freebsd-skq/sys/i386/isa/cronyx.c
2003-06-02 16:32:55 +00:00

1033 lines
26 KiB
C

/*
* Low-level subroutines for Cronyx-Sigma adapter.
*
* Copyright (C) 1994-95 Cronyx Ltd.
* Author: Serge Vakulenko, <vak@cronyx.ru>
*
* This software is distributed with NO WARRANTIES, not even the implied
* warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Authors grant any other persons or organisations permission to use
* or modify this software as long as this message is kept with the software,
* all derivative works or modified versions.
*
* Version 1.6, Wed May 31 16:03:20 MSD 1995
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#if defined (MSDOS) || defined (__MSDOS__)
# include <string.h>
# include <dos.h>
# define inb(port) inportb(port)
# define inw(port) inport(port)
# define outb(port,b) outportb(port,b)
# define outw(port,w) outport(port,w)
# define vtophys(a) (((unsigned long)(a)>>12 & 0xffff0) +\
((unsigned)(a) & 0xffff))
# include "cronyx.h"
# include "cxreg.h"
#else
# include <sys/param.h>
# include <sys/systm.h>
# include <sys/socket.h>
# include <net/if.h>
# include <vm/vm.h>
# include <vm/vm_param.h>
# include <vm/pmap.h>
# ifndef __FreeBSD__
# include <machine/inline.h>
# endif
# include <machine/cronyx.h>
# include <i386/isa/cxreg.h>
#endif
#define DMA_MASK 0xd4 /* DMA mask register */
#define DMA_MASK_CLEAR 0x04 /* DMA clear mask */
#define DMA_MODE 0xd6 /* DMA mode register */
#define DMA_MODE_MASTER 0xc0 /* DMA master mode */
#define BYTE *(unsigned char*)&
static unsigned char irqmask [] = {
BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_3,
BCR0_IRQ_DIS, BCR0_IRQ_5, BCR0_IRQ_DIS, BCR0_IRQ_7,
BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_10, BCR0_IRQ_11,
BCR0_IRQ_12, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_15,
};
static unsigned char dmamask [] = {
BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS,
BCR0_DMA_DIS, BCR0_DMA_5, BCR0_DMA_6, BCR0_DMA_7,
};
static long cx_rxbaud = CX_SPEED_DFLT; /* receiver baud rate */
static long cx_txbaud = CX_SPEED_DFLT; /* transmitter baud rate */
static int cx_univ_mode = M_ASYNC; /* univ. chan. mode: async or sync */
static int cx_sync_mode = M_HDLC; /* sync. chan. mode: HDLC, Bisync or X.21 */
static int cx_iftype = 0; /* univ. chan. interface: upper/lower */
static cx_chan_opt_t chan_opt_dflt = { /* mode-independent options */
{ /* cor4 */
7, /* FIFO threshold, odd is better */
0,
0, /* don't detect 1 to 0 on CTS */
1, /* detect 1 to 0 on CD */
0, /* detect 1 to 0 on DSR */
},
{ /* cor5 */
0, /* receive flow control FIFO threshold */
0,
0, /* don't detect 0 to 1 on CTS */
1, /* detect 0 to 1 on CD */
0, /* detect 0 to 1 on DSR */
},
{ /* rcor */
0, /* dummy clock source */
ENCOD_NRZ, /* NRZ mode */
0, /* disable DPLL */
0,
0, /* transmit line value */
},
{ /* tcor */
0,
0, /* local loopback mode */
0,
1, /* external 1x clock mode */
0,
0, /* dummy transmit clock source */
},
};
static cx_opt_async_t opt_async_dflt = { /* default async options */
{ /* cor1 */
8-1, /* 8-bit char length */
0, /* don't ignore parity */
PARM_NOPAR, /* no parity */
PAR_EVEN, /* even parity */
},
{ /* cor2 */
0, /* disable automatic DSR */
1, /* enable automatic CTS */
0, /* disable automatic RTS */
0, /* no remote loopback */
0,
0, /* disable embedded cmds */
0, /* disable XON/XOFF */
0, /* disable XANY */
},
{ /* cor3 */
STOPB_1, /* 1 stop bit */
0,
0, /* disable special char detection */
FLOWCC_PASS, /* pass flow ctl chars to the host */
0, /* range detect disable */
0, /* disable extended spec. char detect */
},
{ /* cor6 */
PERR_INTR, /* generate exception on parity errors */
