freebsd-skq/sys/dev/hptnr/hptnr_osm_bsd.c
Xin LI 7d379626b1 Merge changes from vendor driver 1.1.4:
v1.1.4 2015-06-09
   * Fix a bug that FailLED was not initialized properly.
  v1.1.3 2015-05-19
   * Support Report Luns command.
  v1.1.2 2015-05-05
   * Fix a bug that report wrong physical sector size for 512e HDD.

Many thanks to HighPoint for continued support of FreeBSD!

This driver update is intended for 10.2-RELEASE.

Submitted by:	Steve Chang
MFC after:	3 days
2015-06-25 06:15:08 +00:00

1679 lines
41 KiB
C

/* $Id: osm_bsd.c,v 1.36 2010/05/11 03:12:11 lcn Exp $ */
/*-
* HighPoint RAID Driver for FreeBSD
* Copyright (C) 2005-2011 HighPoint Technologies, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <dev/hptnr/hptnr_config.h>
#include <dev/hptnr/os_bsd.h>
#include <dev/hptnr/hptintf.h>
int msi = 0;
int debug_flag = 0;
static HIM *hpt_match(device_t dev)
{
PCI_ID pci_id;
HIM *him;
int i;
for (him = him_list; him; him = him->next) {
for (i=0; him->get_supported_device_id(i, &pci_id); i++) {
if (him->get_controller_count)
him->get_controller_count(&pci_id,0,0);
if ((pci_get_vendor(dev) == pci_id.vid) &&
(pci_get_device(dev) == pci_id.did)){
return (him);
}
}
}
return (NULL);
}
static int hpt_probe(device_t dev)
{
HIM *him;
him = hpt_match(dev);
if (him != NULL) {
KdPrint(("hpt_probe: adapter at PCI %d:%d:%d, IRQ %d",
pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), pci_get_irq(dev)
));
device_set_desc(dev, him->name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int hpt_attach(device_t dev)
{
PHBA hba = (PHBA)device_get_softc(dev);
HIM *him;
PCI_ID pci_id;
HPT_UINT size;
PVBUS vbus;
PVBUS_EXT vbus_ext;
KdPrint(("hpt_attach(%d/%d/%d)", pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev)));
him = hpt_match(dev);
hba->ext_type = EXT_TYPE_HBA;
hba->ldm_adapter.him = him;
pci_enable_busmaster(dev);
pci_id.vid = pci_get_vendor(dev);
pci_id.did = pci_get_device(dev);
pci_id.rev = pci_get_revid(dev);
pci_id.subsys = (HPT_U32)(pci_get_subdevice(dev)) << 16 | pci_get_subvendor(dev);
size = him->get_adapter_size(&pci_id);
hba->ldm_adapter.him_handle = malloc(size, M_DEVBUF, M_WAITOK);
hba->pcidev = dev;
hba->pciaddr.tree = 0;
hba->pciaddr.bus = pci_get_bus(dev);
hba->pciaddr.device = pci_get_slot(dev);
hba->pciaddr.function = pci_get_function(dev);
if (!him->create_adapter(&pci_id, hba->pciaddr, hba->ldm_adapter.him_handle, hba)) {
free(hba->ldm_adapter.him_handle, M_DEVBUF);
return ENXIO;
}
os_printk("adapter at PCI %d:%d:%d, IRQ %d",
hba->pciaddr.bus, hba->pciaddr.device, hba->pciaddr.function, pci_get_irq(dev));
if (!ldm_register_adapter(&hba->ldm_adapter)) {
size = ldm_get_vbus_size();
vbus_ext = malloc(sizeof(VBUS_EXT) + size, M_DEVBUF, M_WAITOK |
M_ZERO);
vbus_ext->ext_type = EXT_TYPE_VBUS;
ldm_create_vbus((PVBUS)vbus_ext->vbus, vbus_ext);
ldm_register_adapter(&hba->ldm_adapter);
}
ldm_for_each_vbus(vbus, vbus_ext) {
if (hba->ldm_adapter.vbus==vbus) {
hba->vbus_ext = vbus_ext;
hba->next = vbus_ext->hba_list;
vbus_ext->hba_list = hba;
break;
}
}
return 0;
}
/*
* Maybe we'd better to use the bus_dmamem_alloc to alloc DMA memory,
* but there are some problems currently (alignment, etc).
*/
static __inline void *__get_free_pages(int order)
{
/* don't use low memory - other devices may get starved */
return contigmalloc(PAGE_SIZE<<order,
M_DEVBUF, M_WAITOK, BUS_SPACE_MAXADDR_24BIT, BUS_SPACE_MAXADDR, PAGE_SIZE, 0);
}
static __inline void free_pages(void *p, int order)
{
contigfree(p, PAGE_SIZE<<order, M_DEVBUF);
}
static int hpt_alloc_mem(PVBUS_EXT vbus_ext)
{
PHBA hba;
struct freelist *f;
HPT_UINT i;
void **p;
for (hba = vbus_ext->hba_list; hba; hba = hba->next)
hba->ldm_adapter.him->get_meminfo(hba->ldm_adapter.him_handle);
ldm_get_mem_info((PVBUS)vbus_ext->vbus, 0);
for (f=vbus_ext->freelist_head; f; f=f->next) {
KdPrint(("%s: %d*%d=%d bytes",
f->tag, f->count, f->size, f->count*f->size));
for (i=0; i<f->count; i++) {
p = (void **)malloc(f->size, M_DEVBUF, M_WAITOK);
if (!p) return (ENXIO);
*p = f->head;
f->head = p;
}
}
for (f=vbus_ext->freelist_dma_head; f; f=f->next) {
int order, size, j;
HPT_ASSERT((f->size & (f->alignment-1))==0);
for (order=0, size=PAGE_SIZE; size<f->size; order++, size<<=1)
;
KdPrint(("%s: %d*%d=%d bytes, order %d",
f->tag, f->count, f->size, f->count*f->size, order));
HPT_ASSERT(f->alignment<=PAGE_SIZE);
for (i=0; i<f->count;) {
p = (void **)__get_free_pages(order);
if (!p) return -1;
for (j = size/f->size; j && i<f->count; i++,j--) {
*p = f->head;
*(BUS_ADDRESS *)(p+1) = (BUS_ADDRESS)vtophys(p);
f->head = p;
p = (void **)((unsigned long)p + f->size);
}
}
}
HPT_ASSERT(PAGE_SIZE==DMAPOOL_PAGE_SIZE);
for (i=0; i<os_max_cache_pages; i++) {
p = (void **)__get_free_pages(0);
if (!p) return -1;
HPT_ASSERT(((HPT_UPTR)p & (DMAPOOL_PAGE_SIZE-1))==0);
