freebsd-skq/lib/libsysdecode/flags.c
jhb 57cd391d21 Improve decoding of RB_AUTOBOOT in the 'howto' argument to reboot().
The reboot() system call accepts a mode (RB_AUTOBOOT, RB_HALT, RB_POWEROFF,
or RB_REROOT) as well as zero or more optional flags in 'howto'.
However, RB_AUTOBOOT was only displayed if 'howto' was exactly 0.
Combinations like 'RB_AUTOBOOT | RB_DUMP' were decoded as 'RB_DUMP'.
Instead, imply that RB_AUTOBOOT was specified if none of the other "mode"
flags were specified.
2017-06-10 01:20:08 +00:00

1019 lines
20 KiB
C

/*
* Copyright (c) 2006 "David Kirchner" <dpk@dpk.net>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define L2CAP_SOCKET_CHECKED
#include <sys/types.h>
#include <sys/acl.h>
#include <sys/capsicum.h>
#include <sys/extattr.h>
#include <sys/linker.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/procctl.h>
#include <sys/ptrace.h>
#include <sys/reboot.h>
#include <sys/resource.h>
#include <sys/rtprio.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/thr.h>
#include <sys/umtx.h>
#include <netinet/in.h>
#include <netinet/sctp.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/udplite.h>
#include <nfsserver/nfs.h>
#include <ufs/ufs/quota.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <aio.h>
#include <fcntl.h>
#include <sched.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <sysdecode.h>
#include <unistd.h>
#include <sys/bitstring.h>
#include <netgraph/bluetooth/include/ng_hci.h>
#include <netgraph/bluetooth/include/ng_l2cap.h>
#include <netgraph/bluetooth/include/ng_btsocket.h>
/*
* This is taken from the xlat tables originally in truss which were
* in turn taken from strace.
*/
struct name_table {
uintmax_t val;
const char *str;
};
#define X(a) { a, #a },
#define XEND { 0, NULL }
#define TABLE_START(n) static struct name_table n[] = {
#define TABLE_ENTRY X
#define TABLE_END XEND };
#include "tables.h"
#undef TABLE_START
#undef TABLE_ENTRY
#undef TABLE_END
/*
* These are simple support macros. print_or utilizes a variable
* defined in the calling function to track whether or not it should
* print a logical-OR character ('|') before a string. if_print_or
* simply handles the necessary "if" statement used in many lines
* of this file.
*/
#define print_or(fp,str,orflag) do { \
if (orflag) fputc(fp, '|'); else orflag = true; \
fprintf(fp, str); } \
while (0)
#define if_print_or(fp,i,flag,orflag) do { \
if ((i & flag) == flag) \
print_or(fp,#flag,orflag); } \
while (0)
static const char *
lookup_value(struct name_table *table, uintmax_t val)
{
for (; table->str != NULL; table++)
if (table->val == val)
return (table->str);
return (NULL);
}
/*
* Used when the value maps to a bitmask of #definition values in the
* table. This is a helper routine which outputs a symbolic mask of
* matched masks. Multiple masks are separated by a pipe ('|').
* The value is modified on return to only hold unmatched bits.
*/
static void
print_mask_part(FILE *fp, struct name_table *table, uintmax_t *valp,
bool *printed)
{
uintmax_t rem;
rem = *valp;
for (; table->str != NULL; table++) {
if ((table->val & rem) == table->val) {
/*
* Only print a zero mask if the raw value is
* zero.
*/
if (table->val == 0 && *valp != 0)
continue;
fprintf(fp, "%s%s", *printed ? "|" : "", table->str);
*printed = true;
rem &= ~table->val;
}
}
*valp = rem;
}
/*
* Used when the value maps to a bitmask of #definition values in the
* table. The return value is true if something was printed. If
* rem is not NULL, *rem holds any bits not decoded if something was
* printed. If nothing was printed and rem is not NULL, *rem holds
* the original value.