BRK_INTR, /* generate exception on break condition */
0, /* don't translate NL to CR on input */
0, /* don't translate CR to NL on input */
0, /* don't discard CR on input */
},
{ /* cor7 */
0, /* don't translate CR to NL on output */
0, /* don't translate NL to CR on output */
0,
0, /* don't process flow ctl err chars */
0, /* disable LNext option */
0, /* don't strip 8 bit on input */
},
0, 0, 0, 0, 0, 0, 0, /* clear schr1-4, scrl, scrh, lnxt */
};
static cx_opt_hdlc_t opt_hdlc_dflt = { /* default hdlc options */
{ /* cor1 */
2, /* 2 inter-frame flags */
0, /* no-address mode */
CLRDET_DISABLE, /* disable clear detect */
AFLO_1OCT, /* 1-byte address field length */
},
{ /* cor2 */
0, /* disable automatic DSR */
0, /* disable automatic CTS */
0, /* disable automatic RTS */
0,
CRC_INVERT, /* use CRC V.41 */
0,
FCS_NOTPASS, /* don't pass received CRC to the host */
0,
},
{ /* cor3 */
0, /* 0 pad characters sent */
IDLE_FLAG, /* idle in flag */
0, /* enable FCS */
FCSP_ONES, /* FCS preset to all ones (V.41) */
SYNC_AA, /* use AAh as sync char */
0, /* disable pad characters */
},
0, 0, 0, 0, /* clear rfar1-4 */
POLY_V41, /* use V.41 CRC polynomial */
};
static cx_opt_bisync_t opt_bisync_dflt = { /* default bisync options */
{ /* cor1 */
8-1, /* 8-bit char length */
0, /* don't ignore parity */
PARM_NOPAR, /* no parity */
PAR_EVEN, /* even parity */
},
{ /* cor2 */
3-2, /* send three SYN chars */
CRC_DONT_INVERT,/* don't invert CRC (CRC-16) */
0, /* use ASCII, not EBCDIC */
0, /* disable bcc append */
BCC_CRC16, /* user CRC16, not LRC */
},
{ /* cor3 */
0, /* send 0 pad chars */
IDLE_FLAG, /* idle in SYN */
0, /* enable FCS */
FCSP_ZEROS, /* FCS preset to all zeros (CRC-16) */
PAD_AA, /* use AAh as pad char */
0, /* disable pad characters */
},
{ /* cor6 */
10, /* DLE - disable special termination char */
},
POLY_16, /* use CRC-16 polynomial */
};
static cx_opt_x21_t opt_x21_dflt = { /* default x21 options */
{ /* cor1 */
8-1, /* 8-bit char length */
0, /* don't ignore parity */
PARM_NOPAR, /* no parity */
PAR_EVEN, /* even parity */
},
{ /* cor2 */
0,
0, /* disable embedded transmitter cmds */
0,
},
{ /* cor3 */
0,
0, /* disable special character detect */
0, /* don't treat SYN as special condition */
0, /* disable steady state detect */
X21SYN_2, /* 2 SYN chars on receive are required */
},
{ /* cor6 */
16, /* SYN - standard SYN character */
},
0, 0, 0, /* clear schr1-3 */
};
static int cx_probe_chip (int base);
static void cx_setup_chip (cx_chip_t *c);
static void cx_init_board (cx_board_t *b, int num, int port, int irq, int dma,
int chain, int rev, int osc, int rev2, int osc2);
static void cx_reinit_board (cx_board_t *b);
/*
* Wait for CCR to clear.
*/
void cx_cmd (int base, int cmd)
{
unsigned short port = CCR(base);
unsigned short count;
/* Wait 10 msec for the previous command to complete. */
for (count=0; inb(port) && count<20000; ++count)
continue;
/* Issue the command. */
outb (port, cmd);
/* Wait 10 msec for the command to complete. */
for (count=0; inb(port) && count<20000; ++count)
continue;
}
/*
* Reset the chip.
*/
static int cx_reset (unsigned short port)
{
int count;
/* Wait up to 10 msec for revision code to appear after reset. */
for (count=0; count<20000; ++count)
if (inb(GFRCR(port)) != 0)
break;
cx_cmd (port, CCR_RSTALL);
/* Firmware revision code should clear imediately. */
/* Wait up to 10 msec for revision code to appear again. */
for (count=0; count<20000; ++count)
if (inb(GFRCR(port)) != 0)
return (1);
/* Reset failed. */
return (0);
}
/*
* Check if the CD2400 board is present at the given base port.