dmapool_put_page((PVBUS)vbus_ext->vbus, p, (BUS_ADDRESS)vtophys(p));
}
return 0;
}
static void hpt_free_mem(PVBUS_EXT vbus_ext)
{
struct freelist *f;
void *p;
int i;
BUS_ADDRESS bus;
for (f=vbus_ext->freelist_head; f; f=f->next) {
#if DBG
if (f->count!=f->reserved_count) {
KdPrint(("memory leak for freelist %s (%d/%d)", f->tag, f->count, f->reserved_count));
}
#endif
while ((p=freelist_get(f)))
free(p, M_DEVBUF);
}
for (i=0; i<os_max_cache_pages; i++) {
p = dmapool_get_page((PVBUS)vbus_ext->vbus, &bus);
HPT_ASSERT(p);
free_pages(p, 0);
}
for (f=vbus_ext->freelist_dma_head; f; f=f->next) {
int order, size;
#if DBG
if (f->count!=f->reserved_count) {
KdPrint(("memory leak for dma freelist %s (%d/%d)", f->tag, f->count, f->reserved_count));
}
#endif
for (order=0, size=PAGE_SIZE; size<f->size; order++, size<<=1) ;
while ((p=freelist_get_dma(f, &bus))) {
if (order)
free_pages(p, order);
else {
/* can't free immediately since other blocks in this page may still be in the list */
if (((HPT_UPTR)p & (PAGE_SIZE-1))==0)
dmapool_put_page((PVBUS)vbus_ext->vbus, p, bus);
}
}
}
while ((p = dmapool_get_page((PVBUS)vbus_ext->vbus, &bus)))
free_pages(p, 0);
}
static int hpt_init_vbus(PVBUS_EXT vbus_ext)
{
PHBA hba;
for (hba = vbus_ext->hba_list; hba; hba = hba->next)
if (!hba->ldm_adapter.him->initialize(hba->ldm_adapter.him_handle)) {
KdPrint(("fail to initialize %p", hba));
return -1;
}
ldm_initialize_vbus((PVBUS)vbus_ext->vbus, &vbus_ext->hba_list->ldm_adapter);
return 0;
}
static void hpt_flush_done(PCOMMAND pCmd)
{
PVDEV vd = pCmd->target;
if (mIsArray(vd->type) && vd->u.array.transform && vd!=vd->u.array.transform->target) {
vd = vd->u.array.transform->target;
HPT_ASSERT(vd);
pCmd->target = vd;
pCmd->Result = RETURN_PENDING;
vdev_queue_cmd(pCmd);
return;
}
*(int *)pCmd->priv = 1;
wakeup(pCmd);
}
/*
* flush a vdev (without retry).
*/
static int hpt_flush_vdev(PVBUS_EXT vbus_ext, PVDEV vd)
{
PCOMMAND pCmd;
int result = 0, done;
HPT_UINT count;
KdPrint(("flusing dev %p", vd));
hpt_assert_vbus_locked(vbus_ext);
if (mIsArray(vd->type) && vd->u.array.transform)
count = MAX(vd->u.array.transform->source->cmds_per_request,
vd->u.array.transform->target->cmds_per_request);
else
count = vd->cmds_per_request;
pCmd = ldm_alloc_cmds(vd->vbus, count);
if (!pCmd) {
return -1;
}
pCmd->type = CMD_TYPE_FLUSH;
pCmd->flags.hard_flush = 1;
pCmd->target = vd;
pCmd->done = hpt_flush_done;
done = 0;
pCmd->priv = &done;
ldm_queue_cmd(pCmd);
if (!done) {
while (hpt_sleep(vbus_ext, pCmd, PPAUSE, "hptfls", HPT_OSM_TIMEOUT)) {
ldm_reset_vbus(vd->vbus);
}
}
KdPrint(("flush result %d", pCmd->Result));
if (pCmd->Result!=RETURN_SUCCESS)
result = -1;
ldm_free_cmds(pCmd);
return result;
}
static void hpt_stop_tasks(PVBUS_EXT vbus_ext);
static void hpt_shutdown_vbus(PVBUS_EXT vbus_ext, int howto)
{
PVBUS vbus = (PVBUS)vbus_ext->vbus;
PHBA hba;
int i;
KdPrint(("hpt_shutdown_vbus"));
/* stop all ctl tasks and disable the worker taskqueue */
hpt_stop_tasks(vbus_ext);
hpt_lock_vbus(vbus_ext);
vbus_ext->worker.ta_context = 0;
/* flush devices */
for (i=0; i<osm_max_targets; i++) {
PVDEV vd = ldm_find_target(vbus, i);
if (vd) {
/* retry once */
if (hpt_flush_vdev(vbus_ext, vd))
hpt_flush_vdev(vbus_ext, vd);
}
}
ldm_shutdown(vbus);
hpt_unlock_vbus(vbus_ext);
ldm_release_vbus(vbus);
for (hba=vbus_ext->hba_list; hba; hba=hba->next)
bus_teardown_intr(hba->pcidev, hba->irq_res, hba->irq_handle);
hpt_free_mem(vbus_ext);
while ((hba=vbus_ext->hba_list)) {
vbus_ext->hba_list = hba->next;
free(hba->ldm_adapter.him_handle, M_DEVBUF);
}
callout_drain(&vbus_ext->timer);
mtx_destroy(&vbus_ext->lock);
free(vbus_ext, M_DEVBUF);
KdPrint(("hpt_shutdown_vbus done"));
}
static void __hpt_do_tasks(PVBUS_EXT vbus_ext)
{
OSM_TASK *tasks;
tasks = vbus_ext->tasks;
vbus_ext->tasks = 0;
while (tasks) {
OSM_TASK *t = tasks;
tasks = t->next;
t->next = 0;
t->func(vbus_ext->vbus, t->data);
}
}
static void hpt_do_tasks(PVBUS_EXT vbus_ext, int pending)
{
if(vbus_ext){
hpt_lock_vbus(vbus_ext);
__hpt_do_tasks(vbus_ext);
hpt_unlock_vbus(vbus_ext);
}
}
static void hpt_action(struct cam_sim *sim, union ccb *ccb);
static void hpt_poll(struct cam_sim *sim);
static void hpt_async(void * callback_arg, u_int32_t code, struct cam_path * path, void * arg);
static void hpt_pci_intr(void *arg);
static __inline POS_CMDEXT cmdext_get(PVBUS_EXT vbus_ext)
{
POS_CMDEXT p = vbus_ext->cmdext_list;
if (p)
vbus_ext->cmdext_list = p->next;
return p;
}
static __inline void cmdext_put(POS_CMDEXT p)
{
p->next = p->vbus_ext->cmdext_list;
p->vbus_ext->cmdext_list = p;
}
static void hpt_timeout(void *arg)
{
PCOMMAND pCmd = (PCOMMAND)arg;
POS_CMDEXT ext = (POS_CMDEXT)pCmd->priv;
KdPrint(("pCmd %p timeout", pCmd));
ldm_reset_vbus((PVBUS)ext->vbus_ext->vbus);
}
static void os_cmddone(PCOMMAND pCmd)
{
POS_CMDEXT ext = (POS_CMDEXT)pCmd->priv;
union ccb *ccb = ext->ccb;