*/
static bool
print_mask_int(FILE *fp, struct name_table *table, int ival, int *rem)
{
uintmax_t val;
bool printed;
printed = false;
val = (unsigned)ival;
print_mask_part(fp, table, &val, &printed);
if (rem != NULL)
*rem = val;
return (printed);
}
/*
* Used for a mask of optional flags where a value of 0 is valid.
*/
static bool
print_mask_0(FILE *fp, struct name_table *table, int val, int *rem)
{
if (val == 0) {
fputs("0", fp);
if (rem != NULL)
*rem = 0;
return (true);
}
return (print_mask_int(fp, table, val, rem));
}
/*
* Like print_mask_0 but for a unsigned long instead of an int.
*/
static bool
print_mask_0ul(FILE *fp, struct name_table *table, u_long lval, u_long *rem)
{
uintmax_t val;
bool printed;
if (lval == 0) {
fputs("0", fp);
if (rem != NULL)
*rem = 0;
return (true);
}
printed = false;
val = lval;
print_mask_part(fp, table, &val, &printed);
if (rem != NULL)
*rem = val;
return (printed);
}
static void
print_integer(FILE *fp, int val, int base)
{
switch (base) {
case 8:
fprintf(fp, "0%o", val);
break;
case 10:
fprintf(fp, "%d", val);
break;
case 16:
fprintf(fp, "0x%x", val);
break;
default:
abort2("bad base", 0, NULL);
break;
}
}
static bool
print_value(FILE *fp, struct name_table *table, uintmax_t val)
{
const char *str;
str = lookup_value(table, val);
if (str != NULL) {
fputs(str, fp);
return (true);
}
return (false);
}
const char *
sysdecode_atfd(int fd)
{
if (fd == AT_FDCWD)
return ("AT_FDCWD");
return (NULL);
}
static struct name_table semctlops[] = {
X(GETNCNT) X(GETPID) X(GETVAL) X(GETALL) X(GETZCNT) X(SETVAL) X(SETALL)
X(IPC_RMID) X(IPC_SET) X(IPC_STAT) XEND
};
const char *
sysdecode_semctl_cmd(int cmd)
{
return (lookup_value(semctlops, cmd));
}
static struct name_table shmctlops[] = {
X(IPC_RMID) X(IPC_SET) X(IPC_STAT) XEND
};
const char *
sysdecode_shmctl_cmd(int cmd)
{
return (lookup_value(shmctlops, cmd));
}
const char *
sysdecode_msgctl_cmd(int cmd)
{
return (sysdecode_shmctl_cmd(cmd));
}
static struct name_table semgetflags[] = {
X(IPC_CREAT) X(IPC_EXCL) X(SEM_R) X(SEM_A) X((SEM_R>>3)) X((SEM_A>>3))
X((SEM_R>>6)) X((SEM_A>>6)) XEND
};
bool
sysdecode_semget_flags(FILE *fp, int flag, int *rem)
{
return (print_mask_int(fp, semgetflags, flag, rem));
}
static struct name_table idtypes[] = {
X(P_PID) X(P_PPID) X(P_PGID) X(P_SID) X(P_CID) X(P_UID) X(P_GID)
X(P_ALL) X(P_LWPID) X(P_TASKID) X(P_PROJID) X(P_POOLID) X(P_JAILID)
X(P_CTID) X(P_CPUID) X(P_PSETID) XEND
};
/* XXX: idtype is really an idtype_t */
const char *
sysdecode_idtype(int idtype)
{
return (lookup_value(idtypes, idtype));
}
/*
* [g|s]etsockopt's level argument can either be SOL_SOCKET or a
* protocol-specific value.
*/
const char *
sysdecode_sockopt_level(int level)
{
const char *str;
if (level == SOL_SOCKET)
return ("SOL_SOCKET");
/* SOL_* constants for Bluetooth sockets. */
str = lookup_value(ngbtsolevel, level);
if (str != NULL)
return (str);
/*
* IP and Infiniband sockets use IP protocols as levels. Not all
* protocols are valid but it is simpler to just allow all of them.
