7d8c4fee95
This patch reworks how the Rx queue size is being reconfigured and how the information from the device is being processed. Reconfiguration of the queues and reset of the device in order to make the changes alive isn't the best approach. It can be done synchronously and it will let to pass information if the reconfiguration was successful to the user. It now is done in the ena_update_queue_size() function. To avoid reallocation of the ring buffer, statistic counters and the reinitialization of the mutexes when only new size has to be assigned, the io queues initialization function has been split into 2 stages: basic, which is just copying appropriate fields and the advanced, which allocates and inits more advanced structures for the IO rings. Moreover, now the max allowed Rx and Tx ring size is being kept statically in the adapter and the size of the variables holding those values has been changed to uint32_t everywhere. Information about IO queues size is now being logged in the up routine instead of the attach. Submitted by: Michal Krawczyk <mk@semihalf.com> Obtained from: Semihalf Sponsored by: Amazon, Inc.
1138 lines
31 KiB
C
1138 lines
31 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) 2015-2019 Amazon.com, Inc. or its affiliates.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "ena.h"
|
|
#include "ena_datapath.h"
|
|
#ifdef DEV_NETMAP
|
|
#include "ena_netmap.h"
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/*********************************************************************
|
|
* Static functions prototypes
|
|
*********************************************************************/
|
|
|
|
static int ena_tx_cleanup(struct ena_ring *);
|
|
static int ena_rx_cleanup(struct ena_ring *);
|
|
static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
|
|
static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
|
|
struct mbuf *);
|
|
static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
|
|
struct ena_com_rx_ctx *, uint16_t *);
|
|
static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
|
|
struct mbuf *);
|
|
static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *);
|
|
static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
|
|
struct mbuf **mbuf);
|
|
static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
|
|
static void ena_start_xmit(struct ena_ring *);
|
|
|
|
/*********************************************************************
|
|
* Global functions
|
|
*********************************************************************/
|
|
|
|
void
|
|
ena_cleanup(void *arg, int pending)
|
|
{
|
|
struct ena_que *que = arg;
|
|
struct ena_adapter *adapter = que->adapter;
|
|
if_t ifp = adapter->ifp;
|
|
struct ena_ring *tx_ring;
|
|
struct ena_ring *rx_ring;
|
|
struct ena_com_io_cq* io_cq;
|
|
struct ena_eth_io_intr_reg intr_reg;
|
|
int qid, ena_qid;
|
|
int txc, rxc, i;
|
|
|
|
if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
|
|
return;
|
|
|
|
ena_trace(ENA_DBG, "MSI-X TX/RX routine\n");
|
|
|
|
tx_ring = que->tx_ring;
|
|
rx_ring = que->rx_ring;
|
|
qid = que->id;
|
|
ena_qid = ENA_IO_TXQ_IDX(qid);
|
|
io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
|
|
|
|
tx_ring->first_interrupt = true;
|
|
rx_ring->first_interrupt = true;
|
|
|
|
for (i = 0; i < CLEAN_BUDGET; ++i) {
|
|
rxc = ena_rx_cleanup(rx_ring);
|
|
txc = ena_tx_cleanup(tx_ring);
|
|
|
|
if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
|
|
return;
|
|
|
|
if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
|
|
break;
|
|
}
|
|
|
|
/* Signal that work is done and unmask interrupt */
|
|
ena_com_update_intr_reg(&intr_reg,
|
|
RX_IRQ_INTERVAL,
|
|
TX_IRQ_INTERVAL,
|
|
true);
|
|
ena_com_unmask_intr(io_cq, &intr_reg);
|
|
}
|
|
|
|
void
|
|
ena_deferred_mq_start(void *arg, int pending)
|
|
{
|
|
struct ena_ring *tx_ring = (struct ena_ring *)arg;
|
|
struct ifnet *ifp = tx_ring->adapter->ifp;
|
|
|
|
while (!drbr_empty(ifp, tx_ring->br) &&
|
|
tx_ring->running &&
|
|
(if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
|
|
ENA_RING_MTX_LOCK(tx_ring);
|
|
ena_start_xmit(tx_ring);
|
|
ENA_RING_MTX_UNLOCK(tx_ring);
|
|
}
|
|
}
|
|
|
|
int
|
|
ena_mq_start(if_t ifp, struct mbuf *m)
|
|
{
|
|
struct ena_adapter *adapter = ifp->if_softc;
|
|
struct ena_ring *tx_ring;
|
|
int ret, is_drbr_empty;
|
|
uint32_t i;
|
|
|
|
if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
|
|
return (ENODEV);
|
|
|
|
/* Which queue to use */
|
|
/*
|
|
* If everything is setup correctly, it should be the
|
|
* same bucket that the current CPU we're on is.
