freebsd-skq/sys/netinet/udp_usrreq.c
Pedro F. Giffuni 51369649b0 sys: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 3-Clause license.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
2017-11-20 19:43:44 +00:00

1796 lines
46 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California.
* Copyright (c) 2008 Robert N. M. Watson
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* Copyright (c) 2014 Kevin Lo
* All rights reserved.
*
* Portions of this software were developed by Robert N. M. Watson under
* contract to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/domain.h>
#include <sys/eventhandler.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/route.h>
#include <net/rss_config.h>
#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_pcb.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <netinet/ip_var.h>
#include <netinet/ip_options.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#endif
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <netinet/udplite.h>
#include <netinet/in_rss.h>
#include <netipsec/ipsec_support.h>
#include <machine/in_cksum.h>
#include <security/mac/mac_framework.h>
/*
* UDP and UDP-Lite protocols implementation.
* Per RFC 768, August, 1980.
* Per RFC 3828, July, 2004.
*/
/*
* BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums
* removes the only data integrity mechanism for packets and malformed
* packets that would otherwise be discarded due to bad checksums, and may
* cause problems (especially for NFS data blocks).
*/
VNET_DEFINE(int, udp_cksum) = 1;
SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(udp_cksum), 0, "compute udp checksum");
int udp_log_in_vain = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
&udp_log_in_vain, 0, "Log all incoming UDP packets");
VNET_DEFINE(int, udp_blackhole) = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
&VNET_NAME(udp_blackhole), 0,
"Do not send port unreachables for refused connects");
u_long udp_sendspace = 9216; /* really max datagram size */
SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
&udp_sendspace, 0, "Maximum outgoing UDP datagram size");
u_long udp_recvspace = 40 * (1024 +
#ifdef INET6
sizeof(struct sockaddr_in6)
#else
sizeof(struct sockaddr_in)
#endif
); /* 40 1K datagrams */
SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
&udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */
VNET_DEFINE(struct inpcbinfo, udbinfo);
VNET_DEFINE(struct inpcbhead, ulitecb);
VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
static VNET_DEFINE(uma_zone_t, udpcb_zone);
#define V_udpcb_zone VNET(udpcb_zone)
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 128
#endif
VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */
VNET_PCPUSTAT_SYSINIT(udpstat);
SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
#ifdef VIMAGE
VNET_PCPUSTAT_SYSUNINIT(udpstat);
#endif /* VIMAGE */
#ifdef INET
static void udp_detach(struct socket *so);
static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
struct mbuf *, struct thread *);
#endif
static void
udp_zone_change(void *tag)
{
uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
uma_zone_set_max(V_udpcb_zone, maxsockets);
}
static int
udp_inpcb_init(void *mem, int size, int flags)
{
struct inpcb *inp;
inp = mem;
INP_LOCK_INIT(inp, "inp", "udpinp");
return (0);
}
static int
udplite_inpcb_init(void *mem, int size, int flags)
{
struct inpcb *inp;
inp = mem;
INP_LOCK_INIT(inp, "inp", "udpliteinp");
return (0);
}
void
udp_init(void)
{
/*
* For now default to 2-tuple UDP hashing - until the fragment
* reassembly code can also update the flowid.
*
* Once we can calculate the flowid that way and re-establish
* a 4-tuple, flip this to 4-tuple.
*/
in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
"udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE);
V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
uma_zone_set_max(V_udpcb_zone, maxsockets);
uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
EVENTHANDLER_PRI_ANY);
}
void
udplite_init(void)
{
in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init,
IPI_HASHFIELDS_2TUPLE);
}
/*
* Kernel module interface for updating udpstat. The argument is an index
* into udpstat treated as an array of u_long. While this encodes the
* general layout of udpstat into the caller, it doesn't encode its location,
* so that future changes to add, for example, per-CPU stats support won't
* cause binary compatibility problems for kernel modules.
*/
void
kmod_udpstat_inc(int statnum)
{
counter_u64_add(VNET(udpstat)[statnum], 1);
}
int
udp_newudpcb(struct inpcb *inp)
{
struct udpcb *up;
up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
if (up == NULL)
return (ENOBUFS);
inp->inp_ppcb = up;
return (0);
}
void
udp_discardcb(struct udpcb *up)
{
uma_zfree(V_udpcb_zone, up);
}
#ifdef VIMAGE
static void
udp_destroy(void *unused __unused)
{
in_pcbinfo_destroy(&V_udbinfo);
uma_zdestroy(V_udpcb_zone);
}
VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
static void
udplite_destroy(void *unused __unused)
{
in_pcbinfo_destroy(&V_ulitecbinfo);
}
VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
NULL);
#endif
#ifdef INET
/*
* Subroutine of udp_input(), which appends the provided mbuf chain to the
* passed pcb/socket. The caller must provide a sockaddr_in via udp_in that
* contains the source address. If the socket ends up being an IPv6 socket,
* udp_append() will convert to a sockaddr_in6 before passing the address
* into the socket code.