*
* XXX: IPPROTO_IP == 0, but UNIX domain sockets use a level of 0
* for private options.
*/
str = sysdecode_ipproto(level);
if (str != NULL)
return (str);
return (NULL);
}
bool
sysdecode_vmprot(FILE *fp, int type, int *rem)
{
return (print_mask_int(fp, vmprot, type, rem));
}
static struct name_table sockflags[] = {
X(SOCK_CLOEXEC) X(SOCK_NONBLOCK) XEND
};
bool
sysdecode_socket_type(FILE *fp, int type, int *rem)
{
const char *str;
uintmax_t val;
bool printed;
str = lookup_value(socktype, type & ~(SOCK_CLOEXEC | SOCK_NONBLOCK));
if (str != NULL) {
fputs(str, fp);
*rem = 0;
printed = true;
} else {
*rem = type & ~(SOCK_CLOEXEC | SOCK_NONBLOCK);
printed = false;
}
val = type & (SOCK_CLOEXEC | SOCK_NONBLOCK);
print_mask_part(fp, sockflags, &val, &printed);
return (printed);
}
bool
sysdecode_access_mode(FILE *fp, int mode, int *rem)
{
return (print_mask_int(fp, accessmode, mode, rem));
}
/* XXX: 'type' is really an acl_type_t. */
const char *
sysdecode_acltype(int type)
{
return (lookup_value(acltype, type));
}
bool
sysdecode_cap_fcntlrights(FILE *fp, uint32_t rights, uint32_t *rem)
{
return (print_mask_int(fp, capfcntl, rights, rem));
}
const char *
sysdecode_extattrnamespace(int namespace)
{
return (lookup_value(extattrns, namespace));
}
const char *
sysdecode_fadvice(int advice)
{
return (lookup_value(fadvisebehav, advice));
}
bool
sysdecode_open_flags(FILE *fp, int flags, int *rem)
{
bool printed;
int mode;
uintmax_t val;
mode = flags & O_ACCMODE;
flags &= ~O_ACCMODE;
switch (mode) {
case O_RDONLY:
if (flags & O_EXEC) {
flags &= ~O_EXEC;
fputs("O_EXEC", fp);
} else
fputs("O_RDONLY", fp);
printed = true;
mode = 0;
break;
case O_WRONLY:
fputs("O_WRONLY", fp);
printed = true;
mode = 0;
break;
case O_RDWR:
fputs("O_RDWR", fp);
printed = true;
mode = 0;
break;
default:
printed = false;
}
val = (unsigned)flags;
print_mask_part(fp, openflags, &val, &printed);
if (rem != NULL)
*rem = val | mode;
return (printed);
}
bool
sysdecode_fcntl_fileflags(FILE *fp, int flags, int *rem)
{
bool printed;
int oflags;
/*
* The file flags used with F_GETFL/F_SETFL mostly match the
* flags passed to open(2). However, a few open-only flag
* bits have been repurposed for fcntl-only flags.