|
|
* It should improve performance.
|
|
*/
|
|
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
|
|
i = m->m_pkthdr.flowid % adapter->num_io_queues;
|
|
} else {
|
|
i = curcpu % adapter->num_io_queues;
|
|
}
|
|
tx_ring = &adapter->tx_ring[i];
|
|
|
|
/* Check if drbr is empty before putting packet */
|
|
is_drbr_empty = drbr_empty(ifp, tx_ring->br);
|
|
ret = drbr_enqueue(ifp, tx_ring->br, m);
|
|
if (unlikely(ret != 0)) {
|
|
taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
|
|
return (ret);
|
|
}
|
|
|
|
if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
|
|
ena_start_xmit(tx_ring);
|
|
ENA_RING_MTX_UNLOCK(tx_ring);
|
|
} else {
|
|
taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ena_qflush(if_t ifp)
|
|
{
|
|
struct ena_adapter *adapter = ifp->if_softc;
|
|
struct ena_ring *tx_ring = adapter->tx_ring;
|
|
int i;
|
|
|
|
for(i = 0; i < adapter->num_io_queues; ++i, ++tx_ring)
|
|
if (!drbr_empty(ifp, tx_ring->br)) {
|
|
ENA_RING_MTX_LOCK(tx_ring);
|
|
drbr_flush(ifp, tx_ring->br);
|
|
ENA_RING_MTX_UNLOCK(tx_ring);
|
|
}
|
|
|
|
if_qflush(ifp);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Static functions
|
|
*********************************************************************/
|
|
|
|
static inline int
|
|
validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
|
|
{
|
|
struct ena_adapter *adapter = tx_ring->adapter;
|
|
struct ena_tx_buffer *tx_info = NULL;
|
|
|
|
if (likely(req_id < tx_ring->ring_size)) {
|
|
tx_info = &tx_ring->tx_buffer_info[req_id];
|
|
if (tx_info->mbuf != NULL)
|
|
return (0);
|
|
device_printf(adapter->pdev,
|
|
"tx_info doesn't have valid mbuf\n");
|
|
}
|
|
|
|
device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
|
|
counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
|
|
|
|
/* Trigger device reset */
|
|
ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
|
|
|
|
return (EFAULT);
|
|
}
|
|
|
|
/**
|
|
* ena_tx_cleanup - clear sent packets and corresponding descriptors
|
|
* @tx_ring: ring for which we want to clean packets
|
|
*
|
|
* Once packets are sent, we ask the device in a loop for no longer used
|
|
* descriptors. We find the related mbuf chain in a map (index in an array)
|
|
* and free it, then update ring state.
|
|
* This is performed in "endless" loop, updating ring pointers every
|
|
* TX_COMMIT. The first check of free descriptor is performed before the actual
|
|
* loop, then repeated at the loop end.
