
upobj = p->p_upages_obj;
|
|
for (i = 0; i < UAREA_PAGES; i++) {
|
|
m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
|
|
if (m->valid != VM_PAGE_BITS_ALL) {
|
|
rv = vm_pager_get_pages(upobj, &m, 1, 0);
|
|
if (rv != VM_PAGER_OK)
|
|
panic("vm_proc_swapin: cannot get upage");
|
|
}
|
|
ma[i] = m;
|
|
}
|
|
if (upobj->resident_page_count != UAREA_PAGES)
|
|
panic("vm_proc_swapin: lost pages from upobj");
|
|
vm_page_lock_queues();
|
|
TAILQ_FOREACH(m, &upobj->memq, listq) {
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
vm_page_wire(m);
|
|
vm_page_wakeup(m);
|
|
}
|
|
vm_page_unlock_queues();
|
|
up = (vm_offset_t)p->p_uarea;
|
|
pmap_qenter(up, ma, UAREA_PAGES);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Implement fork's actions on an address space.
|
|
* Here we arrange for the address space to be copied or referenced,
|
|
* allocate a user struct (pcb and kernel stack), then call the
|
|
* machine-dependent layer to fill those in and make the new process
|
|
* ready to run. The new process is set up so that it returns directly
|
|
* to user mode to avoid stack copying and relocation problems.
|
|
*/
|
|
void
|
|
vm_forkproc(td, p2, td2, flags)
|
|
struct thread *td;
|
|
struct proc *p2;
|
|
struct thread *td2;
|
|
int flags;
|
|
{
|
|
struct proc *p1 = td->td_proc;
|
|
struct user *up;
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
if ((flags & RFPROC) == 0) {
|
|
/*
|
|
* Divorce the memory, if it is shared, essentially
|
|
* this changes shared memory amongst threads, into
|
|
* COW locally.
|
|
*/
|
|
if ((flags & RFMEM) == 0) {
|
|
if (p1->p_vmspace->vm_refcnt > 1) {
|
|
vmspace_unshare(p1);
|
|
}
|
|
}
|
|
cpu_fork(td, p2, td2, flags);
|
|
return;
|
|
}
|
|
|
|
if (flags & RFMEM) {
|
|
p2->p_vmspace = p1->p_vmspace;
|
|
p1->p_vmspace->vm_refcnt++;
|
|
}
|
|
|
|
while (vm_page_count_severe()) {
|
|
VM_WAIT;
|
|
}
|
|
|
|
if ((flags & RFMEM) == 0) {
|
|
p2->p_vmspace = vmspace_fork(p1->p_vmspace);
|
|
|
|
pmap_pinit2(vmspace_pmap(p2->p_vmspace));
|
|
|
|
if (p1->p_vmspace->vm_shm)
|
|
shmfork(p1, p2);
|
|
}
|
|
|
|
/* XXXKSE this is unsatisfactory but should be adequate */
|
|
up = p2->p_uarea;
|
|
|
|
/*
|
|
* p_stats currently points at fields in the user struct
|
|
* but not at &u, instead at p_addr. Copy parts of
|
|
* p_stats; zero the rest of p_stats (statistics).
|
|
*
|
|
* If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
|
|
* to share sigacts, so we use the up->u_sigacts.
|
|
*/
|
|
p2->p_stats = &up->u_stats;
|
|
if (p2->p_sigacts == NULL) {
|
|
if (p2->p_procsig->ps_refcnt != 1)
|
|
printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
|
|
p2->p_sigacts = &up->u_sigacts;
|
|
up->u_sigacts = *p1->p_sigacts;
|
|
}
|
|
|
|
bzero(&up->u_stats.pstat_startzero,
|
|
(unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
|
|
(caddr_t) &up->u_stats.pstat_startzero));
|
|
bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
|
|
((caddr_t) &up->u_stats.pstat_endcopy -
|
|
(caddr_t) &up->u_stats.pstat_startcopy));
|
|
|
|
|
|
/*
|
|
* cpu_fork will copy and update the pcb, set up the kernel stack,
|
|
* and make the child ready to run.
|
|
*/
|
|
cpu_fork(td, p2, td2, flags);
|
|
}
|
|
|
|
/*
|
|
* Called after process has been wait(2)'ed apon and is being reaped.
|
|
* The idea is to reclaim resources that we could not reclaim while
|
|
* the process was still executing.