*
* In the normal case udp_append() will return 0, indicating that you
* must unlock the inp. However if a tunneling protocol is in place we increment
* the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
* then decrement the reference count. If the inp_rele returns 1, indicating the
* inp is gone, we return that to the caller to tell them *not* to unlock
* the inp. In the case of multi-cast this will cause the distribution
* to stop (though most tunneling protocols known currently do *not* use
* multicast).
*/
static int
udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
struct sockaddr_in *udp_in)
{
struct sockaddr *append_sa;
struct socket *so;
struct mbuf *tmpopts, *opts = NULL;
#ifdef INET6
struct sockaddr_in6 udp_in6;
#endif
struct udpcb *up;
INP_LOCK_ASSERT(inp);
/*
* Engage the tunneling protocol.
*/
up = intoudpcb(inp);
if (up->u_tun_func != NULL) {
in_pcbref(inp);
INP_RUNLOCK(inp);
(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
up->u_tun_ctx);
INP_RLOCK(inp);
return (in_pcbrele_rlocked(inp));
}
off += sizeof(struct udphdr);
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
/* Check AH/ESP integrity. */
if (IPSEC_ENABLED(ipv4) &&
IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
m_freem(n);
return (0);
}
if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
if (IPSEC_ENABLED(ipv4) &&
UDPENCAP_INPUT(n, off, AF_INET) != 0)
return (0); /* Consumed. */
}
#endif /* IPSEC */
#ifdef MAC
if (mac_inpcb_check_deliver(inp, n) != 0) {
m_freem(n);
return (0);
}
#endif /* MAC */
if (inp->inp_flags & INP_CONTROLOPTS ||
inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
else
#endif /* INET6 */
ip_savecontrol(inp, &opts, ip, n);
}
if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
if (tmpopts) {
if (opts) {
tmpopts->m_next = opts;
opts = tmpopts;
} else
opts = tmpopts;
}
}
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
bzero(&udp_in6, sizeof(udp_in6));
udp_in6.sin6_len = sizeof(udp_in6);
udp_in6.sin6_family = AF_INET6;
in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
append_sa = (struct sockaddr *)&udp_in6;
} else
#endif /* INET6 */
append_sa = (struct sockaddr *)&udp_in[0];
m_adj(n, off);
so = inp->inp_socket;
SOCKBUF_LOCK(&so->so_rcv);
if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
SOCKBUF_UNLOCK(&so->so_rcv);
m_freem(n);
if (opts)
m_freem(opts);
UDPSTAT_INC(udps_fullsock);
} else
sorwakeup_locked(so);
return (0);
}
int
udp_input(struct mbuf **mp, int *offp, int proto)
{
struct ip *ip;
struct udphdr *uh;
struct ifnet *ifp;
struct inpcb *inp;
uint16_t len, ip_len;
struct inpcbinfo *pcbinfo;
struct ip save_ip;
struct sockaddr_in udp_in[2];
struct mbuf *m;
struct m_tag *fwd_tag;
int cscov_partial, iphlen;
m = *mp;
iphlen = *offp;
ifp = m->m_pkthdr.rcvif;
*mp = NULL;
UDPSTAT_INC(udps_ipackets);
/*
* Strip IP options, if any; should skip this, make available to
* user, and use on returned packets, but we don't yet have a way to
* check the checksum with options still present.
*/
if (iphlen > sizeof (struct ip)) {
ip_stripoptions(m);
iphlen = sizeof(struct ip);
}
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
if (m->m_len < iphlen + sizeof(struct udphdr)) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
UDPSTAT_INC(udps_hdrops);
return (IPPROTO_DONE);
}
ip = mtod(m, struct ip *);
}
uh = (struct udphdr *)((caddr_t)ip + iphlen);
cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
/*
* Destination port of 0 is illegal, based on RFC768.
*/
if (uh->uh_dport == 0)
goto badunlocked;
/*
* Construct sockaddr format source address. Stuff source address
* and datagram in user buffer.
*/
bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
udp_in[0].sin_len = sizeof(struct sockaddr_in);
udp_in[0].sin_family = AF_INET;
udp_in[0].sin_port = uh->uh_sport;
udp_in[0].sin_addr = ip->ip_src;
udp_in[1].sin_len = sizeof(struct sockaddr_in);
udp_in[1].sin_family = AF_INET;
udp_in[1].sin_port = uh->uh_dport;
udp_in[1].sin_addr = ip->ip_dst;
/*
* Make mbuf data length reflect UDP length. If not enough data to
* reflect UDP length, drop.
*/
len = ntohs((u_short)uh->uh_ulen);
ip_len = ntohs(ip->ip_len) - iphlen;
if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
/* Zero means checksum over the complete packet. */
if (len == 0)
len = ip_len;
cscov_partial = 0;
}
if (ip_len != len) {
if (len > ip_len || len < sizeof(struct udphdr)) {
UDPSTAT_INC(udps_badlen);
goto badunlocked;
}
if (proto == IPPROTO_UDP)
m_adj(m, len - ip_len);
}
/*
* Save a copy of the IP header in case we want restore it for
* sending an ICMP error message in response.