|
|
**/
|
|
static int
|
|
ena_tx_cleanup(struct ena_ring *tx_ring)
|
|
{
|
|
struct ena_adapter *adapter;
|
|
struct ena_com_io_cq* io_cq;
|
|
uint16_t next_to_clean;
|
|
uint16_t req_id;
|
|
uint16_t ena_qid;
|
|
unsigned int total_done = 0;
|
|
int rc;
|
|
int commit = TX_COMMIT;
|
|
int budget = TX_BUDGET;
|
|
int work_done;
|
|
bool above_thresh;
|
|
|
|
adapter = tx_ring->que->adapter;
|
|
ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
|
|
io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
|
|
next_to_clean = tx_ring->next_to_clean;
|
|
|
|
#ifdef DEV_NETMAP
|
|
if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
|
|
return (0);
|
|
#endif /* DEV_NETMAP */
|
|
|
|
do {
|
|
struct ena_tx_buffer *tx_info;
|
|
struct mbuf *mbuf;
|
|
|
|
rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
|
|
if (unlikely(rc != 0))
|
|
break;
|
|
|
|
rc = validate_tx_req_id(tx_ring, req_id);
|
|
if (unlikely(rc != 0))
|
|
break;
|
|
|
|
tx_info = &tx_ring->tx_buffer_info[req_id];
|
|
|
|
mbuf = tx_info->mbuf;
|
|
|
|
tx_info->mbuf = NULL;
|
|
bintime_clear(&tx_info->timestamp);
|
|
|
|
bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(adapter->tx_buf_tag,
|
|
tx_info->dmamap);
|
|
|
|
ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed\n",
|
|
tx_ring->qid, mbuf);
|
|
|
|
m_freem(mbuf);
|
|
|
|
total_done += tx_info->tx_descs;
|
|
|
|
tx_ring->free_tx_ids[next_to_clean] = req_id;
|
|
next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
|
|
tx_ring->ring_size);
|
|
|
|
if (unlikely(--commit == 0)) {
|
|
commit = TX_COMMIT;
|
|
/* update ring state every TX_COMMIT descriptor */
|
|
tx_ring->next_to_clean = next_to_clean;
|
|
ena_com_comp_ack(
|
|
&adapter->ena_dev->io_sq_queues[ena_qid],
|
|
total_done);
|
|
ena_com_update_dev_comp_head(io_cq);
|
|
total_done = 0;
|
|
}
|
|
} while (likely(--budget));
|
|
|
|
work_done = TX_BUDGET - budget;
|
|
|
|
ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d\n",
|
|
tx_ring->qid, work_done);
|
|
|
|
/* If there is still something to commit update ring state */
|
|
if (likely(commit != TX_COMMIT)) {
|
|
tx_ring->next_to_clean = next_to_clean;
|
|
ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
|
|
total_done);
|
|
ena_com_update_dev_comp_head(io_cq);
|
|
}
|
|
|
|
/*
|
|
* Need to make the rings circular update visible to
|
|
* ena_xmit_mbuf() before checking for tx_ring->running.