|
|
*/
|
|
void
|
|
vm_waitproc(p)
|
|
struct proc *p;
|
|
{
|
|
|
|
GIANT_REQUIRED;
|
|
cpu_wait(p);
|
|
vmspace_exitfree(p); /* and clean-out the vmspace */
|
|
}
|
|
|
|
/*
|
|
* Set default limits for VM system.
|
|
* Called for proc 0, and then inherited by all others.
|
|
*
|
|
* XXX should probably act directly on proc0.
|
|
*/
|
|
static void
|
|
vm_init_limits(udata)
|
|
void *udata;
|
|
{
|
|
struct proc *p = udata;
|
|
int rss_limit;
|
|
|
|
/*
|
|
* Set up the initial limits on process VM. Set the maximum resident
|
|
* set size to be half of (reasonably) available memory. Since this
|
|
* is a soft limit, it comes into effect only when the system is out
|
|
* of memory - half of main memory helps to favor smaller processes,
|
|
* and reduces thrashing of the object cache.
|
|
*/
|
|
p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
|
|
p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
|
|
/* limit the limit to no less than 2MB */
|
|
rss_limit = max(cnt.v_free_count, 512);
|
|
p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
|
|
p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
|
|
}
|
|
|
|
void
|
|
faultin(p)
|
|
struct proc *p;
|
|
{
|
|
|
|
GIANT_REQUIRED;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
#ifdef NO_SWAPPING
|
|
if ((p->p_sflag & PS_INMEM) == 0)
|
|
panic("faultin: proc swapped out with NO_SWAPPING!");
|
|
#else
|
|
if ((p->p_sflag & PS_INMEM) == 0) {
|
|
struct thread *td;
|
|
|
|
++p->p_lock;
|
|
/*
|
|
* If another process is swapping in this process,
|
|
* just wait until it finishes.
|
|
*/
|
|
if (p->p_sflag & PS_SWAPPINGIN) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
|
|
mtx_lock_spin(&sched_lock);
|
|
--p->p_lock;
|
|
return;
|
|
}
|
|
|
|
p->p_sflag |= PS_SWAPPINGIN;
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
|
|
vm_proc_swapin(p);
|
|
FOREACH_THREAD_IN_PROC (p, td)
|
|
pmap_swapin_thread(td);
|
|
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
p->p_sflag &= ~PS_SWAPPINGIN;
|
|
p->p_sflag |= PS_INMEM;
|
|
FOREACH_THREAD_IN_PROC (p, td)
|
|
if (td->td_state == TDS_SWAPPED)
|
|
setrunqueue(td);
|
|
|
|
wakeup(&p->p_sflag);
|
|
|
|
/* undo the effect of setting SLOCK above */
|
|
--p->p_lock;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This swapin algorithm attempts to swap-in processes only if there
|
|
* is enough space for them. Of course, if a process waits for a long
|
|
* time, it will be swapped in anyway.
|
|
*
|
|
* XXXKSE - process with the thread with highest priority counts..
|
|
*
|
|
* Giant is still held at this point, to be released in tsleep.
|
|
*/
|
|
/* ARGSUSED*/
|
|
static void
|
|
scheduler(dummy)
|
|
void *dummy;
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
int pri;
|
|
struct proc *pp;
|
|
int ppri;
|
|
|
|
mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
|
|
/* GIANT_REQUIRED */
|
|
|
|
loop:
|
|
if (vm_page_count_min()) {
|
|
VM_WAIT;
|
|
goto loop;
|
|
}
|
|
|
|
pp = NULL;
|
|
ppri = INT_MIN;
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
struct ksegrp *kg;
|
|
if (p->p_sflag & (PS_INMEM | PS_SWAPPING | PS_SWAPPINGIN)) {
|
|
continue;
|
|
}
|
|
mtx_lock_spin(&sched_lock);
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
/*
|
|
* A runnable thread of a process swapped out is in
|
|
* TDS_SWAPPED.
|
|
*/
|
|
if (td->td_state == TDS_SWAPPED) {
|
|
kg = td->td_ksegrp;
|
|
pri = p->p_swtime + kg->kg_slptime;
|
|
if ((p->p_sflag & PS_SWAPINREQ) == 0) {
|
|
pri -= kg->kg_nice * 8;
|
|
}
|
|
|
|
/*
|
|
* if this ksegrp is higher priority
|
|
* and there is enough space, then select
|
|
* this process instead of the previous
|
|
* selection.