*/
static int cx_probe_chained_board (int port, int *c0, int *c1)
{
int rev, i;
/* Read and check the board revision code. */
rev = inb (BSR(port));
*c0 = *c1 = 0;
switch (rev & BSR_VAR_MASK) {
case CRONYX_100: *c0 = 1; break;
case CRONYX_400: *c1 = 1; break;
case CRONYX_500: *c0 = *c1 = 1; break;
case CRONYX_410: *c0 = 1; break;
case CRONYX_810: *c0 = *c1 = 1; break;
case CRONYX_410s: *c0 = 1; break;
case CRONYX_810s: *c0 = *c1 = 1; break;
case CRONYX_440: *c0 = 1; break;
case CRONYX_840: *c0 = *c1 = 1; break;
case CRONYX_401: *c0 = 1; break;
case CRONYX_801: *c0 = *c1 = 1; break;
case CRONYX_401s: *c0 = 1; break;
case CRONYX_801s: *c0 = *c1 = 1; break;
case CRONYX_404: *c0 = 1; break;
case CRONYX_703: *c0 = *c1 = 1; break;
default: return (0); /* invalid variant code */
}
switch (rev & BSR_OSC_MASK) {
case BSR_OSC_20: /* 20 MHz */
case BSR_OSC_18432: /* 18.432 MHz */
break;
default:
return (0); /* oscillator frequency does not match */
}
for (i=2; i<0x10; i+=2)
if ((inb (BSR(port)+i) & BSR_REV_MASK) != (rev & BSR_REV_MASK))
return (0); /* status changed? */
return (1);
}
/*
* Check if the CD2400 board is present at the given base port.
*/
int
cx_probe_board (int port)
{
int c0, c1, c2=0, c3=0, result;
if (! cx_probe_chained_board (port, &c0, &c1))
return (0); /* no board detected */
if (! (inb (BSR(port)) & BSR_NOCHAIN)) { /* chained board attached */
if (! cx_probe_chained_board (port + 0x10, &c2, &c3))
return (0); /* invalid chained board? */
if (! (inb (BSR(port+0x10)) & BSR_NOCHAIN))
return (0); /* invalid chained board flag? */
}
/* Turn off the reset bit. */
outb (BCR0(port), BCR0_NORESET);
if (c2 || c3)
outb (BCR0(port + 0x10), BCR0_NORESET);
result = 1;
if (c0 && ! cx_probe_chip (CS0(port)))
result = 0; /* no CD2400 chip here */
else if (c1 && ! cx_probe_chip (CS1(port)))
result = 0; /* no second CD2400 chip */
else if (c2 && ! cx_probe_chip (CS0(port + 0x10)))
result = 0; /* no CD2400 chip on the slave board */
else if (c3 && ! cx_probe_chip (CS1(port + 0x10)))
result = 0; /* no second CD2400 chip on the slave board */
/* Reset the controller. */
outb (BCR0(port), 0);
if (c2 || c3)
outb (BCR0(port + 0x10), 0);
/* Yes, we really have valid CD2400 board. */
return (result);
}
/*
* Check if the CD2400 chip is present at the given base port.
*/
static int cx_probe_chip (int base)
{
int rev, newrev, count;
/* Wait up to 10 msec for revision code to appear after reset. */
for (count=0; inb(GFRCR(base))==0; ++count)
if (count >= 20000)
return (0); /* reset failed */
/* Read and check the global firmware revision code. */
rev = inb (GFRCR(base));
if (rev<REVCL_MIN || rev>REVCL_MAX)
return (0); /* CD2400 revision does not match */
/* Reset the chip. */
if (! cx_reset (base))
return (0);
/* Read and check the new global firmware revision code. */
newrev = inb (GFRCR(base));
if (newrev != rev)
return (0); /* revision changed */
/* Yes, we really have CD2400 chip here. */
return (1);
}
/*
* Probe and initialize the board structure.