*/
oflags = flags & ~(O_NOFOLLOW | FRDAHEAD);
printed = sysdecode_open_flags(fp, oflags, rem);
if (flags & O_NOFOLLOW) {
fprintf(fp, "%sFPOIXSHM", printed ? "|" : "");
printed = true;
}
if (flags & FRDAHEAD) {
fprintf(fp, "%sFRDAHEAD", printed ? "|" : "");
printed = true;
}
return (printed);
}
bool
sysdecode_flock_operation(FILE *fp, int operation, int *rem)
{
return (print_mask_int(fp, flockops, operation, rem));
}
static struct name_table getfsstatmode[] = {
X(MNT_WAIT) X(MNT_NOWAIT) XEND
};
const char *
sysdecode_getfsstat_mode(int mode)
{
return (lookup_value(getfsstatmode, mode));
}
const char *
sysdecode_getrusage_who(int who)
{
return (lookup_value(rusage, who));
}
const char *
sysdecode_kldsym_cmd(int cmd)
{
return (lookup_value(kldsymcmd, cmd));
}
const char *
sysdecode_kldunload_flags(int flags)
{
return (lookup_value(kldunloadfflags, flags));
}
const char *
sysdecode_lio_listio_mode(int mode)
{
return (lookup_value(lio_listiomodes, mode));
}
const char *
sysdecode_madvice(int advice)
{
return (lookup_value(madvisebehav, advice));
}
const char *
sysdecode_minherit_inherit(int inherit)
{
return (lookup_value(minheritflags, inherit));
}
bool
sysdecode_mlockall_flags(FILE *fp, int flags, int *rem)
{
return (print_mask_int(fp, mlockallflags, flags, rem));
}
bool
sysdecode_mmap_prot(FILE *fp, int prot, int *rem)
{
return (print_mask_int(fp, mmapprot, prot, rem));
}
bool
sysdecode_fileflags(FILE *fp, fflags_t flags, fflags_t *rem)
{
return (print_mask_0(fp, fileflags, flags, rem));
}
bool
sysdecode_filemode(FILE *fp, int mode, int *rem)
{
return (print_mask_0(fp, filemode, mode, rem));
}
bool
sysdecode_mount_flags(FILE *fp, int flags, int *rem)
{
return (print_mask_int(fp, mountflags, flags, rem));
}
bool
sysdecode_msync_flags(FILE *fp, int flags, int *rem)
{
return (print_mask_int(fp, msyncflags, flags, rem));
}
const char *
sysdecode_nfssvc_flags(int flags)
{
return (lookup_value(nfssvcflags, flags));
}
static struct name_table pipe2flags[] = {
X(O_CLOEXEC) X(O_NONBLOCK) XEND
};
bool
sysdecode_pipe2_flags(FILE *fp, int flags, int *rem)
{
return (print_mask_0(fp, pipe2flags, flags, rem));
}
const char *
sysdecode_prio_which(int which)
{
return (lookup_value(prio, which));
}
const char *
sysdecode_procctl_cmd(int cmd)
{
return (lookup_value(procctlcmd, cmd));
}
const char *
sysdecode_ptrace_request(int request)
{
return (lookup_value(ptraceop, request));
}
static struct name_table quotatypes[] = {
X(GRPQUOTA) X(USRQUOTA) XEND
};
bool
sysdecode_quotactl_cmd(FILE *fp, int cmd)
{
const char *primary, *type;
primary = lookup_value(quotactlcmds, cmd >> SUBCMDSHIFT);
if (primary == NULL)
return (false);
fprintf(fp, "QCMD(%s,", primary);
type = lookup_value(quotatypes, cmd & SUBCMDMASK);
if (type != NULL)
fprintf(fp, "%s", type);
else
fprintf(fp, "%#x", cmd & SUBCMDMASK);
fprintf(fp, ")");
return (true);
}
bool
sysdecode_reboot_howto(FILE *fp, int howto, int *rem)
{
bool printed;
/*
* RB_AUTOBOOT is special in that its value is zero, but it is
* also an implied argument if a different operation is not
* requested via RB_HALT, RB_POWEROFF, or RB_REROOT.
