freebsd-skq/sys/dev/ipw/if_ipw.c
Gleb Smirnoff 59686fe935 Set ic_softc in all 802.11 drivers. Not required right now, but will be
used quite soon.

Sponsored by:	Netflix
Sponsored by:	Nginx, Inc.
2015-05-25 18:50:26 +00:00

2725 lines
69 KiB
C

/*-
* Copyright (c) 2004-2006
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
* Copyright (c) 2006 Sam Leffler, Errno Consulting
* Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Intel(R) PRO/Wireless 2100 MiniPCI driver
* http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/ipw/if_ipwreg.h>
#include <dev/ipw/if_ipwvar.h>
#define IPW_DEBUG
#ifdef IPW_DEBUG
#define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0)
int ipw_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, ipw, CTLFLAG_RW, &ipw_debug, 0, "ipw debug level");
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
MODULE_DEPEND(ipw, pci, 1, 1, 1);
MODULE_DEPEND(ipw, wlan, 1, 1, 1);
MODULE_DEPEND(ipw, firmware, 1, 1, 1);
struct ipw_ident {
uint16_t vendor;
uint16_t device;
const char *name;
};
static const struct ipw_ident ipw_ident_table[] = {
{ 0x8086, 0x1043, "Intel(R) PRO/Wireless 2100 MiniPCI" },
{ 0, 0, NULL }
};
static struct ieee80211vap *ipw_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void ipw_vap_delete(struct ieee80211vap *);
static int ipw_dma_alloc(struct ipw_softc *);
static void ipw_release(struct ipw_softc *);
static void ipw_media_status(struct ifnet *, struct ifmediareq *);
static int ipw_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t);
static void ipw_rx_cmd_intr(struct ipw_softc *, struct ipw_soft_buf *);
static void ipw_rx_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
static void ipw_rx_data_intr(struct ipw_softc *, struct ipw_status *,
struct ipw_soft_bd *, struct ipw_soft_buf *);
static void ipw_rx_intr(struct ipw_softc *);
static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
static void ipw_tx_intr(struct ipw_softc *);
static void ipw_intr(void *);
static void ipw_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static const char * ipw_cmdname(int);
static int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t);
static int ipw_tx_start(struct ifnet *, struct mbuf *,
struct ieee80211_node *);
static int ipw_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void ipw_start(struct ifnet *);
static void ipw_start_locked(struct ifnet *);
static void ipw_watchdog(void *);
static int ipw_ioctl(struct ifnet *, u_long, caddr_t);
static void ipw_stop_master(struct ipw_softc *);
static int ipw_enable(struct ipw_softc *);
static int ipw_disable(struct ipw_softc *);
static int ipw_reset(struct ipw_softc *);
static int ipw_load_ucode(struct ipw_softc *, const char *, int);
static int ipw_load_firmware(struct ipw_softc *, const char *, int);
static int ipw_config(struct ipw_softc *);
static void ipw_assoc(struct ieee80211com *, struct ieee80211vap *);
static void ipw_disassoc(struct ieee80211com *, struct ieee80211vap *);
static void ipw_init_task(void *, int);
static void ipw_init(void *);
static void ipw_init_locked(struct ipw_softc *);
static void ipw_stop(void *);
static void ipw_stop_locked(struct ipw_softc *);
static int ipw_sysctl_stats(SYSCTL_HANDLER_ARGS);
static int ipw_sysctl_radio(SYSCTL_HANDLER_ARGS);
static uint32_t ipw_read_table1(struct ipw_softc *, uint32_t);
static void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t);
#if 0
static int ipw_read_table2(struct ipw_softc *, uint32_t, void *,
uint32_t *);
static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *,
bus_size_t);
#endif
static void ipw_write_mem_1(struct ipw_softc *, bus_size_t,
const uint8_t *, bus_size_t);
static int ipw_scan(struct ipw_softc *);
static void ipw_scan_start(struct ieee80211com *);
static void ipw_scan_end(struct ieee80211com *);
static void ipw_set_channel(struct ieee80211com *);
static void ipw_scan_curchan(struct ieee80211_scan_state *,
unsigned long maxdwell);
static void ipw_scan_mindwell(struct ieee80211_scan_state *);
static int ipw_probe(device_t);
static int ipw_attach(device_t);
static int ipw_detach(device_t);
static int ipw_shutdown(device_t);
static int ipw_suspend(device_t);
static int ipw_resume(device_t);
static device_method_t ipw_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ipw_probe),
DEVMETHOD(device_attach, ipw_attach),
DEVMETHOD(device_detach, ipw_detach),
DEVMETHOD(device_shutdown, ipw_shutdown),
DEVMETHOD(device_suspend, ipw_suspend),
DEVMETHOD(device_resume, ipw_resume),
DEVMETHOD_END
};
static driver_t ipw_driver = {
"ipw",
ipw_methods,
sizeof (struct ipw_softc)
};
static devclass_t ipw_devclass;
DRIVER_MODULE(ipw, pci, ipw_driver, ipw_devclass, NULL, NULL);
MODULE_VERSION(ipw, 1);
static int
ipw_probe(device_t dev)
{
const struct ipw_ident *ident;
for (ident = ipw_ident_table; ident->name != NULL; ident++) {
if (pci_get_vendor(dev) == ident->vendor &&
pci_get_device(dev) == ident->device) {
device_set_desc(dev, ident->name);
return (BUS_PROBE_DEFAULT);
}
}
return ENXIO;
}
/* Base Address Register */
static int
ipw_attach(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
struct ieee80211com *ic;
struct ieee80211_channel *c;
uint16_t val;
int error, i;
uint8_t macaddr[IEEE80211_ADDR_LEN];
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
TASK_INIT(&sc->sc_init_task, 0, ipw_init_task, sc);
callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
pci_write_config(dev, 0x41, 0, 1);
/* enable bus-mastering */
pci_enable_busmaster(dev);
i = PCIR_BAR(0);
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
if (sc->mem == NULL) {
device_printf(dev, "could not allocate memory resource\n");
goto fail;
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
i = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq == NULL) {
device_printf(dev, "could not allocate interrupt resource\n");
goto fail1;
}
if (ipw_reset(sc) != 0) {
device_printf(dev, "could not reset adapter\n");
goto fail2;
}
if (ipw_dma_alloc(sc) != 0) {
device_printf(dev, "could not allocate DMA resources\n");
goto fail2;
}
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
goto fail3;
}
ic = ifp->if_l2com;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = ipw_init;
ifp->if_ioctl = ipw_ioctl;
ifp->if_start = ipw_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(dev);
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_phytype = IEEE80211_T_DS;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_IBSS /* IBSS mode supported */
| IEEE80211_C_MONITOR /* monitor mode supported */
| IEEE80211_C_PMGT /* power save supported */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_WPA /* 802.11i supported */
;
/* read MAC address from EEPROM */
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0);
macaddr[0] = val >> 8;
macaddr[1] = val & 0xff;
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1);
macaddr[2] = val >> 8;
macaddr[3] = val & 0xff;
val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2);
macaddr[4] = val >> 8;
macaddr[5] = val & 0xff;
/* set supported .11b channels (read from EEPROM) */
if ((val = ipw_read_prom_word(sc, IPW_EEPROM_CHANNEL_LIST)) == 0)
val = 0x7ff; /* default to channels 1-11 */
val <<= 1;
for (i = 1; i < 16; i++) {
if (val & (1 << i)) {
c = &ic->ic_channels[ic->ic_nchans++];
c->ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
c->ic_flags = IEEE80211_CHAN_B;
c->ic_ieee = i;
}
}
/* check support for radio transmitter switch in EEPROM */
if (!(ipw_read_prom_word(sc, IPW_EEPROM_RADIO) & 8))
sc->flags |= IPW_FLAG_HAS_RADIO_SWITCH;
ieee80211_ifattach(ic, macaddr);
ic->ic_scan_start = ipw_scan_start;
ic->ic_scan_end = ipw_scan_end;
ic->ic_set_channel = ipw_set_channel;
ic->ic_scan_curchan = ipw_scan_curchan;
ic->ic_scan_mindwell = ipw_scan_mindwell;
ic->ic_raw_xmit = ipw_raw_xmit;
ic->ic_vap_create = ipw_vap_create;
ic->ic_vap_delete = ipw_vap_delete;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
IPW_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
IPW_RX_RADIOTAP_PRESENT);
/*
* Add a few sysctl knobs.