*/
void cx_init (cx_board_t *b, int num, int port, int irq, int dma)
{
int rev, chain, rev2;
rev = inb (BSR(port));
chain = !(rev & BSR_NOCHAIN);
rev2 = chain ? inb (BSR(port+0x10)) : 0;
cx_init_board (b, num, port, irq, dma, chain,
(rev & BSR_VAR_MASK), (rev & BSR_OSC_MASK),
(rev2 & BSR_VAR_MASK), (rev2 & BSR_OSC_MASK));
}
/*
* Initialize the board structure, given the type of the board.
*/
static void
cx_init_board (cx_board_t *b, int num, int port, int irq, int dma,
int chain, int rev, int osc, int rev2, int osc2)
{
cx_chan_t *c;
int i, c0, c1;
/* Initialize board structure. */
b->port = port;
b->num = num;
b->irq = irq;
b->dma = dma;
b->if0type = b->if8type = cx_iftype;
/* Set channels 0 and 8 mode, set DMA and IRQ. */
b->bcr0 = b->bcr0b = BCR0_NORESET | dmamask[b->dma] | irqmask[b->irq];
/* Clear DTR[0..3] and DTR[8..12]. */
b->bcr1 = b->bcr1b = 0;
/* Initialize chip structures. */
for (i=0; i<NCHIP; ++i) {
b->chip[i].num = i;
b->chip[i].board = b;
}
b->chip[0].port = CS0(port);
b->chip[1].port = CS1(port);
b->chip[2].port = CS0(port+0x10);
b->chip[3].port = CS1(port+0x10);
/*------------------ Master board -------------------*/
/* Read and check the board revision code. */
c0 = c1 = 0;
b->name[0] = 0;
switch (rev) {
case CRONYX_100: strcpy (b->name, "100"); c0 = 1; break;
case CRONYX_400: strcpy (b->name, "400"); c1 = 1; break;
case CRONYX_500: strcpy (b->name, "500"); c0 = c1 = 1; break;
case CRONYX_410: strcpy (b->name, "410"); c0 = 1; break;
case CRONYX_810: strcpy (b->name, "810"); c0 = c1 = 1; break;
case CRONYX_410s: strcpy (b->name, "410s"); c0 = 1; break;
case CRONYX_810s: strcpy (b->name, "810s"); c0 = c1 = 1; break;
case CRONYX_440: strcpy (b->name, "440"); c0 = 1; break;
case CRONYX_840: strcpy (b->name, "840"); c0 = c1 = 1; break;
case CRONYX_401: strcpy (b->name, "401"); c0 = 1; break;
case CRONYX_801: strcpy (b->name, "801"); c0 = c1 = 1; break;
case CRONYX_401s: strcpy (b->name, "401s"); c0 = 1; break;
case CRONYX_801s: strcpy (b->name, "801s"); c0 = c1 = 1; break;
case CRONYX_404: strcpy (b->name, "404"); c0 = 1; break;
case CRONYX_703: strcpy (b->name, "703"); c0 = c1 = 1; break;
}
switch (osc) {
default:
case BSR_OSC_20: /* 20 MHz */
b->chip[0].oscfreq = b->chip[1].oscfreq = 20000000L;
strcat (b->name, "a");
break;
case BSR_OSC_18432: /* 18.432 MHz */
b->chip[0].oscfreq = b->chip[1].oscfreq = 18432000L;
strcat (b->name, "b");
break;
}
if (! c0)
b->chip[0].port = 0;
if (! c1)
b->chip[1].port = 0;
/*------------------ Slave board -------------------*/
if (! chain) {
b->chip[2].oscfreq = b->chip[3].oscfreq = 0L;
b->chip[2].port = b->chip[3].port = 0;
} else {
/* Read and check the board revision code. */
c0 = c1 = 0;
strcat (b->name, "/");
switch (rev2) {
case CRONYX_100: strcat(b->name,"100"); c0=1; break;
case CRONYX_400: strcat(b->name,"400"); c1=1; break;
case CRONYX_500: strcat(b->name,"500"); c0=c1=1; break;
case CRONYX_410: strcat(b->name,"410"); c0=1; break;
case CRONYX_810: strcat(b->name,"810"); c0=c1=1; break;
case CRONYX_410s: strcat(b->name,"410s"); c0=1; break;
case CRONYX_810s: strcat(b->name,"810s"); c0=c1=1; break;
case CRONYX_440: strcat(b->name,"440"); c0=1; break;
case CRONYX_840: strcat(b->name,"840"); c0=c1=1; break;
case CRONYX_401: strcat(b->name,"401"); c0=1; break;
case CRONYX_801: strcat(b->name,"801"); c0=c1=1; break;
case CRONYX_401s: strcat(b->name,"401s"); c0=1; break;