|
|
*/
|
|
if (pri > ppri) {
|
|
pp = p;
|
|
ppri = pri;
|
|
}
|
|
}
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
|
|
/*
|
|
* Nothing to do, back to sleep.
|
|
*/
|
|
if ((p = pp) == NULL) {
|
|
tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
|
|
goto loop;
|
|
}
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
|
|
/*
|
|
* Another process may be bringing or may have already
|
|
* brought this process in while we traverse all threads.
|
|
* Or, this process may even be being swapped out again.
|
|
*/
|
|
if (p->p_sflag & (PS_INMEM|PS_SWAPPING|PS_SWAPPINGIN)) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
goto loop;
|
|
}
|
|
|
|
p->p_sflag &= ~PS_SWAPINREQ;
|
|
|
|
/*
|
|
* We would like to bring someone in. (only if there is space).
|
|
* [What checks the space? ]
|
|
*/
|
|
faultin(p);
|
|
PROC_UNLOCK(p);
|
|
p->p_swtime = 0;
|
|
mtx_unlock_spin(&sched_lock);
|
|
goto loop;
|
|
}
|
|
|
|
#ifndef NO_SWAPPING
|
|
|
|
/*
|
|
* Swap_idle_threshold1 is the guaranteed swapped in time for a process
|
|
*/
|
|
static int swap_idle_threshold1 = 2;
|
|
SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
|
|
CTLFLAG_RW, &swap_idle_threshold1, 0, "");
|
|
|
|
/*
|
|
* Swap_idle_threshold2 is the time that a process can be idle before
|
|
* it will be swapped out, if idle swapping is enabled.
|
|
*/
|
|
static int swap_idle_threshold2 = 10;
|
|
SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
|
|
CTLFLAG_RW, &swap_idle_threshold2, 0, "");
|
|
|
|
/*
|
|
* Swapout is driven by the pageout daemon. Very simple, we find eligible
|
|
* procs and unwire their u-areas. We try to always "swap" at least one
|
|
* process in case we need the room for a swapin.
|
|
* If any procs have been sleeping/stopped for at least maxslp seconds,
|
|
* they are swapped. Else, we swap the longest-sleeping or stopped process,
|
|
* if any, otherwise the longest-resident process.
|
|
*/
|
|
void
|
|
swapout_procs(action)
|
|
int action;
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
struct ksegrp *kg;
|
|
struct proc *outp, *outp2;
|
|
int outpri, outpri2;
|
|
int didswap = 0;
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
outp = outp2 = NULL;
|
|
outpri = outpri2 = INT_MIN;
|
|
retry:
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
struct vmspace *vm;
|
|
int minslptime = 100000;
|
|
|
|
/*
|
|
* Do not swapout a process that
|
|
* is waiting for VM data
|
|
* structures there is a possible
|
|
* deadlock. Test this first as
|
|
* this may block.
|
|
*
|
|
* Lock the map until swapout
|
|
* finishes, or a thread of this
|
|
* process may attempt to alter
|
|
* the map.
|
|
*/
|
|
vm = p->p_vmspace;
|
|
++vm->vm_refcnt;
|
|
if (!vm_map_trylock(&vm->vm_map))
|
|
goto nextproc1;
|
|
|
|
PROC_LOCK(p);
|
|
if (p->p_lock != 0 ||
|
|
(p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
|
|
) != 0) {
|
|
goto nextproc2;
|
|
}
|
|
/*
|
|
* only aiod changes vmspace, however it will be
|
|
* skipped because of the if statement above checking
|
|
* for P_SYSTEM
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
if ((p->p_sflag & (PS_INMEM|PS_SWAPPING|PS_SWAPPINGIN)) != PS_INMEM)
|
|
goto nextproc;
|
|
|
|
switch (p->p_state) {
|
|
default:
|
|
/* Don't swap out processes in any sort
|
|
* of 'special' state. */
|
|
goto nextproc;
|
|
|
|
case PRS_NORMAL:
|
|
/*
|
|
* do not swapout a realtime process
|
|
* Check all the thread groups..
|
|
*/
|
|
FOREACH_KSEGRP_IN_PROC(p, kg) {
|
|
if (PRI_IS_REALTIME(kg->kg_pri_class))
|
|
goto nextproc;
|
|
|
|
/*
|
|
* Guarantee swap_idle_threshold1
|
|
* time in memory.