*/
if (!V_udp_blackhole)
save_ip = *ip;
else
memset(&save_ip, 0, sizeof(save_ip));
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum) {
u_short uh_sum;
if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
!cscov_partial) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
uh_sum = m->m_pkthdr.csum_data;
else
uh_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htonl((u_short)len +
m->m_pkthdr.csum_data + proto));
uh_sum ^= 0xffff;
} else {
char b[9];
bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
bzero(((struct ipovly *)ip)->ih_x1, 9);
((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
uh->uh_ulen : htons(ip_len);
uh_sum = in_cksum(m, len + sizeof (struct ip));
bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
}
if (uh_sum) {
UDPSTAT_INC(udps_badsum);
m_freem(m);
return (IPPROTO_DONE);
}
} else {
if (proto == IPPROTO_UDP) {
UDPSTAT_INC(udps_nosum);
} else {
/* UDPLite requires a checksum */
/* XXX: What is the right UDPLite MIB counter here? */
m_freem(m);
return (IPPROTO_DONE);
}
}
pcbinfo = udp_get_inpcbinfo(proto);
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
in_broadcast(ip->ip_dst, ifp)) {
struct inpcb *last;
struct inpcbhead *pcblist;
struct ip_moptions *imo;
INP_INFO_RLOCK(pcbinfo);
pcblist = udp_get_pcblist(proto);
last = NULL;
LIST_FOREACH(inp, pcblist, inp_list) {
if (inp->inp_lport != uh->uh_dport)
continue;
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_laddr.s_addr != INADDR_ANY &&
inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
continue;
if (inp->inp_faddr.s_addr != INADDR_ANY &&
inp->inp_faddr.s_addr != ip->ip_src.s_addr)
continue;
if (inp->inp_fport != 0 &&
inp->inp_fport != uh->uh_sport)
continue;
INP_RLOCK(inp);
/*
* XXXRW: Because we weren't holding either the inpcb
* or the hash lock when we checked for a match
* before, we should probably recheck now that the
* inpcb lock is held.
*/
/*
* Handle socket delivery policy for any-source
* and source-specific multicast. [RFC3678]
*/
imo = inp->inp_moptions;
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
struct sockaddr_in group;
int blocked;
if (imo == NULL) {
INP_RUNLOCK(inp);
continue;
}
bzero(&group, sizeof(struct sockaddr_in));
group.sin_len = sizeof(struct sockaddr_in);
group.sin_family = AF_INET;
group.sin_addr = ip->ip_dst;
blocked = imo_multi_filter(imo, ifp,
(struct sockaddr *)&group,
(struct sockaddr *)&udp_in[0]);
if (blocked != MCAST_PASS) {
if (blocked == MCAST_NOTGMEMBER)
IPSTAT_INC(ips_notmember);
if (blocked == MCAST_NOTSMEMBER ||
blocked == MCAST_MUTED)
UDPSTAT_INC(udps_filtermcast);
INP_RUNLOCK(inp);
continue;
}
}
if (last != NULL) {
struct mbuf *n;
if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
NULL) {
UDP_PROBE(receive, NULL, last, ip,
last, uh);
if (udp_append(last, ip, n, iphlen,
udp_in)) {
goto inp_lost;
}
}
INP_RUNLOCK(last);
}
last = inp;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids
* searching through all pcbs in the common case of a
* non-shared port. It assumes that an application
* will never clear these options after setting them.
*/
if ((last->inp_socket->so_options &
(SO_REUSEPORT|SO_REUSEADDR)) == 0)
break;
}
if (last == NULL) {
/*
* No matching pcb found; discard datagram. (No need
* to send an ICMP Port Unreachable for a broadcast
* or multicast datgram.)
*/
UDPSTAT_INC(udps_noportbcast);
if (inp)
INP_RUNLOCK(inp);
INP_INFO_RUNLOCK(pcbinfo);
goto badunlocked;
}
UDP_PROBE(receive, NULL, last, ip, last, uh);
if (udp_append(last, ip, m, iphlen, udp_in) == 0)
INP_RUNLOCK(last);
inp_lost:
INP_INFO_RUNLOCK(pcbinfo);
return (IPPROTO_DONE);
}
/*
* Locate pcb for datagram.
*/
/*
* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
*/
if ((m->m_flags & M_IP_NEXTHOP) &&
(fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
struct sockaddr_in *next_hop;
next_hop = (struct sockaddr_in *)(fwd_tag + 1);
/*
* Transparently forwarded. Pretend to be the destination.
* Already got one like this?
*/
inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
if (!inp) {
/*
* It's new. Try to find the ambushing socket.
* Because we've rewritten the destination address,
* any hardware-generated hash is ignored.