case CRONYX_801s: strcat(b->name,"801s"); c0=c1=1; break;
case CRONYX_404: strcat(b->name,"404"); c0=1; break;
case CRONYX_703: strcat(b->name,"703"); c0=c1=1; break;
}
switch (osc2) {
default:
case BSR_OSC_20: /* 20 MHz */
b->chip[2].oscfreq = b->chip[3].oscfreq = 20000000L;
strcat (b->name, "a");
break;
case BSR_OSC_18432: /* 18.432 MHz */
b->chip[2].oscfreq = b->chip[3].oscfreq = 18432000L;
strcat (b->name, "b");
break;
}
if (! c0)
b->chip[2].port = 0;
if (! c1)
b->chip[3].port = 0;
}
/* Initialize channel structures. */
for (i=0; i<NCHAN; ++i) {
cx_chan_t *c = b->chan + i;
c->num = i;
c->board = b;
c->chip = b->chip + i*NCHIP/NCHAN;
c->stat = b->stat + i;
c->type = T_NONE;
}
/*------------------ Master board -------------------*/
switch (rev) {
case CRONYX_400:
break;
case CRONYX_100:
case CRONYX_500:
b->chan[0].type = T_UNIV_RS232;
break;
case CRONYX_410:
case CRONYX_810:
b->chan[0].type = T_UNIV_V35;
for (i=1; i<4; ++i)
b->chan[i].type = T_UNIV_RS232;
break;
case CRONYX_410s:
case CRONYX_810s:
b->chan[0].type = T_UNIV_V35;
for (i=1; i<4; ++i)
b->chan[i].type = T_SYNC_RS232;
break;
case CRONYX_440:
case CRONYX_840:
b->chan[0].type = T_UNIV_V35;
for (i=1; i<4; ++i)
b->chan[i].type = T_SYNC_V35;
break;
case CRONYX_401:
case CRONYX_801:
b->chan[0].type = T_UNIV_RS449;
for (i=1; i<4; ++i)
b->chan[i].type = T_UNIV_RS232;
break;
case CRONYX_401s:
case CRONYX_801s:
b->chan[0].type = T_UNIV_RS449;
for (i=1; i<4; ++i)
b->chan[i].type = T_SYNC_RS232;
break;
case CRONYX_404:
b->chan[0].type = T_UNIV_RS449;
for (i=1; i<4; ++i)
b->chan[i].type = T_SYNC_RS449;
break;
case CRONYX_703:
b->chan[0].type = T_UNIV_RS449;
for (i=1; i<3; ++i)
b->chan[i].type = T_SYNC_RS449;
break;
}
/* If the second controller is present,
* then we have 4..7 channels in async. mode */
if (b->chip[1].port)
for (i=4; i<8; ++i)
b->chan[i].type = T_UNIV_RS232;
/*------------------ Slave board -------------------*/
if (chain) {
switch (rev2) {
case CRONYX_400:
break;
case CRONYX_100:
case CRONYX_500:
b->chan[8].type = T_UNIV_RS232;
break;
case CRONYX_410:
case CRONYX_810:
b->chan[8].type = T_UNIV_V35;
for (i=9; i<12; ++i)
b->chan[i].type = T_UNIV_RS232;
break;
case CRONYX_410s:
case CRONYX_810s:
b->chan[8].type = T_UNIV_V35;
for (i=9; i<12; ++i)
b->chan[i].type = T_SYNC_RS232;
break;
case CRONYX_440:
case CRONYX_840:
b->chan[8].type = T_UNIV_V35;
for (i=9; i<12; ++i)
b->chan[i].type = T_SYNC_V35;
break;
case CRONYX_401:
case CRONYX_801:
b->chan[8].type = T_UNIV_RS449;
for (i=9; i<12; ++i)
b->chan[i].type = T_UNIV_RS232;
break;
case CRONYX_401s:
case CRONYX_801s:
b->chan[8].type = T_UNIV_RS449;
for (i=9; i<12; ++i)
b->chan[i].type = T_UNIV_RS232;
break;
case CRONYX_404:
b->chan[8].type = T_UNIV_RS449;
for (i=9; i<12; ++i)
b->chan[i].type = T_SYNC_RS449;
break;
case CRONYX_703:
b->chan[8].type = T_UNIV_RS449;
for (i=9; i<11; ++i)
b->chan[i].type = T_SYNC_RS449;
break;
}
/* If the second controller is present,
* then we have 4..7 channels in async. mode */
if (b->chip[3].port)
for (i=12; i<16; ++i)
b->chan[i].type = T_UNIV_RS232;
}
b->nuniv = b->nsync = b->nasync = 0;
for (c=b->chan; c<b->chan+NCHAN; ++c)
switch (c->type) {
case T_ASYNC: ++b->nasync; break;
case T_UNIV_RS232:
case T_UNIV_RS449:
case T_UNIV_V35: ++b->nuniv; break;
case T_SYNC_RS232:
case T_SYNC_V35:
case T_SYNC_RS449: ++b->nsync; break;
}
cx_reinit_board (b);
}
/*
* Reinitialize all channels, using new options and baud rate.