HPT_U8 *cdb;
if (ccb->ccb_h.flags & CAM_CDB_POINTER)
cdb = ccb->csio.cdb_io.cdb_ptr;
else
cdb = ccb->csio.cdb_io.cdb_bytes;
KdPrint(("os_cmddone(%p, %d)", pCmd, pCmd->Result));
callout_stop(&ext->timeout);
switch(cdb[0]) {
case 0x85: /*ATA_16*/
case 0xA1: /*ATA_12*/
{
PassthroughCmd *passthru = &pCmd->uCmd.Passthrough;
HPT_U8 *sense_buffer = (HPT_U8 *)&ccb->csio.sense_data;
memset(&ccb->csio.sense_data, 0,sizeof(ccb->csio.sense_data));
sense_buffer[0] = 0x72; /* Response Code */
sense_buffer[7] = 14; /* Additional Sense Length */
sense_buffer[8] = 0x9; /* ATA Return Descriptor */
sense_buffer[9] = 0xc; /* Additional Descriptor Length */
sense_buffer[11] = (HPT_U8)passthru->bFeaturesReg; /* Error */
sense_buffer[13] = (HPT_U8)passthru->bSectorCountReg; /* Sector Count (7:0) */
sense_buffer[15] = (HPT_U8)passthru->bLbaLowReg; /* LBA Low (7:0) */
sense_buffer[17] = (HPT_U8)passthru->bLbaMidReg; /* LBA Mid (7:0) */
sense_buffer[19] = (HPT_U8)passthru->bLbaHighReg; /* LBA High (7:0) */
if ((cdb[0] == 0x85) && (cdb[1] & 0x1))
{
sense_buffer[10] = 1;
sense_buffer[12] = (HPT_U8)(passthru->bSectorCountReg >> 8); /* Sector Count (15:8) */
sense_buffer[14] = (HPT_U8)(passthru->bLbaLowReg >> 8); /* LBA Low (15:8) */
sense_buffer[16] = (HPT_U8)(passthru->bLbaMidReg >> 8); /* LBA Mid (15:8) */
sense_buffer[18] = (HPT_U8)(passthru->bLbaHighReg >> 8); /* LBA High (15:8) */
}
sense_buffer[20] = (HPT_U8)passthru->bDriveHeadReg; /* Device */
sense_buffer[21] = (HPT_U8)passthru->bCommandReg; /* Status */
KdPrint(("sts 0x%x err 0x%x low 0x%x mid 0x%x hig 0x%x dh 0x%x sc 0x%x",
passthru->bCommandReg,
passthru->bFeaturesReg,
passthru->bLbaLowReg,
passthru->bLbaMidReg,
passthru->bLbaHighReg,
passthru->bDriveHeadReg,
passthru->bSectorCountReg));
KdPrint(("result:0x%x,bFeaturesReg:0x%04x,bSectorCountReg:0x%04x,LBA:0x%04x%04x%04x ",
pCmd->Result,passthru->bFeaturesReg,passthru->bSectorCountReg,
passthru->bLbaHighReg,passthru->bLbaMidReg,passthru->bLbaLowReg));
}
default:
break;
}
switch(pCmd->Result) {
case RETURN_SUCCESS:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case RETURN_BAD_DEVICE:
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
break;
case RETURN_DEVICE_BUSY:
ccb->ccb_h.status = CAM_BUSY;
break;
case RETURN_INVALID_REQUEST:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case RETURN_SELECTION_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case RETURN_RETRY:
ccb->ccb_h.status = CAM_BUSY;
break;
default:
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
break;
}
if (pCmd->flags.data_in) {
bus_dmamap_sync(ext->vbus_ext->io_dmat, ext->dma_map, BUS_DMASYNC_POSTREAD);
}
else if (pCmd->flags.data_out) {
bus_dmamap_sync(ext->vbus_ext->io_dmat, ext->dma_map, BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_unload(ext->vbus_ext->io_dmat, ext->dma_map);
cmdext_put(ext);
ldm_free_cmds(pCmd);
xpt_done(ccb);
}
static int os_buildsgl(PCOMMAND pCmd, PSG pSg, int logical)
{
/* since we have provided physical sg, nobody will ask us to build physical sg */
HPT_ASSERT(0);
return FALSE;
}
static void hpt_io_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
PCOMMAND pCmd = (PCOMMAND)arg;
POS_CMDEXT ext = (POS_CMDEXT)pCmd->priv;
PSG psg = pCmd->psg;
int idx;
HPT_ASSERT(pCmd->flags.physical_sg);
if (error)
panic("busdma error");
HPT_ASSERT(nsegs<=os_max_sg_descriptors);
if (nsegs != 0) {
for (idx = 0; idx < nsegs; idx++, psg++) {
psg->addr.bus = segs[idx].ds_addr;
psg->size = segs[idx].ds_len;
psg->eot = 0;
}
psg[-1].eot = 1;
if (pCmd->flags.data_in) {
bus_dmamap_sync(ext->vbus_ext->io_dmat, ext->dma_map,
BUS_DMASYNC_PREREAD);
}
else if (pCmd->flags.data_out) {
bus_dmamap_sync(ext->vbus_ext->io_dmat, ext->dma_map,
BUS_DMASYNC_PREWRITE);
}
}
callout_reset(&ext->timeout, HPT_OSM_TIMEOUT, hpt_timeout, pCmd);
ldm_queue_cmd(pCmd);
}
static void hpt_scsi_io(PVBUS_EXT vbus_ext, union ccb *ccb)
{
PVBUS vbus = (PVBUS)vbus_ext->vbus;
PVDEV vd;
PCOMMAND pCmd;
POS_CMDEXT ext;
HPT_U8 *cdb;
if (ccb->ccb_h.flags & CAM_CDB_POINTER)
cdb = ccb->csio.cdb_io.cdb_ptr;
else
cdb = ccb->csio.cdb_io.cdb_bytes;
KdPrint(("hpt_scsi_io: ccb %x id %d lun %d cdb %x-%x-%x",
ccb,
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
*(HPT_U32 *)&cdb[0], *(HPT_U32 *)&cdb[4], *(HPT_U32 *)&cdb[8]
));
/* ccb->ccb_h.path_id is not our bus id - don't check it */
if (ccb->ccb_h.target_lun != 0 ||
ccb->ccb_h.target_id >= osm_max_targets ||
(ccb->ccb_h.flags & CAM_CDB_PHYS))
{
ccb->ccb_h.status = CAM_TID_INVALID;
xpt_done(ccb);
return;
}
vd = ldm_find_target(vbus, ccb->ccb_h.target_id);
if (!vd) {
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done(ccb);
return;
}
switch (cdb[0]) {
case TEST_UNIT_READY:
case START_STOP_UNIT:
case SYNCHRONIZE_CACHE:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case 0x85: /*ATA_16*/
case 0xA1: /*ATA_12*/
{
int error;