*/
inp = in_pcblookup(pcbinfo, ip->ip_src,
uh->uh_sport, next_hop->sin_addr,
next_hop->sin_port ? htons(next_hop->sin_port) :
uh->uh_dport, INPLOOKUP_WILDCARD |
INPLOOKUP_RLOCKPCB, ifp);
}
/* Remove the tag from the packet. We don't need it anymore. */
m_tag_delete(m, fwd_tag);
m->m_flags &= ~M_IP_NEXTHOP;
} else
inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
INPLOOKUP_RLOCKPCB, ifp, m);
if (inp == NULL) {
if (udp_log_in_vain) {
char src[INET_ADDRSTRLEN];
char dst[INET_ADDRSTRLEN];
log(LOG_INFO,
"Connection attempt to UDP %s:%d from %s:%d\n",
inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
}
UDPSTAT_INC(udps_noport);
if (m->m_flags & (M_BCAST | M_MCAST)) {
UDPSTAT_INC(udps_noportbcast);
goto badunlocked;
}
if (V_udp_blackhole)
goto badunlocked;
if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
goto badunlocked;
*ip = save_ip;
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
return (IPPROTO_DONE);
}
/*
* Check the minimum TTL for socket.
*/
INP_RLOCK_ASSERT(inp);
if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
INP_RUNLOCK(inp);
m_freem(m);
return (IPPROTO_DONE);
}
if (cscov_partial) {
struct udpcb *up;
up = intoudpcb(inp);
if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
INP_RUNLOCK(inp);
m_freem(m);
return (IPPROTO_DONE);
}
}
UDP_PROBE(receive, NULL, inp, ip, inp, uh);
if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
INP_RUNLOCK(inp);
return (IPPROTO_DONE);
badunlocked:
m_freem(m);
return (IPPROTO_DONE);
}
#endif /* INET */
/*
* Notify a udp user of an asynchronous error; just wake up so that they can
* collect error status.
*/
struct inpcb *
udp_notify(struct inpcb *inp, int errno)
{
/*
* While udp_ctlinput() always calls udp_notify() with a read lock
* when invoking it directly, in_pcbnotifyall() currently uses write
* locks due to sharing code with TCP. For now, accept either a read
* or a write lock, but a read lock is sufficient.
*/
INP_LOCK_ASSERT(inp);
if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
RTFREE(inp->inp_route.ro_rt);
inp->inp_route.ro_rt = (struct rtentry *)NULL;
}
inp->inp_socket->so_error = errno;
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
return (inp);
}
#ifdef INET
static void
udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
struct inpcbinfo *pcbinfo)
{
struct ip *ip = vip;
struct udphdr *uh;
struct in_addr faddr;
struct inpcb *inp;
faddr = ((struct sockaddr_in *)sa)->sin_addr;
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
return;
if (PRC_IS_REDIRECT(cmd)) {
/* signal EHOSTDOWN, as it flushes the cached route */
in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
return;
}
/*
* Hostdead is ugly because it goes linearly through all PCBs.
*
* XXX: We never get this from ICMP, otherwise it makes an excellent
* DoS attack on machines with many connections.
*/
if (cmd == PRC_HOSTDEAD)
ip = NULL;
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
return;
if (ip != NULL) {
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
INP_RLOCK_ASSERT(inp);
if (inp->inp_socket != NULL) {
udp_notify(inp, inetctlerrmap[cmd]);
}
INP_RUNLOCK(inp);
} else {
inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
ip->ip_src, uh->uh_sport,
INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
struct udpcb *up;
up = intoudpcb(inp);
if (up->u_icmp_func != NULL) {
INP_RUNLOCK(inp);
(*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx);
} else {
INP_RUNLOCK(inp);
}
}
}
} else
in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
udp_notify);
}
void
udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
{
return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
}
void
udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
{
return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
}
#endif /* INET */
static int
udp_pcblist(SYSCTL_HANDLER_ARGS)
{
int error, i, n;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the PCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == 0) {
n = V_udbinfo.ipi_count;
n += imax(n / 8, 10);
req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
return (0);
}
if (req->newptr != 0)
return (EPERM);
/*
* OK, now we're committed to doing something.
*/
INP_INFO_RLOCK(&V_udbinfo);
gencnt = V_udbinfo.ipi_gencnt;
n = V_udbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_udbinfo);
error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
+ n * sizeof(struct xinpcb));
if (error != 0)
return (error);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return (error);
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == NULL)
return (ENOMEM);
INP_INFO_RLOCK(&V_udbinfo);
for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
INP_WLOCK(inp);
if (inp->inp_gencnt <= gencnt &&
cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
in_pcbref(inp);
inp_list[i++] = inp;
}
INP_WUNLOCK(inp);
}
INP_INFO_RUNLOCK(&V_udbinfo);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (inp->inp_gencnt <= gencnt) {
struct xinpcb xi;
in_pcbtoxinpcb(inp, &xi);
INP_RUNLOCK(inp);
error = SYSCTL_OUT(req, &xi, sizeof xi);
} else
INP_RUNLOCK(inp);
}
INP_INFO_WLOCK(&V_udbinfo);
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (!in_pcbrele_rlocked(inp))
INP_RUNLOCK(inp);
}
INP_INFO_WUNLOCK(&V_udbinfo);
if (!error) {
/*
* Give the user an updated idea of our state. If the
* generation differs from what we told her before, she knows
* that something happened while we were processing this
* request, and it might be necessary to retry.