|
|
*/
|
|
if (kg->kg_slptime < swap_idle_threshold1)
|
|
goto nextproc;
|
|
|
|
/*
|
|
* Do not swapout a process if it is
|
|
* waiting on a critical event of some
|
|
* kind or there is a thread whose
|
|
* pageable memory may be accessed.
|
|
*
|
|
* This could be refined to support
|
|
* swapping out a thread.
|
|
*/
|
|
FOREACH_THREAD_IN_GROUP(kg, td) {
|
|
if ((td->td_priority) < PSOCK ||
|
|
!thread_safetoswapout(td))
|
|
goto nextproc;
|
|
}
|
|
/*
|
|
* If the system is under memory stress,
|
|
* or if we are swapping
|
|
* idle processes >= swap_idle_threshold2,
|
|
* then swap the process out.
|
|
*/
|
|
if (((action & VM_SWAP_NORMAL) == 0) &&
|
|
(((action & VM_SWAP_IDLE) == 0) ||
|
|
(kg->kg_slptime < swap_idle_threshold2)))
|
|
goto nextproc;
|
|
|
|
if (minslptime > kg->kg_slptime)
|
|
minslptime = kg->kg_slptime;
|
|
}
|
|
|
|
/*
|
|
* If the process has been asleep for awhile and had
|
|
* most of its pages taken away already, swap it out.
|
|
*/
|
|
if ((action & VM_SWAP_NORMAL) ||
|
|
((action & VM_SWAP_IDLE) &&
|
|
(minslptime > swap_idle_threshold2))) {
|
|
swapout(p);
|
|
didswap++;
|
|
|
|
/*
|
|
* swapout() unlocks a proc lock. This is
|
|
* ugly, but avoids superfluous lock.
|
|
*/
|
|
mtx_unlock_spin(&sched_lock);
|
|
vm_map_unlock(&vm->vm_map);
|
|
vmspace_free(vm);
|
|
sx_sunlock(&allproc_lock);
|
|
goto retry;
|
|
}
|
|
}
|
|
nextproc:
|
|
mtx_unlock_spin(&sched_lock);
|
|
nextproc2:
|
|
PROC_UNLOCK(p);
|
|
vm_map_unlock(&vm->vm_map);
|
|
nextproc1:
|
|
vmspace_free(vm);
|
|
continue;
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
/*
|
|
* If we swapped something out, and another process needed memory,
|
|
* then wakeup the sched process.
|
|
*/
|
|
if (didswap)
|
|
wakeup(&proc0);
|
|
}
|
|
|
|
static void
|
|
swapout(p)
|
|
struct proc *p;
|
|
{
|
|
struct thread *td;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
|
|
#if defined(SWAP_DEBUG)
|
|
printf("swapping out %d\n", p->p_pid);
|
|
#endif
|
|
|
|
/*
|
|
* The states of this process and its threads may have changed
|
|
* by now. Assuming that there is only one pageout daemon thread,
|
|
* this process should still be in memory.
|
|
*/
|
|
KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPING|PS_SWAPPINGIN)) == PS_INMEM,
|
|
("swapout: lost a swapout race?"));
|
|
|
|
#if defined(INVARIANTS)
|
|
/*
|
|
* Make sure that all threads are safe to be swapped out.
|
|
*
|
|
* Alternatively, we could swap out only safe threads.
|
|
*/
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
KASSERT(thread_safetoswapout(td),
|
|
("swapout: there is a thread not safe for swapout"));
|
|
}
|
|
#endif /* INVARIANTS */
|
|
|
|
++p->p_stats->p_ru.ru_nswap;
|
|
/*
|
|
* remember the process resident count
|
|
*/
|
|
p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
|
|
|
|
PROC_UNLOCK(p);
|
|
FOREACH_THREAD_IN_PROC (p, td)
|
|
if (td->td_state == TDS_RUNQ) { /* XXXKSE */
|
|
remrunqueue(td); /* XXXKSE */
|
|
td->td_state = TDS_SWAPPED;
|
|
}
|
|
p->p_sflag &= ~PS_INMEM;
|
|
p->p_sflag |= PS_SWAPPING;
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
vm_proc_swapout(p);
|
|
FOREACH_THREAD_IN_PROC(p, td)
|
|
pmap_swapout_thread(td);
|
|
mtx_lock_spin(&sched_lock);
|
|
p->p_sflag &= ~PS_SWAPPING;
|
|
p->p_swtime = 0;
|
|
}
|
|
#endif /* !NO_SWAPPING */
|