*/
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "radio",
CTLTYPE_INT | CTLFLAG_RD, sc, 0, ipw_sysctl_radio, "I",
"radio transmitter switch state (0=off, 1=on)");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats",
CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, ipw_sysctl_stats, "S",
"statistics");
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ipw_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "could not set up interrupt\n");
goto fail4;
}
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail4:
if_free(ifp);
fail3:
ipw_release(sc);
fail2:
bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
fail1:
bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
sc->mem);
fail:
mtx_destroy(&sc->sc_mtx);
return ENXIO;
}
static int
ipw_detach(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
ieee80211_draintask(ic, &sc->sc_init_task);
ipw_stop(sc);
ieee80211_ifdetach(ic);
callout_drain(&sc->sc_wdtimer);
ipw_release(sc);
bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
sc->mem);
if_free(ifp);
if (sc->sc_firmware != NULL) {
firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
sc->sc_firmware = NULL;
}
mtx_destroy(&sc->sc_mtx);
return 0;
}
static struct ieee80211vap *
ipw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ifnet *ifp = ic->ic_ifp;
struct ipw_softc *sc = ifp->if_softc;
struct ipw_vap *ivp;
struct ieee80211vap *vap;
const struct firmware *fp;
const struct ipw_firmware_hdr *hdr;
const char *imagename;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
switch (opmode) {
case IEEE80211_M_STA:
imagename = "ipw_bss";
break;
case IEEE80211_M_IBSS:
imagename = "ipw_ibss";
break;
case IEEE80211_M_MONITOR:
imagename = "ipw_monitor";
break;
default:
return NULL;
}
/*
* Load firmware image using the firmware(9) subsystem. Doing
* this unlocked is ok since we're single-threaded by the
* 802.11 layer.
*/
if (sc->sc_firmware == NULL ||
strcmp(sc->sc_firmware->name, imagename) != 0) {
if (sc->sc_firmware != NULL)
firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
sc->sc_firmware = firmware_get(imagename);
}
if (sc->sc_firmware == NULL) {
device_printf(sc->sc_dev,
"could not load firmware image '%s'\n", imagename);
return NULL;
}
fp = sc->sc_firmware;
if (fp->datasize < sizeof *hdr) {
device_printf(sc->sc_dev,
"firmware image too short %zu\n", fp->datasize);
firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
sc->sc_firmware = NULL;
return NULL;
}
hdr = (const struct ipw_firmware_hdr *)fp->data;
if (fp->datasize < sizeof *hdr + le32toh(hdr->mainsz) +
le32toh(hdr->ucodesz)) {
device_printf(sc->sc_dev,
"firmware image too short %zu\n", fp->datasize);
firmware_put(sc->sc_firmware, FIRMWARE_UNLOAD);
sc->sc_firmware = NULL;
return NULL;
}
ivp = (struct ipw_vap *) malloc(sizeof(struct ipw_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (ivp == NULL)
return NULL;
vap = &ivp->vap;
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
/* override with driver methods */
ivp->newstate = vap->iv_newstate;
vap->iv_newstate = ipw_newstate;
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ipw_media_status);
ic->ic_opmode = opmode;
return vap;
}
static void
ipw_vap_delete(struct ieee80211vap *vap)
{
struct ipw_vap *ivp = IPW_VAP(vap);
ieee80211_vap_detach(vap);
free(ivp, M_80211_VAP);
}
static int
ipw_dma_alloc(struct ipw_softc *sc)
{
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
bus_addr_t physaddr;
int error, i;
/*
* Allocate parent DMA tag for subsequent allocations.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, BUS_SPACE_UNRESTRICTED,
BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->parent_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create parent DMA tag\n");
goto fail;
}
/*
* Allocate and map tx ring.
*/
error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, NULL,
NULL, &sc->tbd_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create tx ring DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->tbd_dmat, (void **)&sc->tbd_list,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tbd_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate tx ring DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->tbd_dmat, sc->tbd_map, sc->tbd_list,
IPW_TBD_SZ, ipw_dma_map_addr, &sc->tbd_phys, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map tx ring DMA memory\n");
goto fail;
}
/*
* Allocate and map rx ring.
*/
error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, NULL,
NULL, &sc->rbd_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create rx ring DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->rbd_dmat, (void **)&sc->rbd_list,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rbd_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate rx ring DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->rbd_dmat, sc->rbd_map, sc->rbd_list,
IPW_RBD_SZ, ipw_dma_map_addr, &sc->rbd_phys, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map rx ring DMA memory\n");
goto fail;
}
/*
* Allocate and map status ring.
*/
error = bus_dma_tag_create(sc->parent_dmat, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0,
NULL, NULL, &sc->status_dmat);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create status ring DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->status_dmat, (void **)&sc->status_list,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->status_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not allocate status ring DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->status_dmat, sc->status_map,
sc->status_list, IPW_STATUS_SZ, ipw_dma_map_addr, &sc->status_phys,
0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map status ring DMA memory\n");
goto fail;
}
/*
* Allocate command DMA map.
*/
error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_cmd), 1,
sizeof (struct ipw_cmd), 0, NULL, NULL, &sc->cmd_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create command DMA tag\n");
goto fail;
}
error = bus_dmamap_create(sc->cmd_dmat, 0, &sc->cmd_map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create command DMA map\n");
goto fail;
}
/*
* Allocate headers DMA maps.
*/
error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, sizeof (struct ipw_hdr), 1,
sizeof (struct ipw_hdr), 0, NULL, NULL, &sc->hdr_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create header DMA tag\n");
goto fail;
}
SLIST_INIT(&sc->free_shdr);
for (i = 0; i < IPW_NDATA; i++) {
shdr = &sc->shdr_list[i];
error = bus_dmamap_create(sc->hdr_dmat, 0, &shdr->map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create header DMA map\n");
goto fail;
}
SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
}
/*
* Allocate tx buffers DMA maps.
*/
error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0,
NULL, NULL, &sc->txbuf_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create tx DMA tag\n");
goto fail;
}
SLIST_INIT(&sc->free_sbuf);
for (i = 0; i < IPW_NDATA; i++) {
sbuf = &sc->tx_sbuf_list[i];
error = bus_dmamap_create(sc->txbuf_dmat, 0, &sbuf->map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create tx DMA map\n");
goto fail;
}
SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
}
/*
* Initialize tx ring.
*/
for (i = 0; i < IPW_NTBD; i++) {
sbd = &sc->stbd_list[i];
sbd->bd = &sc->tbd_list[i];
sbd->type = IPW_SBD_TYPE_NOASSOC;
}
/*
* Pre-allocate rx buffers and DMA maps.