*/
static void
cx_reinit_board (cx_board_t *b)
{
cx_chan_t *c;
b->if0type = b->if8type = cx_iftype;
for (c=b->chan; c<b->chan+NCHAN; ++c) {
switch (c->type) {
default:
case T_NONE:
continue;
case T_UNIV_RS232:
case T_UNIV_RS449:
case T_UNIV_V35:
c->mode = (cx_univ_mode == M_ASYNC) ?
M_ASYNC : cx_sync_mode;
break;
case T_SYNC_RS232:
case T_SYNC_V35:
case T_SYNC_RS449:
c->mode = cx_sync_mode;
break;
case T_ASYNC:
c->mode = M_ASYNC;
break;
}
c->rxbaud = cx_rxbaud;
c->txbaud = cx_txbaud;
c->opt = chan_opt_dflt;
c->aopt = opt_async_dflt;
c->hopt = opt_hdlc_dflt;
c->bopt = opt_bisync_dflt;
c->xopt = opt_x21_dflt;
}
}
/*
* Set up the board.
*/
void cx_setup_board (cx_board_t *b)
{
int i;
/* Disable DMA channel. */
outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR);
/* Reset the controller. */
outb (BCR0(b->port), 0);
if (b->chip[2].port || b->chip[3].port)
outb (BCR0(b->port+0x10), 0);
/*
* Set channels 0 and 8 to RS232 async. mode.
* Enable DMA and IRQ.
*/
outb (BCR0(b->port), b->bcr0);
if (b->chip[2].port || b->chip[3].port)
outb (BCR0(b->port+0x10), b->bcr0b);
/* Clear DTR[0..3] and DTR[8..12]. */
outw (BCR1(b->port), b->bcr1);
if (b->chip[2].port || b->chip[3].port)
outw (BCR1(b->port+0x10), b->bcr1b);
/* Initialize all controllers. */
for (i=0; i<NCHIP; ++i)
if (b->chip[i].port)
cx_setup_chip (b->chip + i);
/* Set up DMA channel to master mode. */
outb (DMA_MODE, (b->dma & 3) | DMA_MODE_MASTER);
/* Enable DMA channel. */
outb (DMA_MASK, b->dma & 3);
/* Initialize all channels. */
for (i=0; i<NCHAN; ++i)
if (b->chan[i].type != T_NONE)
cx_setup_chan (b->chan + i);
}
/*
* Initialize the board.
*/
static void cx_setup_chip (cx_chip_t *c)
{
/* Reset the chip. */
cx_reset (c->port);
/*
* Set all interrupt level registers to the same value.
* This enables the internal CD2400 priority scheme.
*/
outb (RPILR(c->port), BRD_INTR_LEVEL);
outb (TPILR(c->port), BRD_INTR_LEVEL);
outb (MPILR(c->port), BRD_INTR_LEVEL);
/* Set bus error count to zero. */
outb (BERCNT(c->port), 0);
/* Set 16-bit DMA mode. */
outb (DMR(c->port), 0);
/* Set timer period register to 1 msec (approximately). */
outb (TPR(c->port), 10);
}
/*
* Initialize the CD2400 channel.