HPT_U8 prot;
PassthroughCmd *passthru;
if (mIsArray(vd->type)) {
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
HPT_ASSERT(vd->type == VD_RAW && vd->u.raw.legacy_disk);
prot = (cdb[1] & 0x1e) >> 1;
if (prot < 3 || prot > 5)
{
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
pCmd = ldm_alloc_cmds(vbus, vd->cmds_per_request);
if (!pCmd) {
HPT_ASSERT(0);
ccb->ccb_h.status = CAM_BUSY;
break;
}
passthru = &pCmd->uCmd.Passthrough;
if (cdb[0] == 0x85/*ATA_16*/) {
if (cdb[1] & 0x1) {
passthru->bFeaturesReg =
((HPT_U16)cdb[3] << 8)
| cdb[4];
passthru->bSectorCountReg =
((HPT_U16)cdb[5] << 8) |
cdb[6];
passthru->bLbaLowReg =
((HPT_U16)cdb[7] << 8) |
cdb[8];
passthru->bLbaMidReg =
((HPT_U16)cdb[9] << 8) |
cdb[10];
passthru->bLbaHighReg =
((HPT_U16)cdb[11] << 8) |
cdb[12];
} else {
passthru->bFeaturesReg = cdb[4];
passthru->bSectorCountReg = cdb[6];
passthru->bLbaLowReg = cdb[8];
passthru->bLbaMidReg = cdb[10];
passthru->bLbaHighReg = cdb[12];
}
passthru->bDriveHeadReg = cdb[13];
passthru->bCommandReg = cdb[14];
} else { /*ATA_12*/
passthru->bFeaturesReg = cdb[3];
passthru->bSectorCountReg = cdb[4];
passthru->bLbaLowReg = cdb[5];
passthru->bLbaMidReg = cdb[6];
passthru->bLbaHighReg = cdb[7];
passthru->bDriveHeadReg = cdb[8];
passthru->bCommandReg = cdb[9];
}
if (cdb[1] & 0xe0) {
if (!(passthru->bCommandReg == ATA_CMD_READ_MULTI ||
passthru->bCommandReg == ATA_CMD_READ_MULTI_EXT ||
passthru->bCommandReg == ATA_CMD_WRITE_MULTI ||
passthru->bCommandReg == ATA_CMD_WRITE_MULTI_EXT ||
passthru->bCommandReg == ATA_CMD_WRITE_MULTI_FUA_EXT)
) {
goto error;
}
}
if (passthru->bFeaturesReg == ATA_SET_FEATURES_XFER &&
passthru->bCommandReg == ATA_CMD_SET_FEATURES) {
goto error;
}
passthru->nSectors = ccb->csio.dxfer_len/ATA_SECTOR_SIZE;
switch (prot) {
default: /*None data*/
break;
case 4: /*PIO data in, T_DIR=1 match check*/
if ((cdb[2] & 3) &&
(cdb[2] & 0x8) == 0)
{
OsPrint(("PIO data in, T_DIR=1 match check"));
goto error;
}
pCmd->flags.data_in = 1;
break;
case 5: /*PIO data out, T_DIR=0 match check*/
if ((cdb[2] & 3) &&
(cdb[2] & 0x8))
{
OsPrint(("PIO data out, T_DIR=0 match check"));
goto error;
}
pCmd->flags.data_out = 1;
break;
}
pCmd->type = CMD_TYPE_PASSTHROUGH;
pCmd->priv = ext = cmdext_get(vbus_ext);
HPT_ASSERT(ext);
ext->ccb = ccb;
pCmd->target = vd;
pCmd->done = os_cmddone;
pCmd->buildsgl = os_buildsgl;
pCmd->psg = ext->psg;
if(!ccb->csio.dxfer_len)
{
ldm_queue_cmd(pCmd);
return;
}
pCmd->flags.physical_sg = 1;
error = bus_dmamap_load_ccb(vbus_ext->io_dmat,
ext->dma_map, ccb,
hpt_io_dmamap_callback, pCmd,
BUS_DMA_WAITOK
);
KdPrint(("bus_dmamap_load return %d", error));
if (error && error!=EINPROGRESS) {
os_printk("bus_dmamap_load error %d", error);
cmdext_put(ext);
ldm_free_cmds(pCmd);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
xpt_done(ccb);
}
return;
error:
ldm_free_cmds(pCmd);
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
case INQUIRY:
{
PINQUIRYDATA inquiryData;
HIM_DEVICE_CONFIG devconf;
HPT_U8 *rbuf;
memset(ccb->csio.data_ptr, 0, ccb->csio.dxfer_len);
inquiryData = (PINQUIRYDATA)ccb->csio.data_ptr;
if (cdb[1] & 1) {
rbuf = (HPT_U8 *)inquiryData;
switch(cdb[2]) {
case 0:
rbuf[0] = 0;
rbuf[1] = 0;
rbuf[2] = 0;
rbuf[3] = 3;
rbuf[4] = 0;
rbuf[5] = 0x80;
rbuf[6] = 0x83;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case 0x80: {
rbuf[0] = 0;
rbuf[1] = 0x80;
rbuf[2] = 0;
if (vd->type == VD_RAW) {
rbuf[3] = 20;
vd->u.raw.him->get_device_config(vd->u.raw.phy_dev,&devconf);
memcpy(&rbuf[4], devconf.pIdentifyData->SerialNumber, 20);
ldm_ide_fixstring(&rbuf[4], 20);
} else {
rbuf[3] = 1;
rbuf[4] = 0x20;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case 0x83:
rbuf[0] = 0;
rbuf[1] = 0x83;
rbuf[2] = 0;
rbuf[3] = 12;
rbuf[4] = 1;
rbuf[5] = 2;
rbuf[6] = 0;
rbuf[7] = 8;
rbuf[8] = 0;
rbuf[9] = 0x19;
rbuf[10] = 0x3C;
rbuf[11] = 0;
rbuf[12] = 0;
rbuf[13] = 0;
rbuf[14] = 0;
rbuf[15] = 0;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
break;
}
else if (cdb[2]) {
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
inquiryData->DeviceType = 0; /*DIRECT_ACCESS_DEVICE*/
inquiryData->Versions = 5; /*SPC-3*/
inquiryData->ResponseDataFormat = 2;
inquiryData->AdditionalLength = 0x5b;
inquiryData->CommandQueue = 1;
if (ccb->csio.dxfer_len > 63) {
rbuf = (HPT_U8 *)inquiryData;
rbuf[58] = 0x60;
rbuf[59] = 0x3;
rbuf[64] = 0x3;
rbuf[66] = 0x3;
rbuf[67] = 0x20;
}
if (vd->type == VD_RAW) {
vd->u.raw.him->get_device_config(vd->u.raw.phy_dev,&devconf);
if ((devconf.pIdentifyData->GeneralConfiguration & 0x80))
inquiryData->RemovableMedia = 1;
memcpy(&inquiryData->VendorId, "ATA ", 8);
memcpy(&inquiryData->ProductId, devconf.pIdentifyData->ModelNumber, 16);
ldm_ide_fixstring((HPT_U8 *)&inquiryData->ProductId, 16);
memcpy(&inquiryData->ProductRevisionLevel, devconf.pIdentifyData->FirmwareRevision, 4);