*/
error = bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
NULL, &sc->rxbuf_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create rx DMA tag\n");
goto fail;
}
for (i = 0; i < IPW_NRBD; i++) {
sbd = &sc->srbd_list[i];
sbuf = &sc->rx_sbuf_list[i];
sbd->bd = &sc->rbd_list[i];
sbuf->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (sbuf->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_create(sc->rxbuf_dmat, 0, &sbuf->map);
if (error != 0) {
device_printf(sc->sc_dev,
"could not create rx DMA map\n");
goto fail;
}
error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
&physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map rx DMA memory\n");
goto fail;
}
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->physaddr = htole32(physaddr);
sbd->bd->len = htole32(MCLBYTES);
}
bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
return 0;
fail: ipw_release(sc);
return error;
}
static void
ipw_release(struct ipw_softc *sc)
{
struct ipw_soft_buf *sbuf;
int i;
if (sc->parent_dmat != NULL) {
bus_dma_tag_destroy(sc->parent_dmat);
}
if (sc->tbd_dmat != NULL) {
bus_dmamap_unload(sc->tbd_dmat, sc->tbd_map);
bus_dmamem_free(sc->tbd_dmat, sc->tbd_list, sc->tbd_map);
bus_dma_tag_destroy(sc->tbd_dmat);
}
if (sc->rbd_dmat != NULL) {
if (sc->rbd_list != NULL) {
bus_dmamap_unload(sc->rbd_dmat, sc->rbd_map);
bus_dmamem_free(sc->rbd_dmat, sc->rbd_list,
sc->rbd_map);
}
bus_dma_tag_destroy(sc->rbd_dmat);
}
if (sc->status_dmat != NULL) {
if (sc->status_list != NULL) {
bus_dmamap_unload(sc->status_dmat, sc->status_map);
bus_dmamem_free(sc->status_dmat, sc->status_list,
sc->status_map);
}
bus_dma_tag_destroy(sc->status_dmat);
}
for (i = 0; i < IPW_NTBD; i++)
ipw_release_sbd(sc, &sc->stbd_list[i]);
if (sc->cmd_dmat != NULL) {
bus_dmamap_destroy(sc->cmd_dmat, sc->cmd_map);
bus_dma_tag_destroy(sc->cmd_dmat);
}
if (sc->hdr_dmat != NULL) {
for (i = 0; i < IPW_NDATA; i++)
bus_dmamap_destroy(sc->hdr_dmat, sc->shdr_list[i].map);
bus_dma_tag_destroy(sc->hdr_dmat);
}
if (sc->txbuf_dmat != NULL) {
for (i = 0; i < IPW_NDATA; i++) {
bus_dmamap_destroy(sc->txbuf_dmat,
sc->tx_sbuf_list[i].map);
}
bus_dma_tag_destroy(sc->txbuf_dmat);
}
if (sc->rxbuf_dmat != NULL) {
for (i = 0; i < IPW_NRBD; i++) {
sbuf = &sc->rx_sbuf_list[i];
if (sbuf->m != NULL) {
bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
m_freem(sbuf->m);
}
bus_dmamap_destroy(sc->rxbuf_dmat, sbuf->map);
}
bus_dma_tag_destroy(sc->rxbuf_dmat);
}
}
static int
ipw_shutdown(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
ipw_stop(sc);
return 0;
}
static int
ipw_suspend(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
ieee80211_suspend_all(ic);
return 0;
}
static int
ipw_resume(device_t dev)
{
struct ipw_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
pci_write_config(dev, 0x41, 0, 1);
ieee80211_resume_all(ic);
return 0;
}
static int
ipw_cvtrate(int ipwrate)
{
switch (ipwrate) {
case IPW_RATE_DS1: return 2;
case IPW_RATE_DS2: return 4;
case IPW_RATE_DS5: return 11;
case IPW_RATE_DS11: return 22;
}
return 0;
}
/*
* The firmware automatically adapts the transmit speed. We report its current
* value here.
*/
static void
ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct ieee80211vap *vap = ifp->if_softc;
struct ieee80211com *ic = vap->iv_ic;
struct ipw_softc *sc = ic->ic_ifp->if_softc;
/* read current transmission rate from adapter */
vap->iv_bss->ni_txrate = ipw_cvtrate(
ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE) & 0xf);
ieee80211_media_status(ifp, imr);
}
static int
ipw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ipw_vap *ivp = IPW_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ipw_softc *sc = ifp->if_softc;
enum ieee80211_state ostate;
DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate], sc->flags));
ostate = vap->iv_state;
IEEE80211_UNLOCK(ic);
switch (nstate) {
case IEEE80211_S_RUN:
if (ic->ic_opmode == IEEE80211_M_IBSS) {
/*
* XXX when joining an ibss network we are called
* with a SCAN -> RUN transition on scan complete.
* Use that to call ipw_assoc. On completing the
* join we are then called again with an AUTH -> RUN
* transition and we want to do nothing. This is
* all totally bogus and needs to be redone.
*/
if (ostate == IEEE80211_S_SCAN)
ipw_assoc(ic, vap);
}
break;
case IEEE80211_S_INIT:
if (sc->flags & IPW_FLAG_ASSOCIATED)
ipw_disassoc(ic, vap);
break;
case IEEE80211_S_AUTH:
/*
* Move to ASSOC state after the ipw_assoc() call. Firmware
* takes care of authentication, after the call we'll receive
* only an assoc response which would otherwise be discared
* if we are still in AUTH state.
*/
nstate = IEEE80211_S_ASSOC;
ipw_assoc(ic, vap);
break;
case IEEE80211_S_ASSOC:
/*
* If we are not transitioning from AUTH then resend the
* association request.
*/
if (ostate != IEEE80211_S_AUTH)
ipw_assoc(ic, vap);
break;
default:
break;
}
IEEE80211_LOCK(ic);
return ivp->newstate(vap, nstate, arg);
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM.
*/
static uint16_t
ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
IPW_EEPROM_CTL(sc, 0);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
/* write start bit (1) */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
/* write READ opcode (10) */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
/* write address A7-A0 */
for (n = 7; n >= 0; n--) {
IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
(((addr >> n) & 1) << IPW_EEPROM_SHIFT_D));
IPW_EEPROM_CTL(sc, IPW_EEPROM_S |
(((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C);
}
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C);
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL);
val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n;
}
IPW_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
IPW_EEPROM_CTL(sc, IPW_EEPROM_S);
IPW_EEPROM_CTL(sc, 0);
IPW_EEPROM_CTL(sc, IPW_EEPROM_C);
return le16toh(val);
}
static void
ipw_rx_cmd_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
struct ipw_cmd *cmd;
bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
cmd = mtod(sbuf->m, struct ipw_cmd *);
DPRINTFN(9, ("cmd ack'ed %s(%u, %u, %u, %u, %u)\n",
ipw_cmdname(le32toh(cmd->type)), le32toh(cmd->type),
le32toh(cmd->subtype), le32toh(cmd->seq), le32toh(cmd->len),
le32toh(cmd->status)));
sc->flags &= ~IPW_FLAG_BUSY;
wakeup(sc);
}
static void
ipw_rx_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
#define IEEESTATE(vap) ieee80211_state_name[vap->iv_state]
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t state;
bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
state = le32toh(*mtod(sbuf->m, uint32_t *));
switch (state) {
case IPW_STATE_ASSOCIATED:
DPRINTFN(2, ("Association succeeded (%s flags 0x%x)\n",
IEEESTATE(vap), sc->flags));
/* XXX suppress state change in case the fw auto-associates */
if ((sc->flags & IPW_FLAG_ASSOCIATING) == 0) {
DPRINTF(("Unexpected association (%s, flags 0x%x)\n",
IEEESTATE(vap), sc->flags));
break;
}
sc->flags &= ~IPW_FLAG_ASSOCIATING;
sc->flags |= IPW_FLAG_ASSOCIATED;
break;
case IPW_STATE_SCANNING:
DPRINTFN(3, ("Scanning (%s flags 0x%x)\n",
IEEESTATE(vap), sc->flags));
/*
* NB: Check driver state for association on assoc
* loss as the firmware will immediately start to
* scan and we would treat it as a beacon miss if
* we checked the 802.11 layer state.