*/
INP_INFO_RLOCK(&V_udbinfo);
xig.xig_gen = V_udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = V_udbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_udbinfo);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return (error);
}
SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
udp_pcblist, "S,xinpcb", "List of active UDP sockets");
#ifdef INET
static int
udp_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in addrs[2];
struct inpcb *inp;
int error;
error = priv_check(req->td, PRIV_NETINET_GETCRED);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port,
INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
INP_RLOCK_ASSERT(inp);
if (inp->inp_socket == NULL)
error = ENOENT;
if (error == 0)
error = cr_canseeinpcb(req->td->td_ucred, inp);
if (error == 0)
cru2x(inp->inp_cred, &xuc);
INP_RUNLOCK(inp);
} else
error = ENOENT;
if (error == 0)
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
return (error);
}
SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
#endif /* INET */
int
udp_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct inpcb *inp;
struct udpcb *up;
int isudplite, error, optval;
error = 0;
isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
INP_WLOCK(inp);
if (sopt->sopt_level != so->so_proto->pr_protocol) {
#ifdef INET6
if (INP_CHECK_SOCKAF(so, AF_INET6)) {
INP_WUNLOCK(inp);
error = ip6_ctloutput(so, sopt);
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
INP_WUNLOCK(inp);
error = ip_ctloutput(so, sopt);
}
#endif
return (error);
}
switch (sopt->sopt_dir) {
case SOPT_SET:
switch (sopt->sopt_name) {
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
#ifdef INET
case UDP_ENCAP:
if (!IPSEC_ENABLED(ipv4)) {
INP_WUNLOCK(inp);
return (ENOPROTOOPT);
}
error = UDPENCAP_PCBCTL(inp, sopt);
break;
#endif /* INET */
#endif /* IPSEC */
case UDPLITE_SEND_CSCOV:
case UDPLITE_RECV_CSCOV:
if (!isudplite) {
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof(optval),
sizeof(optval));
if (error != 0)
break;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
INP_WLOCK(inp);
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
if ((optval != 0 && optval < 8) || (optval > 65535)) {
INP_WUNLOCK(inp);
error = EINVAL;
break;
}
if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
up->u_txcslen = optval;
else
up->u_rxcslen = optval;
INP_WUNLOCK(inp);
break;
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
case SOPT_GET:
switch (sopt->sopt_name) {
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
#ifdef INET
case UDP_ENCAP:
if (!IPSEC_ENABLED(ipv4)) {
INP_WUNLOCK(inp);
return (ENOPROTOOPT);
}
error = UDPENCAP_PCBCTL(inp, sopt);
break;
#endif /* INET */
#endif /* IPSEC */
case UDPLITE_SEND_CSCOV:
case UDPLITE_RECV_CSCOV:
if (!isudplite) {
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
optval = up->u_txcslen;
else
optval = up->u_rxcslen;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof(optval));
break;
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
}
return (error);
}
#ifdef INET
#define UH_WLOCKED 2
#define UH_RLOCKED 1
#define UH_UNLOCKED 0
static int
udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
{
struct udpiphdr *ui;
int len = m->m_pkthdr.len;
struct in_addr faddr, laddr;
struct cmsghdr *cm;
struct inpcbinfo *pcbinfo;
struct sockaddr_in *sin, src;
int cscov_partial = 0;
int error = 0;
int ipflags;
u_short fport, lport;
int unlock_udbinfo, unlock_inp;
u_char tos;
uint8_t pr;
uint16_t cscov = 0;
uint32_t flowid = 0;
uint8_t flowtype = M_HASHTYPE_NONE;
/*
* udp_output() may need to temporarily bind or connect the current
* inpcb. As such, we don't know up front whether we will need the
* pcbinfo lock or not. Do any work to decide what is needed up
* front before acquiring any locks.
*/
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
if (control)
m_freem(control);
m_freem(m);
return (EMSGSIZE);
}
src.sin_family = 0;
sin = (struct sockaddr_in *)addr;
if (sin == NULL ||
(inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
INP_WLOCK(inp);
unlock_inp = UH_WLOCKED;
} else {
INP_RLOCK(inp);
unlock_inp = UH_RLOCKED;
}
tos = inp->inp_ip_tos;
if (control != NULL) {
/*
* XXX: Currently, we assume all the optional information is
* stored in a single mbuf.