ldm_ide_fixstring((HPT_U8 *)&inquiryData->ProductRevisionLevel, 4);
if (inquiryData->ProductRevisionLevel[0] == 0 || inquiryData->ProductRevisionLevel[0] == ' ')
memcpy(&inquiryData->ProductRevisionLevel, "n/a ", 4);
} else {
memcpy(&inquiryData->VendorId, "HPT ", 8);
snprintf((char *)&inquiryData->ProductId, 16, "DISK_%d_%d ",
os_get_vbus_seq(vbus_ext), vd->target_id);
inquiryData->ProductId[15] = ' ';
memcpy(&inquiryData->ProductRevisionLevel, "4.00", 4);
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case READ_CAPACITY:
{
HPT_U8 *rbuf = ccb->csio.data_ptr;
HPT_U32 cap;
HPT_U8 sector_size_shift = 0;
HPT_U64 new_cap;
HPT_U32 sector_size = 0;
if (mIsArray(vd->type))
sector_size_shift = vd->u.array.sector_size_shift;
else{
if(vd->type == VD_RAW){
sector_size = vd->u.raw.logical_sector_size;
}
switch (sector_size) {
case 0x1000:
KdPrint(("set 4k setctor size in READ_CAPACITY"));
sector_size_shift = 3;
break;
default:
break;
}
}
new_cap = vd->capacity >> sector_size_shift;
if (new_cap > 0xfffffffful)
cap = 0xffffffff;
else
cap = new_cap - 1;
rbuf[0] = (HPT_U8)(cap>>24);
rbuf[1] = (HPT_U8)(cap>>16);
rbuf[2] = (HPT_U8)(cap>>8);
rbuf[3] = (HPT_U8)cap;
rbuf[4] = 0;
rbuf[5] = 0;
rbuf[6] = 2 << sector_size_shift;
rbuf[7] = 0;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case REPORT_LUNS:
{
HPT_U8 *rbuf = ccb->csio.data_ptr;
memset(rbuf, 0, 16);
rbuf[3] = 8;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case SERVICE_ACTION_IN:
{
HPT_U8 *rbuf = ccb->csio.data_ptr;
HPT_U64 cap = 0;
HPT_U8 sector_size_shift = 0;
HPT_U32 sector_size = 0;
if(mIsArray(vd->type))
sector_size_shift = vd->u.array.sector_size_shift;
else{
if(vd->type == VD_RAW){
sector_size = vd->u.raw.logical_sector_size;
}
switch (sector_size) {
case 0x1000:
KdPrint(("set 4k setctor size in SERVICE_ACTION_IN"));
sector_size_shift = 3;
break;
default:
break;
}
}
cap = (vd->capacity >> sector_size_shift) - 1;
rbuf[0] = (HPT_U8)(cap>>56);
rbuf[1] = (HPT_U8)(cap>>48);
rbuf[2] = (HPT_U8)(cap>>40);
rbuf[3] = (HPT_U8)(cap>>32);
rbuf[4] = (HPT_U8)(cap>>24);
rbuf[5] = (HPT_U8)(cap>>16);
rbuf[6] = (HPT_U8)(cap>>8);
rbuf[7] = (HPT_U8)cap;
rbuf[8] = 0;
rbuf[9] = 0;
rbuf[10] = 2 << sector_size_shift;
rbuf[11] = 0;
if(!mIsArray(vd->type)){
rbuf[13] = vd->u.raw.logicalsectors_per_physicalsector;
rbuf[14] = (HPT_U8)((vd->u.raw.lowest_aligned >> 8) & 0x3f);
rbuf[15] = (HPT_U8)(vd->u.raw.lowest_aligned);
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case READ_6:
case READ_10:
case READ_16:
case WRITE_6:
case WRITE_10:
case WRITE_16:
case 0x13:
case 0x2f:
case 0x8f: /* VERIFY_16 */
{
int error;
HPT_U8 sector_size_shift = 0;
HPT_U32 sector_size = 0;
pCmd = ldm_alloc_cmds(vbus, vd->cmds_per_request);
if(!pCmd){
KdPrint(("Failed to allocate command!"));
ccb->ccb_h.status = CAM_BUSY;
break;
}
switch (cdb[0]) {
case READ_6:
case WRITE_6:
case 0x13:
pCmd->uCmd.Ide.Lba = ((HPT_U32)cdb[1] << 16) | ((HPT_U32)cdb[2] << 8) | (HPT_U32)cdb[3];
pCmd->uCmd.Ide.nSectors = (HPT_U16) cdb[4];
break;
case READ_16:
case WRITE_16:
case 0x8f: /* VERIFY_16 */
{
HPT_U64 block =
((HPT_U64)cdb[2]<<56) |
((HPT_U64)cdb[3]<<48) |
((HPT_U64)cdb[4]<<40) |
((HPT_U64)cdb[5]<<32) |
((HPT_U64)cdb[6]<<24) |
((HPT_U64)cdb[7]<<16) |
((HPT_U64)cdb[8]<<8) |
((HPT_U64)cdb[9]);
pCmd->uCmd.Ide.Lba = block;
pCmd->uCmd.Ide.nSectors = (HPT_U16)cdb[13] | ((HPT_U16)cdb[12]<<8);
break;
}
default:
pCmd->uCmd.Ide.Lba = (HPT_U32)cdb[5] | ((HPT_U32)cdb[4] << 8) | ((HPT_U32)cdb[3] << 16) | ((HPT_U32)cdb[2] << 24);
pCmd->uCmd.Ide.nSectors = (HPT_U16) cdb[8] | ((HPT_U16)cdb[7]<<8);
break;
}
if(mIsArray(vd->type)) {
sector_size_shift = vd->u.array.sector_size_shift;
}
else{
if(vd->type == VD_RAW){
sector_size = vd->u.raw.logical_sector_size;
}
switch (sector_size) {
case 0x1000:
KdPrint(("<8>resize sector size from 4k to 512"));
sector_size_shift = 3;
break;
default:
break;
}
}
pCmd->uCmd.Ide.Lba <<= sector_size_shift;
pCmd->uCmd.Ide.nSectors <<= sector_size_shift;
switch (cdb[0]) {
case READ_6:
case READ_10:
case READ_16:
pCmd->flags.data_in = 1;
break;
case WRITE_6:
case WRITE_10:
case WRITE_16:
pCmd->flags.data_out = 1;
break;
}
pCmd->priv = ext = cmdext_get(vbus_ext);
HPT_ASSERT(ext);
ext->ccb = ccb;
pCmd->target = vd;
pCmd->done = os_cmddone;
pCmd->buildsgl = os_buildsgl;
pCmd->psg = ext->psg;
pCmd->flags.physical_sg = 1;
error = bus_dmamap_load_ccb(vbus_ext->io_dmat,
ext->dma_map, ccb,
hpt_io_dmamap_callback, pCmd,
BUS_DMA_WAITOK
);
KdPrint(("bus_dmamap_load return %d", error));
if (error && error!=EINPROGRESS) {
os_printk("bus_dmamap_load error %d", error);
cmdext_put(ext);
ldm_free_cmds(pCmd);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
xpt_done(ccb);
}
return;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
static void hpt_action(struct cam_sim *sim, union ccb *ccb)
{
PVBUS_EXT vbus_ext = (PVBUS_EXT)cam_sim_softc(sim);