*/
if (howto != 0 && (howto & (RB_HALT | RB_POWEROFF | RB_REROOT)) == 0) {
fputs("RB_AUTOBOOT|", fp);
printed = true;
} else
printed = false;
return (print_mask_int(fp, rebootopt, howto, rem) || printed);
}
bool
sysdecode_rfork_flags(FILE *fp, int flags, int *rem)
{
return (print_mask_int(fp, rforkflags, flags, rem));
}
const char *
sysdecode_rlimit(int resource)
{
return (lookup_value(rlimit, resource));
}
const char *
sysdecode_scheduler_policy(int policy)
{
return (lookup_value(schedpolicy, policy));
}
bool
sysdecode_sendfile_flags(FILE *fp, int flags, int *rem)
{
return (print_mask_int(fp, sendfileflags, flags, rem));
}
bool
sysdecode_shmat_flags(FILE *fp, int flags, int *rem)
{
return (print_mask_int(fp, shmatflags, flags, rem));
}
const char *
sysdecode_shutdown_how(int how)
{
return (lookup_value(shutdownhow, how));
}
const char *
sysdecode_sigbus_code(int si_code)
{
return (lookup_value(sigbuscode, si_code));
}
const char *
sysdecode_sigchld_code(int si_code)
{
return (lookup_value(sigchldcode, si_code));
}
const char *
sysdecode_sigfpe_code(int si_code)
{
return (lookup_value(sigfpecode, si_code));
}
const char *
sysdecode_sigill_code(int si_code)
{
return (lookup_value(sigillcode, si_code));
}
const char *
sysdecode_sigsegv_code(int si_code)
{
return (lookup_value(sigsegvcode, si_code));
}
const char *
sysdecode_sigtrap_code(int si_code)
{
return (lookup_value(sigtrapcode, si_code));
}
const char *
sysdecode_sigprocmask_how(int how)
{
return (lookup_value(sigprocmaskhow, how));
}
const char *
sysdecode_socketdomain(int domain)
{
return (lookup_value(sockdomain, domain));
}
const char *
sysdecode_socket_protocol(int domain, int protocol)
{
switch (domain) {
case PF_INET:
case PF_INET6:
return (lookup_value(sockipproto, protocol));
default:
return (NULL);
}
}
const char *
sysdecode_sockaddr_family(int sa_family)
{
return (lookup_value(sockfamily, sa_family));
}
const char *
sysdecode_ipproto(int protocol)
{
return (lookup_value(sockipproto, protocol));
}
const char *
sysdecode_sockopt_name(int level, int optname)
{
if (level == SOL_SOCKET)
return (lookup_value(sockopt, optname));
if (level == IPPROTO_IP)
/* XXX: UNIX domain socket options use a level of 0 also. */
return (lookup_value(sockoptip, optname));
if (level == IPPROTO_IPV6)
return (lookup_value(sockoptipv6, optname));
if (level == IPPROTO_SCTP)
return (lookup_value(sockoptsctp, optname));
if (level == IPPROTO_TCP)
return (lookup_value(sockopttcp, optname));
if (level == IPPROTO_UDP)
return (lookup_value(sockoptudp, optname));
if (level == IPPROTO_UDPLITE)
return (lookup_value(sockoptudplite, optname));
return (NULL);
}
bool
sysdecode_thr_create_flags(FILE *fp, int flags, int *rem)
{
return (print_mask_int(fp, thrcreateflags, flags, rem));
}
const char *
sysdecode_umtx_op(int op)
{
return (lookup_value(umtxop, op));
}
const char *
sysdecode_vmresult(int result)
{
return (lookup_value(vmresult, result));
}
bool
sysdecode_wait4_options(FILE *fp, int options, int *rem)
{
bool printed;
int opt6;
/* A flags value of 0 is normal. */
if (options == 0) {
fputs("0", fp);
if (rem != NULL)
*rem = 0;
return (true);
}
/*
* These flags are implicit and aren't valid flags for wait4()
* directly (though they don't fail with EINVAL).