*/
if (sc->flags & IPW_FLAG_ASSOCIATED) {
IPW_UNLOCK(sc);
/* XXX probably need to issue disassoc to fw */
ieee80211_beacon_miss(ic);
IPW_LOCK(sc);
}
break;
case IPW_STATE_SCAN_COMPLETE:
/*
* XXX For some reason scan requests generate scan
* started + scan done events before any traffic is
* received (e.g. probe response frames). We work
* around this by marking the HACK flag and skipping
* the first scan complete event.
*/
DPRINTFN(3, ("Scan complete (%s flags 0x%x)\n",
IEEESTATE(vap), sc->flags));
if (sc->flags & IPW_FLAG_HACK) {
sc->flags &= ~IPW_FLAG_HACK;
break;
}
if (sc->flags & IPW_FLAG_SCANNING) {
IPW_UNLOCK(sc);
ieee80211_scan_done(vap);
IPW_LOCK(sc);
sc->flags &= ~IPW_FLAG_SCANNING;
sc->sc_scan_timer = 0;
}
break;
case IPW_STATE_ASSOCIATION_LOST:
DPRINTFN(2, ("Association lost (%s flags 0x%x)\n",
IEEESTATE(vap), sc->flags));
sc->flags &= ~(IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED);
if (vap->iv_state == IEEE80211_S_RUN) {
IPW_UNLOCK(sc);
ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
IPW_LOCK(sc);
}
break;
case IPW_STATE_DISABLED:
/* XXX? is this right? */
sc->flags &= ~(IPW_FLAG_HACK | IPW_FLAG_SCANNING |
IPW_FLAG_ASSOCIATING | IPW_FLAG_ASSOCIATED);
DPRINTFN(2, ("Firmware disabled (%s flags 0x%x)\n",
IEEESTATE(vap), sc->flags));
break;
case IPW_STATE_RADIO_DISABLED:
device_printf(sc->sc_dev, "radio turned off\n");
ieee80211_notify_radio(ic, 0);
ipw_stop_locked(sc);
/* XXX start polling thread to detect radio on */
break;
default:
DPRINTFN(2, ("%s: unhandled state %u %s flags 0x%x\n",
__func__, state, IEEESTATE(vap), sc->flags));
break;
}
#undef IEEESTATE
}
/*
* Set driver state for current channel.
*/
static void
ipw_setcurchan(struct ipw_softc *sc, struct ieee80211_channel *chan)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
ic->ic_curchan = chan;
ieee80211_radiotap_chan_change(ic);
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
*/
static void
ipw_fix_channel(struct ipw_softc *sc, struct mbuf *m)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_channel *c;
struct ieee80211_frame *wh;
uint8_t subtype;
uint8_t *frm, *efrm;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
/* XXX use ieee80211_parse_beacon */
frm = (uint8_t *)(wh + 1);
efrm = mtod(m, uint8_t *) + m->m_len;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
{
DPRINTF(("Fixing channel to %d\n", frm[2]));
c = ieee80211_find_channel(ic,
ieee80211_ieee2mhz(frm[2], 0),
IEEE80211_CHAN_B);
if (c == NULL)
c = &ic->ic_channels[0];
ipw_setcurchan(sc, c);
}
frm += frm[1] + 2;
}
}
static void
ipw_rx_data_intr(struct ipw_softc *sc, struct ipw_status *status,
struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct mbuf *mnew, *m;
struct ieee80211_node *ni;
bus_addr_t physaddr;
int error;
int8_t rssi, nf;
DPRINTFN(5, ("received frame len=%u, rssi=%u\n", le32toh(status->len),
status->rssi));
if (le32toh(status->len) < sizeof (struct ieee80211_frame_min) ||
le32toh(status->len) > MCLBYTES)
return;
/*
* Try to allocate a new mbuf for this ring element and load it before
* processing the current mbuf. If the ring element cannot be loaded,
* drop the received packet and reuse the old mbuf. In the unlikely
* case that the old mbuf can't be reloaded either, explicitly panic.
*/
mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
bus_dmamap_sync(sc->rxbuf_dmat, sbuf->map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxbuf_dmat, sbuf->map);
error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map, mtod(mnew, void *),
MCLBYTES, ipw_dma_map_addr, &physaddr, 0);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->rxbuf_dmat, sbuf->map,
mtod(sbuf->m, void *), MCLBYTES, ipw_dma_map_addr,
&physaddr, 0);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
device_get_name(sc->sc_dev));
}
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
return;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = sbuf->m;
sbuf->m = mnew;
sbd->bd->physaddr = htole32(physaddr);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = le32toh(status->len);
rssi = status->rssi + IPW_RSSI_TO_DBM;
nf = -95;
if (ieee80211_radiotap_active(ic)) {
struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_antsignal = rssi;
tap->wr_antnoise = nf;
}
if (sc->flags & IPW_FLAG_SCANNING)
ipw_fix_channel(sc, m);
IPW_UNLOCK(sc);
ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
if (ni != NULL) {
(void) ieee80211_input(ni, m, rssi - nf, nf);
ieee80211_free_node(ni);
} else
(void) ieee80211_input_all(ic, m, rssi - nf, nf);
IPW_LOCK(sc);
bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
}
static void
ipw_rx_intr(struct ipw_softc *sc)
{
struct ipw_status *status;
struct ipw_soft_bd *sbd;
struct ipw_soft_buf *sbuf;
uint32_t r, i;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return;
r = CSR_READ_4(sc, IPW_CSR_RX_READ);
bus_dmamap_sync(sc->status_dmat, sc->status_map, BUS_DMASYNC_POSTREAD);
for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
status = &sc->status_list[i];
sbd = &sc->srbd_list[i];
sbuf = sbd->priv;
switch (le16toh(status->code) & 0xf) {
case IPW_STATUS_CODE_COMMAND:
ipw_rx_cmd_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_NEWSTATE:
ipw_rx_newstate_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_DATA_802_3:
case IPW_STATUS_CODE_DATA_802_11:
ipw_rx_data_intr(sc, status, sbd, sbuf);
break;
case IPW_STATUS_CODE_NOTIFICATION:
DPRINTFN(2, ("notification status, len %u flags 0x%x\n",
le32toh(status->len), status->flags));
/* XXX maybe drive state machine AUTH->ASSOC? */
break;
default:
device_printf(sc->sc_dev, "unexpected status code %u\n",
le16toh(status->code));
}
/* firmware was killed, stop processing received frames */
if (!(sc->flags & IPW_FLAG_FW_INITED))
return;
sbd->bd->flags = 0;
}
bus_dmamap_sync(sc->rbd_dmat, sc->rbd_map, BUS_DMASYNC_PREWRITE);
/* kick the firmware */
sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
}
static void
ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
{
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
switch (sbd->type) {
case IPW_SBD_TYPE_COMMAND:
bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->cmd_dmat, sc->cmd_map);
break;
case IPW_SBD_TYPE_HEADER:
shdr = sbd->priv;
bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->hdr_dmat, shdr->map);
SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next);
break;
case IPW_SBD_TYPE_DATA:
sbuf = sbd->priv;
bus_dmamap_sync(sc->txbuf_dmat, sbuf->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next);
if (sbuf->m->m_flags & M_TXCB)
ieee80211_process_callback(sbuf->ni, sbuf->m, 0/*XXX*/);
m_freem(sbuf->m);
ieee80211_free_node(sbuf->ni);
sc->sc_tx_timer = 0;
break;
}
sbd->type = IPW_SBD_TYPE_NOASSOC;
}
static void
ipw_tx_intr(struct ipw_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ipw_soft_bd *sbd;
uint32_t r, i;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return;
r = CSR_READ_4(sc, IPW_CSR_TX_READ);
for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) {
sbd = &sc->stbd_list[i];
if (sbd->type == IPW_SBD_TYPE_DATA)
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
ipw_release_sbd(sc, sbd);
sc->txfree++;
}
/* remember what the firmware has processed */
sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ipw_start_locked(ifp);
}
static void
ipw_fatal_error_intr(struct ipw_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
device_printf(sc->sc_dev, "firmware error\n");
if (vap != NULL) {
IPW_UNLOCK(sc);
ieee80211_cancel_scan(vap);
IPW_LOCK(sc);
}
ieee80211_runtask(ic, &sc->sc_init_task);
}
static void
ipw_intr(void *arg)
{
struct ipw_softc *sc = arg;
uint32_t r;
IPW_LOCK(sc);
r = CSR_READ_4(sc, IPW_CSR_INTR);
if (r == 0 || r == 0xffffffff)
goto done;
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
/* acknowledge all interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR, r);
if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) {
ipw_fatal_error_intr(sc);
goto done;
}
if (r & IPW_INTR_FW_INIT_DONE)
wakeup(sc);
if (r & IPW_INTR_RX_TRANSFER)
ipw_rx_intr(sc);
if (r & IPW_INTR_TX_TRANSFER)
ipw_tx_intr(sc);
/* re-enable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
done:
IPW_UNLOCK(sc);
}
static void
ipw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static const char *
ipw_cmdname(int cmd)
{
#define N(a) (sizeof(a) / sizeof(a[0]))
static const struct {
int cmd;
const char *name;
} cmds[] = {
{ IPW_CMD_ADD_MULTICAST, "ADD_MULTICAST" },
{ IPW_CMD_BROADCAST_SCAN, "BROADCAST_SCAN" },
{ IPW_CMD_DISABLE, "DISABLE" },
{ IPW_CMD_DISABLE_PHY, "DISABLE_PHY" },
{ IPW_CMD_ENABLE, "ENABLE" },
{ IPW_CMD_PREPARE_POWER_DOWN, "PREPARE_POWER_DOWN" },
{ IPW_CMD_SET_BASIC_TX_RATES, "SET_BASIC_TX_RATES" },
{ IPW_CMD_SET_BEACON_INTERVAL, "SET_BEACON_INTERVAL" },
{ IPW_CMD_SET_CHANNEL, "SET_CHANNEL" },
{ IPW_CMD_SET_CONFIGURATION, "SET_CONFIGURATION" },
{ IPW_CMD_SET_DESIRED_BSSID, "SET_DESIRED_BSSID" },
{ IPW_CMD_SET_ESSID, "SET_ESSID" },
{ IPW_CMD_SET_FRAG_THRESHOLD, "SET_FRAG_THRESHOLD" },
{ IPW_CMD_SET_MAC_ADDRESS, "SET_MAC_ADDRESS" },
{ IPW_CMD_SET_MANDATORY_BSSID, "SET_MANDATORY_BSSID" },
{ IPW_CMD_SET_MODE, "SET_MODE" },
{ IPW_CMD_SET_MSDU_TX_RATES, "SET_MSDU_TX_RATES" },
{ IPW_CMD_SET_POWER_MODE, "SET_POWER_MODE" },
{ IPW_CMD_SET_RTS_THRESHOLD, "SET_RTS_THRESHOLD" },
{ IPW_CMD_SET_SCAN_OPTIONS, "SET_SCAN_OPTIONS" },
{ IPW_CMD_SET_SECURITY_INFO, "SET_SECURITY_INFO" },
{ IPW_CMD_SET_TX_POWER_INDEX, "SET_TX_POWER_INDEX" },
{ IPW_CMD_SET_TX_RATES, "SET_TX_RATES" },
{ IPW_CMD_SET_WEP_FLAGS, "SET_WEP_FLAGS" },
{ IPW_CMD_SET_WEP_KEY, "SET_WEP_KEY" },
{ IPW_CMD_SET_WEP_KEY_INDEX, "SET_WEP_KEY_INDEX" },
{ IPW_CMD_SET_WPA_IE, "SET_WPA_IE" },
};
static char buf[12];
int i;
for (i = 0; i < N(cmds); i++)
if (cmds[i].cmd == cmd)
return cmds[i].name;
snprintf(buf, sizeof(buf), "%u", cmd);
return buf;
#undef N
}
/*
* Send a command to the firmware and wait for the acknowledgement.
*/
static int
ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len)
{
struct ipw_soft_bd *sbd;
bus_addr_t physaddr;
int error;
IPW_LOCK_ASSERT(sc);
if (sc->flags & IPW_FLAG_BUSY) {
device_printf(sc->sc_dev, "%s: %s not sent, busy\n",
__func__, ipw_cmdname(type));
return EAGAIN;
}
sc->flags |= IPW_FLAG_BUSY;
sbd = &sc->stbd_list[sc->txcur];
error = bus_dmamap_load(sc->cmd_dmat, sc->cmd_map, &sc->cmd,
sizeof (struct ipw_cmd), ipw_dma_map_addr, &physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map command DMA memory\n");
sc->flags &= ~IPW_FLAG_BUSY;
return error;
}
sc->cmd.type = htole32(type);
sc->cmd.subtype = 0;
sc->cmd.len = htole32(len);
sc->cmd.seq = 0;
memcpy(sc->cmd.data, data, len);
sbd->type = IPW_SBD_TYPE_COMMAND;
sbd->bd->physaddr = htole32(physaddr);
sbd->bd->len = htole32(sizeof (struct ipw_cmd));
sbd->bd->nfrag = 1;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
IPW_BD_FLAG_TX_LAST_FRAGMENT;
bus_dmamap_sync(sc->cmd_dmat, sc->cmd_map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
#ifdef IPW_DEBUG
if (ipw_debug >= 4) {
printf("sending %s(%u, %u, %u, %u)", ipw_cmdname(type), type,
0, 0, len);
/* Print the data buffer in the higher debug level */
if (ipw_debug >= 9 && len > 0) {
printf(" data: 0x");
for (int i = 1; i <= len; i++)
printf("%1D", (u_char *)data + len - i, "");
}
printf("\n");
}
#endif
/* kick firmware */
sc->txfree--;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
/* wait at most one second for command to complete */
error = msleep(sc, &sc->sc_mtx, 0, "ipwcmd", hz);
if (error != 0) {
device_printf(sc->sc_dev, "%s: %s failed, timeout (error %u)\n",
__func__, ipw_cmdname(type), error);
sc->flags &= ~IPW_FLAG_BUSY;
return (error);
}
return (0);
}
static int
ipw_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211_frame *wh;
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
struct ieee80211_key *k;
struct mbuf *mnew;
bus_dma_segment_t segs[IPW_MAX_NSEG];
bus_addr_t physaddr;
int nsegs, error, i;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (ieee80211_radiotap_active_vap(vap)) {
struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
ieee80211_radiotap_tx(vap, m0);
}
shdr = SLIST_FIRST(&sc->free_shdr);
sbuf = SLIST_FIRST(&sc->free_sbuf);
KASSERT(shdr != NULL && sbuf != NULL, ("empty sw hdr/buf pool"));
shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
shdr->hdr.subtype = 0;
shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) ? 1 : 0;
shdr->hdr.encrypt = 0;
shdr->hdr.keyidx = 0;
shdr->hdr.keysz = 0;
shdr->hdr.fragmentsz = 0;
IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
if (ic->ic_opmode == IEEE80211_M_STA)
IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
else
IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
/* trim IEEE802.11 header */
m_adj(m0, sizeof (struct ieee80211_frame));
error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0, segs,
&nsegs, 0);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
mnew = m_defrag(m0, M_NOWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(sc->txbuf_dmat, sbuf->map, m0,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
}
error = bus_dmamap_load(sc->hdr_dmat, shdr->map, &shdr->hdr,
sizeof (struct ipw_hdr), ipw_dma_map_addr, &physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map header DMA memory\n");
bus_dmamap_unload(sc->txbuf_dmat, sbuf->map);
m_freem(m0);
return error;
}
SLIST_REMOVE_HEAD(&sc->free_sbuf, next);
SLIST_REMOVE_HEAD(&sc->free_shdr, next);
sbd = &sc->stbd_list[sc->txcur];
sbd->type = IPW_SBD_TYPE_HEADER;
sbd->priv = shdr;
sbd->bd->physaddr = htole32(physaddr);
sbd->bd->len = htole32(sizeof (struct ipw_hdr));
sbd->bd->nfrag = 1 + nsegs;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
DPRINTFN(5, ("sending tx hdr (%u, %u, %u, %u, %6D, %6D)\n",
shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted,
shdr->hdr.encrypt, shdr->hdr.src_addr, ":", shdr->hdr.dst_addr,
":"));
sc->txfree--;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
sbuf->m = m0;
sbuf->ni = ni;
for (i = 0; i < nsegs; i++) {
sbd = &sc->stbd_list[sc->txcur];
sbd->bd->physaddr = htole32(segs[i].ds_addr);
sbd->bd->len = htole32(segs[i].ds_len);
sbd->bd->nfrag = 0;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
if (i == nsegs - 1) {
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
} else {
sbd->type = IPW_SBD_TYPE_NOASSOC;
sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
}
DPRINTFN(5, ("sending fragment (%d)\n", i));