*/
void cx_setup_chan (cx_chan_t *c)
{
unsigned short port = c->chip->port;
int clock, period;
if (c->num == 0) {
c->board->bcr0 &= ~BCR0_UMASK;
if (c->mode != M_ASYNC)
c->board->bcr0 |= BCR0_UM_SYNC;
if (c->board->if0type &&
(c->type==T_UNIV_RS449 || c->type==T_UNIV_V35))
c->board->bcr0 |= BCR0_UI_RS449;
outb (BCR0(c->board->port), c->board->bcr0);
} else if (c->num == 8) {
c->board->bcr0b &= ~BCR0_UMASK;
if (c->mode != M_ASYNC)
c->board->bcr0b |= BCR0_UM_SYNC;
if (c->board->if8type &&
(c->type==T_UNIV_RS449 || c->type==T_UNIV_V35))
c->board->bcr0b |= BCR0_UI_RS449;
outb (BCR0(c->board->port+0x10), c->board->bcr0b);
}
/* set current channel number */
outb (CAR(port), c->num & 3);
/* reset the channel */
cx_cmd (port, CCR_CLRCH);
/* set LIVR to contain the board and channel numbers */
outb (LIVR(port), c->board->num << 6 | c->num << 2);
/* clear DTR, RTS, set TXCout/DTR pin */
outb (MSVR_RTS(port), 0);
outb (MSVR_DTR(port), c->mode==M_ASYNC ? 0 : MSV_TXCOUT);
switch (c->mode) { /* initialize the channel mode */
case M_ASYNC:
/* set receiver timeout register */
outw (RTPR(port), 10); /* 10 msec, see TPR */
outb (CMR(port), CMR_RXDMA | CMR_TXDMA | CMR_ASYNC);
outb (COR1(port), BYTE c->aopt.cor1);
outb (COR2(port), BYTE c->aopt.cor2);
outb (COR3(port), BYTE c->aopt.cor3);
outb (COR6(port), BYTE c->aopt.cor6);
outb (COR7(port), BYTE c->aopt.cor7);
outb (SCHR1(port), c->aopt.schr1);
outb (SCHR2(port), c->aopt.schr2);
outb (SCHR3(port), c->aopt.schr3);
outb (SCHR4(port), c->aopt.schr4);
outb (SCRL(port), c->aopt.scrl);
outb (SCRH(port), c->aopt.scrh);
outb (LNXT(port), c->aopt.lnxt);
break;
case M_HDLC:
outb (CMR(port), CMR_RXDMA | CMR_TXDMA | CMR_HDLC);
outb (COR1(port), BYTE c->hopt.cor1);
outb (COR2(port), BYTE c->hopt.cor2);
outb (COR3(port), BYTE c->hopt.cor3);
outb (RFAR1(port), c->hopt.rfar1);
outb (RFAR2(port), c->hopt.rfar2);
outb (RFAR3(port), c->hopt.rfar3);
outb (RFAR4(port), c->hopt.rfar4);
outb (CPSR(port), c->hopt.cpsr);
break;
case M_BISYNC:
outb (CMR(port), CMR_RXDMA | CMR_TXDMA | CMR_BISYNC);
outb (COR1(port), BYTE c->bopt.cor1);
outb (COR2(port), BYTE c->bopt.cor2);
outb (COR3(port), BYTE c->bopt.cor3);
outb (COR6(port), BYTE c->bopt.cor6);
outb (CPSR(port), c->bopt.cpsr);
break;
case M_X21:
outb (CMR(port), CMR_RXDMA | CMR_TXDMA | CMR_X21);
outb (COR1(port), BYTE c->xopt.cor1);
outb (COR2(port), BYTE c->xopt.cor2);
outb (COR3(port), BYTE c->xopt.cor3);
outb (COR6(port), BYTE c->xopt.cor6);
outb (SCHR1(port), c->xopt.schr1);
outb (SCHR2(port), c->xopt.schr2);
outb (SCHR3(port), c->xopt.schr3);
break;
}
/* set mode-independent options */
outb (COR4(port), BYTE c->opt.cor4);
outb (COR5(port), BYTE c->opt.cor5);
/* set up receiver clock values */
if (c->mode == M_ASYNC || c->opt.rcor.dpll) {
cx_clock (c->chip->oscfreq, c->rxbaud, &clock, &period);
c->opt.rcor.clk = clock;
} else {
c->opt.rcor.clk = CLK_EXT;
period = 1;
}
outb (RCOR(port), BYTE c->opt.rcor);
outb (RBPR(port), period);
/* set up transmitter clock values */
if (c->mode == M_ASYNC || !c->opt.tcor.ext1x) {