*/
opt6 = options & (WEXITED | WTRAPPED);
options &= ~opt6;
printed = print_mask_int(fp, wait6opt, options, rem);
if (rem != NULL)
*rem |= opt6;
return (printed);
}
bool
sysdecode_wait6_options(FILE *fp, int options, int *rem)
{
return (print_mask_int(fp, wait6opt, options, rem));
}
const char *
sysdecode_whence(int whence)
{
return (lookup_value(seekwhence, whence));
}
const char *
sysdecode_fcntl_cmd(int cmd)
{
return (lookup_value(fcntlcmd, cmd));
}
static struct name_table fcntl_fd_arg[] = {
X(FD_CLOEXEC) X(0) XEND
};
bool
sysdecode_fcntl_arg_p(int cmd)
{
switch (cmd) {
case F_GETFD:
case F_GETFL:
case F_GETOWN:
return (false);
default:
return (true);
}
}
void
sysdecode_fcntl_arg(FILE *fp, int cmd, uintptr_t arg, int base)
{
int rem;
switch (cmd) {
case F_SETFD:
if (!print_value(fp, fcntl_fd_arg, arg))
print_integer(fp, arg, base);
break;
case F_SETFL:
if (!sysdecode_fcntl_fileflags(fp, arg, &rem))
fprintf(fp, "%#x", rem);
else if (rem != 0)
fprintf(fp, "|%#x", rem);
break;
case F_GETLK:
case F_SETLK:
case F_SETLKW:
fprintf(fp, "%p", (void *)arg);
break;
default:
print_integer(fp, arg, base);
break;
}
}
bool
sysdecode_mmap_flags(FILE *fp, int flags, int *rem)
{
uintmax_t val;
bool printed;
int align;
/*
* MAP_ALIGNED can't be handled directly by print_mask_int().
* MAP_32BIT is also problematic since it isn't defined for
* all platforms.
*/
printed = false;
align = flags & MAP_ALIGNMENT_MASK;
val = (unsigned)flags & ~MAP_ALIGNMENT_MASK;
print_mask_part(fp, mmapflags, &val, &printed);
#ifdef MAP_32BIT
if (val & MAP_32BIT) {
fprintf(fp, "%sMAP_32BIT", printed ? "|" : "");
printed = true;
val &= ~MAP_32BIT;
}
#endif
if (align != 0) {
if (printed)
fputc('|', fp);
if (align == MAP_ALIGNED_SUPER)
fputs("MAP_ALIGNED_SUPER", fp);
else
fprintf(fp, "MAP_ALIGNED(%d)",
align >> MAP_ALIGNMENT_SHIFT);
printed = true;
}
if (rem != NULL)
*rem = val;
return (printed);
}
const char *
sysdecode_rtprio_function(int function)
{
return (lookup_value(rtpriofuncs, function));
}
bool
sysdecode_msg_flags(FILE *fp, int flags, int *rem)
{
return (print_mask_0(fp, msgflags, flags, rem));
}
const char *
sysdecode_sigcode(int sig, int si_code)
{
const char *str;
str = lookup_value(sigcode, si_code);
if (str != NULL)
return (str);
switch (sig) {
case SIGILL:
return (sysdecode_sigill_code(si_code));
case SIGBUS:
return (sysdecode_sigbus_code(si_code));
case SIGSEGV:
return (sysdecode_sigsegv_code(si_code));
case SIGFPE:
return (sysdecode_sigfpe_code(si_code));
case SIGTRAP:
return (sysdecode_sigtrap_code(si_code));
case SIGCHLD:
return (sysdecode_sigchld_code(si_code));
default:
return (NULL);
}
}
bool
sysdecode_umtx_cvwait_flags(FILE *fp, u_long flags, u_long *rem)
{
return (print_mask_0ul(fp, umtxcvwaitflags, flags, rem));
}
bool
sysdecode_umtx_rwlock_flags(FILE *fp, u_long flags, u_long *rem)
{
return (print_mask_0ul(fp, umtxrwlockflags, flags, rem));
}
void
sysdecode_cap_rights(FILE *fp, cap_rights_t *rightsp)
{
struct name_table *t;
bool comma;
comma = false;
for (t = caprights; t->str != NULL; t++) {
if (cap_rights_is_set(rightsp, t->val)) {
fprintf(fp, "%s%s", comma ? "," : "", t->str);
comma = true;
}
}
}