*/
if (control->m_next) {
if (unlock_inp == UH_WLOCKED)
INP_WUNLOCK(inp);
else
INP_RUNLOCK(inp);
m_freem(control);
m_freem(m);
return (EINVAL);
}
for (; control->m_len > 0;
control->m_data += CMSG_ALIGN(cm->cmsg_len),
control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
cm = mtod(control, struct cmsghdr *);
if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
|| cm->cmsg_len > control->m_len) {
error = EINVAL;
break;
}
if (cm->cmsg_level != IPPROTO_IP)
continue;
switch (cm->cmsg_type) {
case IP_SENDSRCADDR:
if (cm->cmsg_len !=
CMSG_LEN(sizeof(struct in_addr))) {
error = EINVAL;
break;
}
bzero(&src, sizeof(src));
src.sin_family = AF_INET;
src.sin_len = sizeof(src);
src.sin_port = inp->inp_lport;
src.sin_addr =
*(struct in_addr *)CMSG_DATA(cm);
break;
case IP_TOS:
if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
error = EINVAL;
break;
}
tos = *(u_char *)CMSG_DATA(cm);
break;
case IP_FLOWID:
if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
error = EINVAL;
break;
}
flowid = *(uint32_t *) CMSG_DATA(cm);
break;
case IP_FLOWTYPE:
if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
error = EINVAL;
break;
}
flowtype = *(uint32_t *) CMSG_DATA(cm);
break;
#ifdef RSS
case IP_RSSBUCKETID:
if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
error = EINVAL;
break;
}
/* This is just a placeholder for now */
break;
#endif /* RSS */
default:
error = ENOPROTOOPT;
break;
}
if (error)
break;
}
m_freem(control);
}
if (error) {
if (unlock_inp == UH_WLOCKED)
INP_WUNLOCK(inp);
else
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
/*
* Depending on whether or not the application has bound or connected
* the socket, we may have to do varying levels of work. The optimal
* case is for a connected UDP socket, as a global lock isn't
* required at all.
*
* In order to decide which we need, we require stability of the
* inpcb binding, which we ensure by acquiring a read lock on the
* inpcb. This doesn't strictly follow the lock order, so we play
* the trylock and retry game; note that we may end up with more
* conservative locks than required the second time around, so later
* assertions have to accept that. Further analysis of the number of
* misses under contention is required.
*
* XXXRW: Check that hash locking update here is correct.
*/
pr = inp->inp_socket->so_proto->pr_protocol;
pcbinfo = udp_get_inpcbinfo(pr);
sin = (struct sockaddr_in *)addr;
if (sin != NULL &&
(inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
INP_HASH_WLOCK(pcbinfo);
unlock_udbinfo = UH_WLOCKED;
} else if ((sin != NULL && (
(sin->sin_addr.s_addr == INADDR_ANY) ||
(sin->sin_addr.s_addr == INADDR_BROADCAST) ||
(inp->inp_laddr.s_addr == INADDR_ANY) ||
(inp->inp_lport == 0))) ||
(src.sin_family == AF_INET)) {
INP_HASH_RLOCK(pcbinfo);
unlock_udbinfo = UH_RLOCKED;
} else
unlock_udbinfo = UH_UNLOCKED;
/*
* If the IP_SENDSRCADDR control message was specified, override the
* source address for this datagram. Its use is invalidated if the
* address thus specified is incomplete or clobbers other inpcbs.
*/
laddr = inp->inp_laddr;
lport = inp->inp_lport;
if (src.sin_family == AF_INET) {
INP_HASH_LOCK_ASSERT(pcbinfo);
if ((lport == 0) ||
(laddr.s_addr == INADDR_ANY &&
src.sin_addr.s_addr == INADDR_ANY)) {
error = EINVAL;
goto release;
}
error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
&laddr.s_addr, &lport, td->td_ucred);
if (error)
goto release;
}
/*
* If a UDP socket has been connected, then a local address/port will
* have been selected and bound.
*
* If a UDP socket has not been connected to, then an explicit
* destination address must be used, in which case a local
* address/port may not have been selected and bound.
*/
if (sin != NULL) {
INP_LOCK_ASSERT(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
error = EISCONN;
goto release;
}
/*
* Jail may rewrite the destination address, so let it do
* that before we use it.
*/
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
if (error)
goto release;
/*
* If a local address or port hasn't yet been selected, or if
* the destination address needs to be rewritten due to using
* a special INADDR_ constant, invoke in_pcbconnect_setup()
* to do the heavy lifting. Once a port is selected, we
* commit the binding back to the socket; we also commit the
* binding of the address if in jail.
*
* If we already have a valid binding and we're not
* requesting a destination address rewrite, use a fast path.
*/
if (inp->inp_laddr.s_addr == INADDR_ANY ||
inp->inp_lport == 0 ||
sin->sin_addr.s_addr == INADDR_ANY ||
sin->sin_addr.s_addr == INADDR_BROADCAST) {
INP_HASH_LOCK_ASSERT(pcbinfo);
error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
&lport, &faddr.s_addr, &fport, NULL,
td->td_ucred);
if (error)
goto release;
/*
* XXXRW: Why not commit the port if the address is
* !INADDR_ANY?
*/
/* Commit the local port if newly assigned. */
if (inp->inp_laddr.s_addr == INADDR_ANY &&
inp->inp_lport == 0) {
INP_WLOCK_ASSERT(inp);
INP_HASH_WLOCK_ASSERT(pcbinfo);
/*
* Remember addr if jailed, to prevent
* rebinding.