sc->txfree--;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
}
bus_dmamap_sync(sc->hdr_dmat, shdr->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->txbuf_dmat, sbuf->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->tbd_dmat, sc->tbd_map, BUS_DMASYNC_PREWRITE);
/* kick firmware */
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
return 0;
}
static int
ipw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
/* no support; just discard */
m_freem(m);
ieee80211_free_node(ni);
return 0;
}
static void
ipw_start(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
IPW_LOCK(sc);
ipw_start_locked(ifp);
IPW_UNLOCK(sc);
}
static void
ipw_start_locked(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct mbuf *m;
IPW_LOCK_ASSERT(sc);
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (sc->txfree < 1 + IPW_MAX_NSEG) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
if (ipw_tx_start(ifp, m, ni) != 0) {
ieee80211_free_node(ni);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
break;
}
/* start watchdog timer */
sc->sc_tx_timer = 5;
}
}
static void
ipw_watchdog(void *arg)
{
struct ipw_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
IPW_LOCK_ASSERT(sc);
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
taskqueue_enqueue(taskqueue_swi, &sc->sc_init_task);
}
}
if (sc->sc_scan_timer > 0) {
if (--sc->sc_scan_timer == 0) {
DPRINTFN(3, ("Scan timeout\n"));
/* End the scan */
if (sc->flags & IPW_FLAG_SCANNING) {
IPW_UNLOCK(sc);
ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
IPW_LOCK(sc);
sc->flags &= ~IPW_FLAG_SCANNING;
}
}
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc);
}
static int
ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
IPW_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ipw_init_locked(sc);
startall = 1;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ipw_stop_locked(sc);
}
IPW_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
}
static void
ipw_stop_master(struct ipw_softc *sc)
{
uint32_t tmp;
int ntries;
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
for (ntries = 0; ntries < 50; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 50)
device_printf(sc->sc_dev, "timeout waiting for master\n");
tmp = CSR_READ_4(sc, IPW_CSR_RST);
CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_PRINCETON_RESET);
/* Clear all flags except the following */
sc->flags &= IPW_FLAG_HAS_RADIO_SWITCH;
}
static int
ipw_reset(struct ipw_softc *sc)
{
uint32_t tmp;
int ntries;
ipw_stop_master(sc);
/* move adapter to D0 state */
tmp = CSR_READ_4(sc, IPW_CSR_CTL);
CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000)
return EIO;
tmp = CSR_READ_4(sc, IPW_CSR_RST);
CSR_WRITE_4(sc, IPW_CSR_RST, tmp | IPW_RST_SW_RESET);
DELAY(10);
tmp = CSR_READ_4(sc, IPW_CSR_CTL);
CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_INIT);
return 0;
}
static int
ipw_waitfordisable(struct ipw_softc *sc, int waitfor)
{
int ms = hz < 1000 ? 1 : hz/10;
int i, error;
for (i = 0; i < 100; i++) {
if (ipw_read_table1(sc, IPW_INFO_CARD_DISABLED) == waitfor)
return 0;
error = msleep(sc, &sc->sc_mtx, PCATCH, __func__, ms);
if (error == 0 || error != EWOULDBLOCK)
return 0;
}
DPRINTF(("%s: timeout waiting for %s\n",
__func__, waitfor ? "disable" : "enable"));
return ETIMEDOUT;
}
static int
ipw_enable(struct ipw_softc *sc)
{
int error;
if ((sc->flags & IPW_FLAG_ENABLED) == 0) {
DPRINTF(("Enable adapter\n"));
error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
if (error != 0)
return error;
error = ipw_waitfordisable(sc, 0);
if (error != 0)
return error;
sc->flags |= IPW_FLAG_ENABLED;
}
return 0;
}
static int
ipw_disable(struct ipw_softc *sc)
{
int error;
if (sc->flags & IPW_FLAG_ENABLED) {
DPRINTF(("Disable adapter\n"));
error = ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0);
if (error != 0)
return error;
error = ipw_waitfordisable(sc, 1);
if (error != 0)
return error;
sc->flags &= ~IPW_FLAG_ENABLED;
}
return 0;
}
/*
* Upload the microcode to the device.
*/
static int
ipw_load_ucode(struct ipw_softc *sc, const char *uc, int size)
{
int ntries;
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
for (ntries = 0; ntries < 10; ntries++) {
if (MEM_READ_1(sc, 0x210000) & 1)
break;
DELAY(10);
}
if (ntries == 10) {
device_printf(sc->sc_dev,
"timeout waiting for ucode to initialize\n");
return EIO;
}
MEM_WRITE_4(sc, 0x3000e0, 0);
return 0;
}
/* set of macros to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
#define GETLE16(p) ((p)[0] | (p)[1] << 8)
static int
ipw_load_firmware(struct ipw_softc *sc, const char *fw, int size)
{
const uint8_t *p, *end;
uint32_t tmp, dst;
uint16_t len;
int error;
p = fw;
end = fw + size;
while (p < end) {
dst = GETLE32(p); p += 4;
len = GETLE16(p); p += 2;
ipw_write_mem_1(sc, dst, p, len);
p += len;
}
CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
IPW_IO_LED_OFF);
/* enable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
/* kick the firmware */
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
tmp = CSR_READ_4(sc, IPW_CSR_CTL);
CSR_WRITE_4(sc, IPW_CSR_CTL, tmp | IPW_CTL_ALLOW_STANDBY);
/* wait at most one second for firmware initialization to complete */
if ((error = msleep(sc, &sc->sc_mtx, 0, "ipwinit", hz)) != 0) {
device_printf(sc->sc_dev, "timeout waiting for firmware "
"initialization to complete\n");
return error;
}
tmp = CSR_READ_4(sc, IPW_CSR_IO);
CSR_WRITE_4(sc, IPW_CSR_IO, tmp | IPW_IO_GPIO1_MASK |
IPW_IO_GPIO3_MASK);
return 0;
}
static int
ipw_setwepkeys(struct ipw_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ipw_wep_key wepkey;
struct ieee80211_key *wk;
int error, i;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
wk = &vap->iv_nw_keys[i];
if (wk->wk_cipher == NULL ||
wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
continue;
wepkey.idx = i;
wepkey.len = wk->wk_keylen;
memset(wepkey.key, 0, sizeof wepkey.key);
memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
wepkey.len));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
sizeof wepkey);
if (error != 0)
return error;
}
return 0;
}
static int
ipw_setwpaie(struct ipw_softc *sc, const void *ie, int ielen)
{
struct ipw_wpa_ie wpaie;
memset(&wpaie, 0, sizeof(wpaie));
wpaie.len = htole32(ielen);
/* XXX verify length */
memcpy(&wpaie.ie, ie, ielen);
DPRINTF(("Setting WPA IE\n"));
return ipw_cmd(sc, IPW_CMD_SET_WPA_IE, &wpaie, sizeof(wpaie));
}
static int
ipw_setbssid(struct ipw_softc *sc, uint8_t *bssid)
{
static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
if (bssid == NULL || bcmp(bssid, zerobssid, IEEE80211_ADDR_LEN) == 0) {
DPRINTF(("Setting mandatory BSSID to null\n"));
return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
} else {
DPRINTF(("Setting mandatory BSSID to %6D\n", bssid, ":"));
return ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID,
bssid, IEEE80211_ADDR_LEN);
}
}
static int
ipw_setssid(struct ipw_softc *sc, void *ssid, size_t ssidlen)
{
if (ssidlen == 0) {
/*
* A bug in the firmware breaks the ``don't associate''
* bit in the scan options command. To compensate for
* this install a bogus ssid when no ssid is specified
* so the firmware won't try to associate.