unsigned ext1x = c->opt.tcor.ext1x;
c->opt.tcor.ext1x = 0;
cx_clock (c->chip->oscfreq, c->txbaud, &clock, &period);
c->opt.tcor.clk = clock;
c->opt.tcor.ext1x = ext1x;
} else {
c->opt.tcor.clk = CLK_EXT;
period = 1;
}
outb (TCOR(port), BYTE c->opt.tcor);
outb (TBPR(port), period);
/* set receiver A buffer physical address */
c->arphys = vtophys (c->arbuf);
outw (ARBADRU(port), (unsigned short) (c->arphys>>16));
outw (ARBADRL(port), (unsigned short) c->arphys);
/* set receiver B buffer physical address */
c->brphys = vtophys (c->brbuf);
outw (BRBADRU(port), (unsigned short) (c->brphys>>16));
outw (BRBADRL(port), (unsigned short) c->brphys);
/* set transmitter A buffer physical address */
c->atphys = vtophys (c->atbuf);
outw (ATBADRU(port), (unsigned short) (c->atphys>>16));
outw (ATBADRL(port), (unsigned short) c->atphys);
/* set transmitter B buffer physical address */
c->btphys = vtophys (c->btbuf);
outw (BTBADRU(port), (unsigned short) (c->btphys>>16));
outw (BTBADRL(port), (unsigned short) c->btphys);
c->dtr = 0;
c->rts = 0;
}
/*
* Control DTR signal for the channel.
* Turn it on/off.
*/
void cx_chan_dtr (cx_chan_t *c, int on)
{
c->dtr = on ? 1 : 0;
if (c->mode == M_ASYNC) {
outb (CAR(c->chip->port), c->num & 3);
outb (MSVR_DTR(c->chip->port), on ? MSV_DTR : 0);
return;
}
switch (c->num) {
default:
/* Channels 4..7 and 12..15 in syncronous mode
* have no DTR signal. */
break;
case 1: case 2: case 3:
if (c->type == T_UNIV_RS232)
break;
case 0:
if (on)
c->board->bcr1 |= 0x100 << c->num;
else
c->board->bcr1 &= ~(0x100 << c->num);
outw (BCR1(c->board->port), c->board->bcr1);
break;
case 9: case 10: case 11:
if (c->type == T_UNIV_RS232)
break;
case 8:
if (on)
c->board->bcr1b |= 0x100 << (c->num & 3);
else
c->board->bcr1b &= ~(0x100 << (c->num & 3));
outw (BCR1(c->board->port+0x10), c->board->bcr1b);
break;
}
}
/*
* Control RTS signal for the channel.
* Turn it on/off.
*/
void
cx_chan_rts (cx_chan_t *c, int on)
{
c->rts = on ? 1 : 0;
outb (CAR(c->chip->port), c->num & 3);
outb (MSVR_RTS(c->chip->port), on ? MSV_RTS : 0);
}
/*
* Get the state of CARRIER signal of the channel.
*/
int
cx_chan_cd (cx_chan_t *c)
{
unsigned char sigval;
if (c->mode == M_ASYNC) {
outb (CAR(c->chip->port), c->num & 3);
return (inb (MSVR(c->chip->port)) & MSV_CD ? 1 : 0);
}
/*
* Channels 4..7 and 12..15 don't have CD signal available.
*/
switch (c->num) {
default:
return (1);
case 1: case 2: case 3:
if (c->type == T_UNIV_RS232)
return (1);
case 0:
sigval = inw (BSR(c->board->port)) >> 8;
break;
case 9: case 10: case 11:
if (c->type == T_UNIV_RS232)
return (1);
case 8:
sigval = inw (BSR(c->board->port+0x10)) >> 8;
break;
}
return (~sigval >> 4 >> (c->num & 3) & 1);
}
/*
* Compute CD2400 clock values.
*/
void cx_clock (long hz, long ba, int *clk, int *div)
{
static short clocktab[] = { 8, 32, 128, 512, 2048, 0 };
for (*clk=0; clocktab[*clk]; ++*clk) {
long c = ba * clocktab[*clk];
if (hz <= c*256) {
*div = (2 * hz + c) / (2 * c) - 1;
return;
}
}
/* Incorrect baud rate. Return some meaningful values. */
*clk = 0;
*div = 255;
}