*/
if (prison_flag(td->td_ucred, PR_IP4))
inp->inp_laddr = laddr;
inp->inp_lport = lport;
if (in_pcbinshash(inp) != 0) {
inp->inp_lport = 0;
error = EAGAIN;
goto release;
}
inp->inp_flags |= INP_ANONPORT;
}
} else {
faddr = sin->sin_addr;
fport = sin->sin_port;
}
} else {
INP_LOCK_ASSERT(inp);
faddr = inp->inp_faddr;
fport = inp->inp_fport;
if (faddr.s_addr == INADDR_ANY) {
error = ENOTCONN;
goto release;
}
}
/*
* Calculate data length and get a mbuf for UDP, IP, and possible
* link-layer headers. Immediate slide the data pointer back forward
* since we won't use that space at this layer.
*/
M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
if (m == NULL) {
error = ENOBUFS;
goto release;
}
m->m_data += max_linkhdr;
m->m_len -= max_linkhdr;
m->m_pkthdr.len -= max_linkhdr;
/*
* Fill in mbuf with extended UDP header and addresses and length put
* into network format.
*/
ui = mtod(m, struct udpiphdr *);
bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
ui->ui_pr = pr;
ui->ui_src = laddr;
ui->ui_dst = faddr;
ui->ui_sport = lport;
ui->ui_dport = fport;
ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
if (pr == IPPROTO_UDPLITE) {
struct udpcb *up;
uint16_t plen;
up = intoudpcb(inp);
cscov = up->u_txcslen;
plen = (u_short)len + sizeof(struct udphdr);
if (cscov >= plen)
cscov = 0;
ui->ui_len = htons(plen);
ui->ui_ulen = htons(cscov);
/*
* For UDP-Lite, checksum coverage length of zero means
* the entire UDPLite packet is covered by the checksum.
*/
cscov_partial = (cscov == 0) ? 0 : 1;
} else
ui->ui_v = IPVERSION << 4;
/*
* Set the Don't Fragment bit in the IP header.
*/
if (inp->inp_flags & INP_DONTFRAG) {
struct ip *ip;
ip = (struct ip *)&ui->ui_i;
ip->ip_off |= htons(IP_DF);
}
ipflags = 0;
if (inp->inp_socket->so_options & SO_DONTROUTE)
ipflags |= IP_ROUTETOIF;
if (inp->inp_socket->so_options & SO_BROADCAST)
ipflags |= IP_ALLOWBROADCAST;
if (inp->inp_flags & INP_ONESBCAST)
ipflags |= IP_SENDONES;
#ifdef MAC
mac_inpcb_create_mbuf(inp, m);
#endif
/*
* Set up checksum and output datagram.
*/
ui->ui_sum = 0;
if (pr == IPPROTO_UDPLITE) {
if (inp->inp_flags & INP_ONESBCAST)
faddr.s_addr = INADDR_BROADCAST;
if (cscov_partial) {
if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
ui->ui_sum = 0xffff;
} else {
if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
ui->ui_sum = 0xffff;
}
} else if (V_udp_cksum) {
if (inp->inp_flags & INP_ONESBCAST)
faddr.s_addr = INADDR_BROADCAST;
ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
htons((u_short)len + sizeof(struct udphdr) + pr));
m->m_pkthdr.csum_flags = CSUM_UDP;
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
}
((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
((struct ip *)ui)->ip_tos = tos; /* XXX */
UDPSTAT_INC(udps_opackets);
/*
* Setup flowid / RSS information for outbound socket.
*
* Once the UDP code decides to set a flowid some other way,
* this allows the flowid to be overridden by userland.
*/
if (flowtype != M_HASHTYPE_NONE) {
m->m_pkthdr.flowid = flowid;
M_HASHTYPE_SET(m, flowtype);
#ifdef RSS
} else {
uint32_t hash_val, hash_type;
/*
* Calculate an appropriate RSS hash for UDP and
* UDP Lite.
*
* The called function will take care of figuring out
* whether a 2-tuple or 4-tuple hash is required based
* on the currently configured scheme.
*
* Later later on connected socket values should be
* cached in the inpcb and reused, rather than constantly
* re-calculating it.
*
* UDP Lite is a different protocol number and will
* likely end up being hashed as a 2-tuple until
* RSS / NICs grow UDP Lite protocol awareness.
*/
if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
pr, &hash_val, &hash_type) == 0) {
m->m_pkthdr.flowid = hash_val;
M_HASHTYPE_SET(m, hash_type);
}
#endif
}
#ifdef RSS
/*
* Don't override with the inp cached flowid value.
*
* Depending upon the kind of send being done, the inp
* flowid/flowtype values may actually not be appropriate
* for this particular socket send.
*
* We should either leave the flowid at zero (which is what is
* currently done) or set it to some software generated
* hash value based on the packet contents.