*/
DPRINTF(("Setting bogus ESSID to WAR firmware bug\n"));
return ipw_cmd(sc, IPW_CMD_SET_ESSID,
"\x18\x19\x20\x21\x22\x23\x24\x25\x26\x27"
"\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31"
"\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b"
"\x3c\x3d", IEEE80211_NWID_LEN);
} else {
#ifdef IPW_DEBUG
if (ipw_debug > 0) {
printf("Setting ESSID to ");
ieee80211_print_essid(ssid, ssidlen);
printf("\n");
}
#endif
return ipw_cmd(sc, IPW_CMD_SET_ESSID, ssid, ssidlen);
}
}
static int
ipw_setscanopts(struct ipw_softc *sc, uint32_t chanmask, uint32_t flags)
{
struct ipw_scan_options opts;
DPRINTF(("Scan options: mask 0x%x flags 0x%x\n", chanmask, flags));
opts.channels = htole32(chanmask);
opts.flags = htole32(flags);
return ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &opts, sizeof(opts));
}
static int
ipw_scan(struct ipw_softc *sc)
{
uint32_t params;
int error;
DPRINTF(("%s: flags 0x%x\n", __func__, sc->flags));
if (sc->flags & IPW_FLAG_SCANNING)
return (EBUSY);
sc->flags |= IPW_FLAG_SCANNING | IPW_FLAG_HACK;
/* NB: IPW_SCAN_DO_NOT_ASSOCIATE does not work (we set it anyway) */
error = ipw_setscanopts(sc, 0x3fff, IPW_SCAN_DO_NOT_ASSOCIATE);
if (error != 0)
goto done;
/*
* Setup null/bogus ssid so firmware doesn't use any previous
* ssid to try and associate. This is because the ``don't
* associate'' option bit is broken (sigh).
*/
error = ipw_setssid(sc, NULL, 0);
if (error != 0)
goto done;
/*
* NB: the adapter may be disabled on association lost;
* if so just re-enable it to kick off scanning.
*/
DPRINTF(("Starting scan\n"));
sc->sc_scan_timer = 3;
if (sc->flags & IPW_FLAG_ENABLED) {
params = 0; /* XXX? */
error = ipw_cmd(sc, IPW_CMD_BROADCAST_SCAN,
&params, sizeof(params));
} else
error = ipw_enable(sc);
done:
if (error != 0) {
DPRINTF(("Scan failed\n"));
sc->flags &= ~(IPW_FLAG_SCANNING | IPW_FLAG_HACK);
}
return (error);
}
static int
ipw_setchannel(struct ipw_softc *sc, struct ieee80211_channel *chan)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t data;
int error;
data = htole32(ieee80211_chan2ieee(ic, chan));
DPRINTF(("Setting channel to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
if (error == 0)
ipw_setcurchan(sc, chan);
return error;
}
static void
ipw_assoc(struct ieee80211com *ic, struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211_node *ni = vap->iv_bss;
struct ipw_security security;
uint32_t data;
int error;
IPW_LOCK(sc);
error = ipw_disable(sc);
if (error != 0)
goto done;
memset(&security, 0, sizeof security);
security.authmode = (ni->ni_authmode == IEEE80211_AUTH_SHARED) ?
IPW_AUTH_SHARED : IPW_AUTH_OPEN;
security.ciphers = htole32(IPW_CIPHER_NONE);
DPRINTF(("Setting authmode to %u\n", security.authmode));
error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFO, &security,
sizeof security);
if (error != 0)
goto done;
data = htole32(vap->iv_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
if (error != 0)
goto done;
data = htole32(vap->iv_fragthreshold);
DPRINTF(("Setting frag threshold to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
if (error != 0)
goto done;
if (vap->iv_flags & IEEE80211_F_PRIVACY) {
error = ipw_setwepkeys(sc);
if (error != 0)
goto done;
if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) {
data = htole32(vap->iv_def_txkey);
DPRINTF(("Setting wep tx key index to %u\n",
le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
sizeof data);
if (error != 0)
goto done;
}
}
data = htole32((vap->iv_flags & IEEE80211_F_PRIVACY) ? IPW_WEPON : 0);
DPRINTF(("Setting wep flags to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
if (error != 0)
goto done;
error = ipw_setssid(sc, ni->ni_essid, ni->ni_esslen);
if (error != 0)
goto done;
error = ipw_setbssid(sc, ni->ni_bssid);
if (error != 0)
goto done;
if (vap->iv_appie_wpa != NULL) {
struct ieee80211_appie *ie = vap->iv_appie_wpa;
error = ipw_setwpaie(sc, ie->ie_data, ie->ie_len);
if (error != 0)
goto done;
}
if (ic->ic_opmode == IEEE80211_M_IBSS) {
error = ipw_setchannel(sc, ni->ni_chan);
if (error != 0)
goto done;
}
/* lock scan to ap's channel and enable associate */
error = ipw_setscanopts(sc,
1<<(ieee80211_chan2ieee(ic, ni->ni_chan)-1), 0);
if (error != 0)
goto done;
error = ipw_enable(sc); /* finally, enable adapter */
if (error == 0)
sc->flags |= IPW_FLAG_ASSOCIATING;
done:
IPW_UNLOCK(sc);
}
static void
ipw_disassoc(struct ieee80211com *ic, struct ieee80211vap *vap)
{
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct ieee80211_node *ni = vap->iv_bss;
struct ipw_softc *sc = ifp->if_softc;
IPW_LOCK(sc);
DPRINTF(("Disassociate from %6D\n", ni->ni_bssid, ":"));
/*
* NB: don't try to do this if ipw_stop_master has
* shutdown the firmware and disabled interrupts.
*/
if (sc->flags & IPW_FLAG_FW_INITED) {
sc->flags &= ~IPW_FLAG_ASSOCIATED;
/*
* NB: firmware currently ignores bssid parameter, but
* supply it in case this changes (follow linux driver).
*/
(void) ipw_cmd(sc, IPW_CMD_DISASSOCIATE,
ni->ni_bssid, IEEE80211_ADDR_LEN);
}
IPW_UNLOCK(sc);
}
/*
* Handler for sc_init_task. This is a simple wrapper around ipw_init().
* It is called on firmware panics or on watchdog timeouts.
*/
static void
ipw_init_task(void *context, int pending)
{
ipw_init(context);
}
static void
ipw_init(void *priv)
{
struct ipw_softc *sc = priv;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
IPW_LOCK(sc);
ipw_init_locked(sc);
IPW_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic); /* start all vap's */
}
static void
ipw_init_locked(struct ipw_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
const struct firmware *fp;
const struct ipw_firmware_hdr *hdr;
const char *fw;
IPW_LOCK_ASSERT(sc);
DPRINTF(("%s: state %s flags 0x%x\n", __func__,
ieee80211_state_name[vap->iv_state], sc->flags));
/*
* Avoid re-entrant calls. We need to release the mutex in ipw_init()
* when loading the firmware and we don't want to be called during this
* operation.