KdPrint(("hpt_action(fn=%d, id=%d)", ccb->ccb_h.func_code, ccb->ccb_h.target_id));
hpt_assert_vbus_locked(vbus_ext);
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
hpt_scsi_io(vbus_ext, ccb);
return;
case XPT_RESET_BUS:
ldm_reset_vbus((PVBUS)vbus_ext->vbus);
break;
case XPT_GET_TRAN_SETTINGS:
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
break;
case XPT_CALC_GEOMETRY:
ccb->ccg.heads = 255;
ccb->ccg.secs_per_track = 63;
ccb->ccg.cylinders = ccb->ccg.volume_size / (ccb->ccg.heads * ccb->ccg.secs_per_track);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_SDTR_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET;
cpi->hba_eng_cnt = 0;
cpi->max_target = osm_max_targets;
cpi->max_lun = 0;
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->initiator_id = osm_max_targets;
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "HPT ", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
static void hpt_pci_intr(void *arg)
{
PVBUS_EXT vbus_ext = (PVBUS_EXT)arg;
hpt_lock_vbus(vbus_ext);
ldm_intr((PVBUS)vbus_ext->vbus);
hpt_unlock_vbus(vbus_ext);
}
static void hpt_poll(struct cam_sim *sim)
{
PVBUS_EXT vbus_ext = cam_sim_softc(sim);
hpt_assert_vbus_locked(vbus_ext);
ldm_intr((PVBUS)vbus_ext->vbus);
}
static void hpt_async(void * callback_arg, u_int32_t code, struct cam_path * path, void * arg)
{
KdPrint(("hpt_async"));
}
static int hpt_shutdown(device_t dev)
{
KdPrint(("hpt_shutdown(dev=%p)", dev));
return 0;
}
static int hpt_detach(device_t dev)
{
/* we don't allow the driver to be unloaded. */
return EBUSY;
}
static void hpt_ioctl_done(struct _IOCTL_ARG *arg)
{
arg->ioctl_cmnd = 0;
wakeup(arg);
}
static void __hpt_do_ioctl(PVBUS_EXT vbus_ext, IOCTL_ARG *ioctl_args)
{
ioctl_args->result = -1;
ioctl_args->done = hpt_ioctl_done;
ioctl_args->ioctl_cmnd = (void *)1;
hpt_lock_vbus(vbus_ext);
ldm_ioctl((PVBUS)vbus_ext->vbus, ioctl_args);
while (ioctl_args->ioctl_cmnd) {
if (hpt_sleep(vbus_ext, ioctl_args, PPAUSE, "hptctl", HPT_OSM_TIMEOUT)==0)
break;
ldm_reset_vbus((PVBUS)vbus_ext->vbus);
__hpt_do_tasks(vbus_ext);
}
/* KdPrint(("ioctl %x result %d", ioctl_args->dwIoControlCode, ioctl_args->result)); */
hpt_unlock_vbus(vbus_ext);
}
static void hpt_do_ioctl(IOCTL_ARG *ioctl_args)
{
PVBUS vbus;
PVBUS_EXT vbus_ext;
ldm_for_each_vbus(vbus, vbus_ext) {
__hpt_do_ioctl(vbus_ext, ioctl_args);
if (ioctl_args->result!=HPT_IOCTL_RESULT_WRONG_VBUS)
return;
}
}
#define HPT_DO_IOCTL(code, inbuf, insize, outbuf, outsize) ({\
IOCTL_ARG arg;\
arg.dwIoControlCode = code;\
arg.lpInBuffer = inbuf;\
arg.lpOutBuffer = outbuf;\
arg.nInBufferSize = insize;\
arg.nOutBufferSize = outsize;\
arg.lpBytesReturned = 0;\
hpt_do_ioctl(&arg);\
arg.result;\
})
#define DEVICEID_VALID(id) ((id) && ((HPT_U32)(id)!=0xffffffff))
static int hpt_get_logical_devices(DEVICEID * pIds, int nMaxCount)
{
int i;
HPT_U32 count = nMaxCount-1;
if (HPT_DO_IOCTL(HPT_IOCTL_GET_LOGICAL_DEVICES,
&count, sizeof(HPT_U32), pIds, sizeof(DEVICEID)*nMaxCount))
return -1;
nMaxCount = (int)pIds[0];
for (i=0; i<nMaxCount; i++) pIds[i] = pIds[i+1];
return nMaxCount;
}
static int hpt_get_device_info_v3(DEVICEID id, PLOGICAL_DEVICE_INFO_V3 pInfo)
{
return HPT_DO_IOCTL(HPT_IOCTL_GET_DEVICE_INFO_V3,
&id, sizeof(DEVICEID), pInfo, sizeof(LOGICAL_DEVICE_INFO_V3));
}
/* not belong to this file logically, but we want to use ioctl interface */
static int __hpt_stop_tasks(PVBUS_EXT vbus_ext, DEVICEID id)
{
LOGICAL_DEVICE_INFO_V3 devinfo;
int i, result;
DEVICEID param[2] = { id, 0 };
if (hpt_get_device_info_v3(id, &devinfo))
return -1;
if (devinfo.Type!=LDT_ARRAY)
return -1;
if (devinfo.u.array.Flags & ARRAY_FLAG_REBUILDING)
param[1] = AS_REBUILD_ABORT;
else if (devinfo.u.array.Flags & ARRAY_FLAG_VERIFYING)
param[1] = AS_VERIFY_ABORT;
else if (devinfo.u.array.Flags & ARRAY_FLAG_INITIALIZING)
param[1] = AS_INITIALIZE_ABORT;
else if (devinfo.u.array.Flags & ARRAY_FLAG_TRANSFORMING)
param[1] = AS_TRANSFORM_ABORT;
else
return -1;
KdPrint(("SET_ARRAY_STATE(%x, %d)", param[0], param[1]));
result = HPT_DO_IOCTL(HPT_IOCTL_SET_ARRAY_STATE,
param, sizeof(param), 0, 0);
for (i=0; i<devinfo.u.array.nDisk; i++)
if (DEVICEID_VALID(devinfo.u.array.Members[i]))
__hpt_stop_tasks(vbus_ext, devinfo.u.array.Members[i]);
return result;
}
static void hpt_stop_tasks(PVBUS_EXT vbus_ext)
{
DEVICEID ids[32];
int i, count;
count = hpt_get_logical_devices((DEVICEID *)&ids, sizeof(ids)/sizeof(ids[0]));
for (i=0; i<count; i++)
__hpt_stop_tasks(vbus_ext, ids[i]);
}
static d_open_t hpt_open;
static d_close_t hpt_close;
static d_ioctl_t hpt_ioctl;
static int hpt_rescan_bus(void);
static struct cdevsw hpt_cdevsw = {
.d_open = hpt_open,
.d_close = hpt_close,
.d_ioctl = hpt_ioctl,
.d_name = driver_name,
.d_version = D_VERSION,
};
static struct intr_config_hook hpt_ich;
/*
* hpt_final_init will be called after all hpt_attach.