*/
ipflags |= IP_NODEFAULTFLOWID;
#endif /* RSS */
if (unlock_udbinfo == UH_WLOCKED)
INP_HASH_WUNLOCK(pcbinfo);
else if (unlock_udbinfo == UH_RLOCKED)
INP_HASH_RUNLOCK(pcbinfo);
UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
error = ip_output(m, inp->inp_options,
(unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
inp->inp_moptions, inp);
if (unlock_inp == UH_WLOCKED)
INP_WUNLOCK(inp);
else
INP_RUNLOCK(inp);
return (error);
release:
if (unlock_udbinfo == UH_WLOCKED) {
KASSERT(unlock_inp == UH_WLOCKED,
("%s: excl udbinfo lock, shared inp lock", __func__));
INP_HASH_WUNLOCK(pcbinfo);
INP_WUNLOCK(inp);
} else if (unlock_udbinfo == UH_RLOCKED) {
KASSERT(unlock_inp == UH_RLOCKED,
("%s: shared udbinfo lock, excl inp lock", __func__));
INP_HASH_RUNLOCK(pcbinfo);
INP_RUNLOCK(inp);
} else if (unlock_inp == UH_WLOCKED)
INP_WUNLOCK(inp);
else
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
static void
udp_abort(struct socket *so)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_HASH_WLOCK(pcbinfo);
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
INP_HASH_WUNLOCK(pcbinfo);
soisdisconnected(so);
}
INP_WUNLOCK(inp);
}
static int
udp_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
int error;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error)
return (error);
INP_INFO_WLOCK(pcbinfo);
error = in_pcballoc(so, pcbinfo);
if (error) {
INP_INFO_WUNLOCK(pcbinfo);
return (error);
}
inp = sotoinpcb(so);
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_ttl = V_ip_defttl;
error = udp_newudpcb(inp);
if (error) {
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(pcbinfo);
return (error);
}
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(pcbinfo);
return (0);
}
#endif /* INET */
int
udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
{
struct inpcb *inp;
struct udpcb *up;
KASSERT(so->so_type == SOCK_DGRAM,
("udp_set_kernel_tunneling: !dgram"));
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
INP_WLOCK(inp);
up = intoudpcb(inp);
if ((up->u_tun_func != NULL) ||
(up->u_icmp_func != NULL)) {
INP_WUNLOCK(inp);
return (EBUSY);
}
up->u_tun_func = f;
up->u_icmp_func = i;
up->u_tun_ctx = ctx;
INP_WUNLOCK(inp);
return (0);
}
#ifdef INET
static int
udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
int error;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
INP_WLOCK(inp);
INP_HASH_WLOCK(pcbinfo);
error = in_pcbbind(inp, nam, td->td_ucred);
INP_HASH_WUNLOCK(pcbinfo);
INP_WUNLOCK(inp);
return (error);
}
static void
udp_close(struct socket *so)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_close: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_HASH_WLOCK(pcbinfo);
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
INP_HASH_WUNLOCK(pcbinfo);
soisdisconnected(so);
}
INP_WUNLOCK(inp);
}
static int
udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
struct sockaddr_in *sin;
int error;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_WUNLOCK(inp);
return (EISCONN);
}
sin = (struct sockaddr_in *)nam;
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
if (error != 0) {
INP_WUNLOCK(inp);
return (error);
}
INP_HASH_WLOCK(pcbinfo);
error = in_pcbconnect(inp, nam, td->td_ucred);
INP_HASH_WUNLOCK(pcbinfo);
if (error == 0)
soisconnected(so);
INP_WUNLOCK(inp);
return (error);
}
static void
udp_detach(struct socket *so)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
struct udpcb *up;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
("udp_detach: not disconnected"));
INP_INFO_WLOCK(pcbinfo);
INP_WLOCK(inp);
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
inp->inp_ppcb = NULL;
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(pcbinfo);
udp_discardcb(up);
}
static int
udp_disconnect(struct socket *so)
{
struct inpcb *inp;
struct inpcbinfo *pcbinfo;
pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr == INADDR_ANY) {
INP_WUNLOCK(inp);
return (ENOTCONN);
}
INP_HASH_WLOCK(pcbinfo);
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
INP_HASH_WUNLOCK(pcbinfo);
SOCK_LOCK(so);
so->so_state &= ~SS_ISCONNECTED; /* XXX */
SOCK_UNLOCK(so);
INP_WUNLOCK(inp);
return (0);
}
static int
udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_send: inp == NULL"));
return (udp_output(inp, m, addr, control, td));
}
#endif /* INET */
int
udp_shutdown(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
INP_WLOCK(inp);
socantsendmore(so);
INP_WUNLOCK(inp);
return (0);
}
#ifdef INET
struct pr_usrreqs udp_usrreqs = {
.pru_abort = udp_abort,
.pru_attach = udp_attach,
.pru_bind = udp_bind,
.pru_connect = udp_connect,
.pru_control = in_control,
.pru_detach = udp_detach,
.pru_disconnect = udp_disconnect,
.pru_peeraddr = in_getpeeraddr,
.pru_send = udp_send,
.pru_soreceive = soreceive_dgram,
.pru_sosend = sosend_dgram,
.pru_shutdown = udp_shutdown,
.pru_sockaddr = in_getsockaddr,
.pru_sosetlabel = in_pcbsosetlabel,
.pru_close = udp_close,
};
#endif /* INET */