*/
if (sc->flags & IPW_FLAG_INIT_LOCKED)
return;
sc->flags |= IPW_FLAG_INIT_LOCKED;
ipw_stop_locked(sc);
if (ipw_reset(sc) != 0) {
device_printf(sc->sc_dev, "could not reset adapter\n");
goto fail;
}
if (sc->sc_firmware == NULL) {
device_printf(sc->sc_dev, "no firmware\n");
goto fail;
}
/* NB: consistency already checked on load */
fp = sc->sc_firmware;
hdr = (const struct ipw_firmware_hdr *)fp->data;
DPRINTF(("Loading firmware image '%s'\n", fp->name));
fw = (const char *)fp->data + sizeof *hdr + le32toh(hdr->mainsz);
if (ipw_load_ucode(sc, fw, le32toh(hdr->ucodesz)) != 0) {
device_printf(sc->sc_dev, "could not load microcode\n");
goto fail;
}
ipw_stop_master(sc);
/*
* Setup tx, rx and status rings.
*/
sc->txold = IPW_NTBD - 1;
sc->txcur = 0;
sc->txfree = IPW_NTBD - 2;
sc->rxcur = IPW_NRBD - 1;
CSR_WRITE_4(sc, IPW_CSR_TX_BASE, sc->tbd_phys);
CSR_WRITE_4(sc, IPW_CSR_TX_SIZE, IPW_NTBD);
CSR_WRITE_4(sc, IPW_CSR_TX_READ, 0);
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE, sc->txcur);
CSR_WRITE_4(sc, IPW_CSR_RX_BASE, sc->rbd_phys);
CSR_WRITE_4(sc, IPW_CSR_RX_SIZE, IPW_NRBD);
CSR_WRITE_4(sc, IPW_CSR_RX_READ, 0);
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE, sc->rxcur);
CSR_WRITE_4(sc, IPW_CSR_STATUS_BASE, sc->status_phys);
fw = (const char *)fp->data + sizeof *hdr;
if (ipw_load_firmware(sc, fw, le32toh(hdr->mainsz)) != 0) {
device_printf(sc->sc_dev, "could not load firmware\n");
goto fail;
}
sc->flags |= IPW_FLAG_FW_INITED;
/* retrieve information tables base addresses */
sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
ipw_write_table1(sc, IPW_INFO_LOCK, 0);
if (ipw_config(sc) != 0) {
device_printf(sc->sc_dev, "device configuration failed\n");
goto fail;
}
callout_reset(&sc->sc_wdtimer, hz, ipw_watchdog, sc);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->flags &=~ IPW_FLAG_INIT_LOCKED;
return;
fail:
ipw_stop_locked(sc);
sc->flags &=~ IPW_FLAG_INIT_LOCKED;
}
static int
ipw_config(struct ipw_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ipw_configuration config;
uint32_t data;
int error;
error = ipw_disable(sc);
if (error != 0)
return error;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
case IEEE80211_M_HOSTAP:
case IEEE80211_M_WDS: /* XXX */
data = htole32(IPW_MODE_BSS);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
data = htole32(IPW_MODE_IBSS);
break;
case IEEE80211_M_MONITOR:
data = htole32(IPW_MODE_MONITOR);
break;
default:
device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
return EINVAL;
}
DPRINTF(("Setting mode to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_opmode == IEEE80211_M_MONITOR) {
error = ipw_setchannel(sc, ic->ic_curchan);
if (error != 0)
return error;
}
if (ic->ic_opmode == IEEE80211_M_MONITOR)
return ipw_enable(sc);
config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE);
if (ic->ic_opmode == IEEE80211_M_IBSS)
config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
if (ifp->if_flags & IFF_PROMISC)
config.flags |= htole32(IPW_CFG_PROMISCUOUS);
config.bss_chan = htole32(0x3fff); /* channels 1-14 */
config.ibss_chan = htole32(0x7ff); /* channels 1-11 */
DPRINTF(("Setting configuration to 0x%x\n", le32toh(config.flags)));
error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
if (error != 0)
return error;
data = htole32(0xf); /* 1, 2, 5.5, 11 */
DPRINTF(("Setting basic tx rates to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
/* Use the same rate set */
DPRINTF(("Setting msdu tx rates to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_MSDU_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
/* Use the same rate set */
DPRINTF(("Setting tx rates to 0x%x\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(IPW_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
data = htole32(32); /* default value */
DPRINTF(("Setting tx power index to %u\n", le32toh(data)));
error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
sizeof data);
if (error != 0)
return error;
}
return 0;
}
static void
ipw_stop(void *priv)
{
struct ipw_softc *sc = priv;
IPW_LOCK(sc);
ipw_stop_locked(sc);
IPW_UNLOCK(sc);
}
static void
ipw_stop_locked(struct ipw_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
int i;
IPW_LOCK_ASSERT(sc);
callout_stop(&sc->sc_wdtimer);
ipw_stop_master(sc);
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
/*
* Release tx buffers.
*/
for (i = 0; i < IPW_NTBD; i++)
ipw_release_sbd(sc, &sc->stbd_list[i]);
sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
static int
ipw_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct ipw_softc *sc = arg1;
uint32_t i, size, buf[256];
memset(buf, 0, sizeof buf);
if (!(sc->flags & IPW_FLAG_FW_INITED))
return SYSCTL_OUT(req, buf, sizeof buf);
CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
size = min(CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA), 256);
for (i = 1; i < size; i++)
buf[i] = MEM_READ_4(sc, CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA));
return SYSCTL_OUT(req, buf, size);
}
static int
ipw_sysctl_radio(SYSCTL_HANDLER_ARGS)
{
struct ipw_softc *sc = arg1;
int val;
val = !((sc->flags & IPW_FLAG_HAS_RADIO_SWITCH) &&
(CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED));
return SYSCTL_OUT(req, &val, sizeof val);
}
static uint32_t
ipw_read_table1(struct ipw_softc *sc, uint32_t off)
{
return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
}
static void
ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info)
{
MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
}
#if 0
static int
ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len)
{
uint32_t addr, info;
uint16_t count, size;
uint32_t total;
/* addr[4] + count[2] + size[2] */
addr = MEM_READ_4(sc, sc->table2_base + off);
info = MEM_READ_4(sc, sc->table2_base + off + 4);
count = info >> 16;
size = info & 0xffff;
total = count * size;
if (total > *len) {
*len = total;
return EINVAL;
}
*len = total;
ipw_read_mem_1(sc, addr, buf, total);
return 0;
}
static void
ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
}
}
#endif
static void
ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, const uint8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
}
}
static void
ipw_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ipw_softc *sc = ifp->if_softc;
IPW_LOCK(sc);
ipw_scan(sc);
IPW_UNLOCK(sc);
}
static void
ipw_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ipw_softc *sc = ifp->if_softc;
IPW_LOCK(sc);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
ipw_disable(sc);
ipw_setchannel(sc, ic->ic_curchan);
ipw_enable(sc);
}
IPW_UNLOCK(sc);
}
static void
ipw_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
{
/* NB: all channels are scanned at once */
}
static void
ipw_scan_mindwell(struct ieee80211_scan_state *ss)
{
/* NB: don't try to abort scan; wait for firmware to finish */
}
static void
ipw_scan_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct ipw_softc *sc = ifp->if_softc;
IPW_LOCK(sc);
sc->flags &= ~IPW_FLAG_SCANNING;
IPW_UNLOCK(sc);
}