*/
static void hpt_final_init(void *dummy)
{
int i,unit_number=0;
PVBUS_EXT vbus_ext;
PVBUS vbus;
PHBA hba;
/* Clear the config hook */
config_intrhook_disestablish(&hpt_ich);
/* allocate memory */
i = 0;
ldm_for_each_vbus(vbus, vbus_ext) {
if (hpt_alloc_mem(vbus_ext)) {
os_printk("out of memory");
return;
}
i++;
}
if (!i) {
if (bootverbose)
os_printk("no controller detected.");
return;
}
/* initializing hardware */
ldm_for_each_vbus(vbus, vbus_ext) {
/* make timer available here */
mtx_init(&vbus_ext->lock, "hptsleeplock", NULL, MTX_DEF);
callout_init_mtx(&vbus_ext->timer, &vbus_ext->lock, 0);
if (hpt_init_vbus(vbus_ext)) {
os_printk("fail to initialize hardware");
break; /* FIXME */
}
}
/* register CAM interface */
ldm_for_each_vbus(vbus, vbus_ext) {
struct cam_devq *devq;
struct ccb_setasync ccb;
if (bus_dma_tag_create(NULL,/* parent */
4, /* alignment */
BUS_SPACE_MAXADDR_32BIT+1, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
PAGE_SIZE * (os_max_sg_descriptors-1), /* maxsize */
os_max_sg_descriptors, /* nsegments */
0x10000, /* maxsegsize */
BUS_DMA_WAITOK, /* flags */
busdma_lock_mutex, /* lockfunc */
&vbus_ext->lock, /* lockfuncarg */
&vbus_ext->io_dmat /* tag */))
{
return ;
}
for (i=0; i<os_max_queue_comm; i++) {
POS_CMDEXT ext = (POS_CMDEXT)malloc(sizeof(OS_CMDEXT), M_DEVBUF, M_WAITOK);
if (!ext) {
os_printk("Can't alloc cmdext(%d)", i);
return ;
}
ext->vbus_ext = vbus_ext;
ext->next = vbus_ext->cmdext_list;
vbus_ext->cmdext_list = ext;
if (bus_dmamap_create(vbus_ext->io_dmat, 0, &ext->dma_map)) {
os_printk("Can't create dma map(%d)", i);
return ;
}
callout_init_mtx(&ext->timeout, &vbus_ext->lock, 0);
}
if ((devq = cam_simq_alloc(os_max_queue_comm)) == NULL) {
os_printk("cam_simq_alloc failed");
return ;
}
hpt_lock_vbus(vbus_ext);
vbus_ext->sim = cam_sim_alloc(hpt_action, hpt_poll, driver_name,
vbus_ext, unit_number, &vbus_ext->lock,
os_max_queue_comm, /*tagged*/8, devq);
unit_number++;
if (!vbus_ext->sim) {
os_printk("cam_sim_alloc failed");
cam_simq_free(devq);
hpt_unlock_vbus(vbus_ext);
return ;
}
if (xpt_bus_register(vbus_ext->sim, NULL, 0) != CAM_SUCCESS) {
os_printk("xpt_bus_register failed");
cam_sim_free(vbus_ext->sim, /*free devq*/ TRUE);
vbus_ext->sim = NULL;
return ;
}
if (xpt_create_path(&vbus_ext->path, /*periph */ NULL,
cam_sim_path(vbus_ext->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP)
{
os_printk("xpt_create_path failed");
xpt_bus_deregister(cam_sim_path(vbus_ext->sim));
cam_sim_free(vbus_ext->sim, /*free_devq*/TRUE);
hpt_unlock_vbus(vbus_ext);
vbus_ext->sim = NULL;
return ;
}
hpt_unlock_vbus(vbus_ext);
xpt_setup_ccb(&ccb.ccb_h, vbus_ext->path, /*priority*/5);
ccb.ccb_h.func_code = XPT_SASYNC_CB;
ccb.event_enable = AC_LOST_DEVICE;
ccb.callback = hpt_async;
ccb.callback_arg = vbus_ext;
xpt_action((union ccb *)&ccb);
for (hba = vbus_ext->hba_list; hba; hba = hba->next) {
int rid = 0;
if ((hba->irq_res = bus_alloc_resource(hba->pcidev,
SYS_RES_IRQ, &rid, 0, ~0ul, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL)
{
os_printk("can't allocate interrupt");
return ;
}
if (bus_setup_intr(hba->pcidev, hba->irq_res, INTR_TYPE_CAM | INTR_MPSAFE,
NULL, hpt_pci_intr, vbus_ext, &hba->irq_handle))
{
os_printk("can't set up interrupt");
return ;
}
hba->ldm_adapter.him->intr_control(hba->ldm_adapter.him_handle, HPT_TRUE);
}
vbus_ext->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
hpt_shutdown_vbus, vbus_ext, SHUTDOWN_PRI_DEFAULT);
if (!vbus_ext->shutdown_eh)
os_printk("Shutdown event registration failed");
}
ldm_for_each_vbus(vbus, vbus_ext) {
TASK_INIT(&vbus_ext->worker, 0, (task_fn_t *)hpt_do_tasks, vbus_ext);
if (vbus_ext->tasks)
TASK_ENQUEUE(&vbus_ext->worker);
}
make_dev(&hpt_cdevsw, DRIVER_MINOR, UID_ROOT, GID_OPERATOR,
S_IRUSR | S_IWUSR, "%s", driver_name);
}
#if defined(KLD_MODULE)
typedef struct driverlink *driverlink_t;
struct driverlink {
kobj_class_t driver;
TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
};
typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
struct devclass {
TAILQ_ENTRY(devclass) link;
devclass_t parent; /* parent in devclass hierarchy */
driver_list_t drivers; /* bus devclasses store drivers for bus */
char *name;
device_t *devices; /* array of devices indexed by unit */
int maxunit; /* size of devices array */
};
static void override_kernel_driver(void)
{
driverlink_t dl, dlfirst;
driver_t *tmpdriver;
devclass_t dc = devclass_find("pci");
if (dc){
dlfirst = TAILQ_FIRST(&dc->drivers);
for (dl = dlfirst; dl; dl = TAILQ_NEXT(dl, link)) {
if(strcmp(dl->driver->name, driver_name) == 0) {
tmpdriver=dl->driver;
dl->driver=dlfirst->driver;
dlfirst->driver=tmpdriver;
break;
}
}
}
}
#else
#define override_kernel_driver()
#endif
static void hpt_init(void *dummy)
{
if (bootverbose)
os_printk("%s %s", driver_name_long, driver_ver);
override_kernel_driver();
init_config();
hpt_ich.ich_func = hpt_final_init;
hpt_ich.ich_arg = NULL;
if (config_intrhook_establish(&hpt_ich) != 0) {
printf("%s: cannot establish configuration hook\n",
driver_name_long);
}
}
SYSINIT(hptinit, SI_SUB_CONFIGURE, SI_ORDER_FIRST, hpt_init, NULL);
/*
* CAM driver interface
*/
static device_method_t driver_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, hpt_probe),
DEVMETHOD(device_attach, hpt_attach),
DEVMETHOD(device_detach, hpt_detach),
DEVMETHOD(device_shutdown, hpt_shutdown),
{ 0, 0 }
};
static driver_t hpt_pci_driver = {
driver_name,
driver_methods,
sizeof(HBA)
};
static devclass_t hpt_devclass;
#ifndef TARGETNAME
#error "no TARGETNAME found"
#endif
/* use this to make TARGETNAME be expanded */
#define __DRIVER_MODULE(p1, p2, p3, p4, p5, p6) DRIVER_MODULE(p1, p2, p3, p4, p5, p6)
#define __MODULE_VERSION(p1, p2) MODULE_VERSION(p1, p2)
#define __MODULE_DEPEND(p1, p2, p3, p4, p5) MODULE_DEPEND(p1, p2, p3, p4, p5)
__DRIVER_MODULE(TARGETNAME, pci, hpt_pci_driver, hpt_devclass, 0, 0);
__MODULE_VERSION(TARGETNAME, 1);
__MODULE_DEPEND(TARGETNAME, cam, 1, 1, 1);
static int hpt_open(struct cdev *dev, int flags, int devtype, struct thread *td)
{
return 0;
}
static int hpt_close(struct cdev *dev, int flags, int devtype, struct thread *td)
{
return 0;
}
static int hpt_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
{
PHPT_IOCTL_PARAM piop=(PHPT_IOCTL_PARAM)data;
IOCTL_ARG ioctl_args;
HPT_U32 bytesReturned;
switch (cmd){
case HPT_DO_IOCONTROL:
{
if (piop->Magic == HPT_IOCTL_MAGIC || piop->Magic == HPT_IOCTL_MAGIC32) {
KdPrint(("ioctl=%x in=%p len=%d out=%p len=%d\n",
piop->dwIoControlCode,
piop->lpInBuffer,
piop->nInBufferSize,
piop->lpOutBuffer,
piop->nOutBufferSize));
memset(&ioctl_args, 0, sizeof(ioctl_args));
ioctl_args.dwIoControlCode = piop->dwIoControlCode;
ioctl_args.nInBufferSize = piop->nInBufferSize;
ioctl_args.nOutBufferSize = piop->nOutBufferSize;
ioctl_args.lpBytesReturned = &bytesReturned;
if (ioctl_args.nInBufferSize) {
ioctl_args.lpInBuffer = malloc(ioctl_args.nInBufferSize, M_DEVBUF, M_WAITOK);
if (!ioctl_args.lpInBuffer)
goto invalid;
if (copyin((void*)piop->lpInBuffer,
ioctl_args.lpInBuffer, piop->nInBufferSize))
goto invalid;
}
if (ioctl_args.nOutBufferSize) {
ioctl_args.lpOutBuffer = malloc(ioctl_args.nOutBufferSize, M_DEVBUF, M_WAITOK);
if (!ioctl_args.lpOutBuffer)
goto invalid;
}
hpt_do_ioctl(&ioctl_args);
if (ioctl_args.result==HPT_IOCTL_RESULT_OK) {
if (piop->nOutBufferSize) {
if (copyout(ioctl_args.lpOutBuffer,
(void*)piop->lpOutBuffer, piop->nOutBufferSize))
goto invalid;
}
if (piop->lpBytesReturned) {
if (copyout(&bytesReturned,
(void*)piop->lpBytesReturned, sizeof(HPT_U32)))
goto invalid;
}
if (ioctl_args.lpInBuffer) free(ioctl_args.lpInBuffer, M_DEVBUF);
if (ioctl_args.lpOutBuffer) free(ioctl_args.lpOutBuffer, M_DEVBUF);
return 0;
}
invalid:
if (ioctl_args.lpInBuffer) free(ioctl_args.lpInBuffer, M_DEVBUF);
if (ioctl_args.lpOutBuffer) free(ioctl_args.lpOutBuffer, M_DEVBUF);
return EFAULT;
}
return EFAULT;
}
case HPT_SCAN_BUS:
{
return hpt_rescan_bus();
}
default:
KdPrint(("invalid command!"));
return EFAULT;
}
}
static int hpt_rescan_bus(void)
{
union ccb *ccb;
PVBUS vbus;
PVBUS_EXT vbus_ext;
ldm_for_each_vbus(vbus, vbus_ext) {
if ((ccb = xpt_alloc_ccb()) == NULL)
{
return(ENOMEM);
}
if (xpt_create_path(&ccb->ccb_h.path, NULL, cam_sim_path(vbus_ext->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP)
{
xpt_free_ccb(ccb);
return(EIO);
}
xpt_rescan(ccb);
}
return(0);
}