|
|
*/
|
|
mb();
|
|
|
|
above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
|
|
ENA_TX_RESUME_THRESH);
|
|
if (unlikely(!tx_ring->running && above_thresh)) {
|
|
ENA_RING_MTX_LOCK(tx_ring);
|
|
above_thresh =
|
|
ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
|
|
ENA_TX_RESUME_THRESH);
|
|
if (!tx_ring->running && above_thresh) {
|
|
tx_ring->running = true;
|
|
counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
|
|
taskqueue_enqueue(tx_ring->enqueue_tq,
|
|
&tx_ring->enqueue_task);
|
|
}
|
|
ENA_RING_MTX_UNLOCK(tx_ring);
|
|
}
|
|
|
|
return (work_done);
|
|
}
|
|
|
|
static void
|
|
ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
|
|
struct mbuf *mbuf)
|
|
{
|
|
struct ena_adapter *adapter = rx_ring->adapter;
|
|
|
|
if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
|
|
mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
|
|
|
|
if (ena_rx_ctx->frag &&
|
|
(ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
|
|
return;
|
|
}
|
|
|
|
switch (ena_rx_ctx->l3_proto) {
|
|
case ENA_ETH_IO_L3_PROTO_IPV4:
|
|
switch (ena_rx_ctx->l4_proto) {
|
|
case ENA_ETH_IO_L4_PROTO_TCP:
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
|
|
break;
|
|
case ENA_ETH_IO_L4_PROTO_UDP:
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
|
|
break;
|
|
default:
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
|
|
}
|
|
break;
|
|
case ENA_ETH_IO_L3_PROTO_IPV6:
|
|
switch (ena_rx_ctx->l4_proto) {
|
|
case ENA_ETH_IO_L4_PROTO_TCP:
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
|
|
break;
|
|
case ENA_ETH_IO_L4_PROTO_UDP:
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
|
|
break;
|
|
default:
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
|
|
}
|
|
break;
|
|
case ENA_ETH_IO_L3_PROTO_UNKNOWN:
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
|
|
break;
|
|
default:
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
|
|
}
|
|
} else {
|
|
mbuf->m_pkthdr.flowid = rx_ring->qid;
|
|
M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ena_rx_mbuf - assemble mbuf from descriptors
|
|
* @rx_ring: ring for which we want to clean packets
|
|
* @ena_bufs: buffer info
|
|
* @ena_rx_ctx: metadata for this packet(s)
|
|
* @next_to_clean: ring pointer, will be updated only upon success
|
|
*
|
|
**/
|
|
static struct mbuf*
|
|
ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
|
|
struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
|
|
{
|
|
struct mbuf *mbuf;
|
|
struct ena_rx_buffer *rx_info;
|
|
struct ena_adapter *adapter;
|
|
unsigned int descs = ena_rx_ctx->descs;
|
|
int rc;
|
|
uint16_t ntc, len, req_id, buf = 0;
|
|
|
|
ntc = *next_to_clean;
|
|
adapter = rx_ring->adapter;
|
|
|
|
len = ena_bufs[buf].len;
|
|
req_id = ena_bufs[buf].req_id;
|
|
rc = validate_rx_req_id(rx_ring, req_id);
|
|
if (unlikely(rc != 0))
|
|
return (NULL);
|
|
|
|
rx_info = &rx_ring->rx_buffer_info[req_id];
|
|
if (unlikely(rx_info->mbuf == NULL)) {
|
|
device_printf(adapter->pdev, "NULL mbuf in rx_info");
|
|
return (NULL);
|
|
}
|
|
|
|
ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx\n",
|
|
rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
|
|
|
|
bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
mbuf = rx_info->mbuf;
|
|
mbuf->m_flags |= M_PKTHDR;
|
|
mbuf->m_pkthdr.len = len;
|
|
mbuf->m_len = len;
|
|
mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
|
|
|
|
/* Fill mbuf with hash key and it's interpretation for optimization */
|
|
ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
|
|
|
|
ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d\n",
|
|
mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
|
|
|
|
/* DMA address is not needed anymore, unmap it */
|
|
bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
|
|
|
|
rx_info->mbuf = NULL;
|
|
rx_ring->free_rx_ids[ntc] = req_id;
|
|
ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
|
|
|
|
/*
|
|
* While we have more than 1 descriptors for one rcvd packet, append
|
|
* other mbufs to the main one
|
|
*/
|
|
while (--descs) {
|
|
++buf;
|
|
len = ena_bufs[buf].len;
|
|
req_id = ena_bufs[buf].req_id;
|
|
rc = validate_rx_req_id(rx_ring, req_id);
|
|
if (unlikely(rc != 0)) {
|
|
/*
|
|
* If the req_id is invalid, then the device will be
|
|
* reset. In that case we must free all mbufs that
|
|
* were already gathered.
|
|
*/
|
|
m_freem(mbuf);
|
|
return (NULL);
|
|
}
|
|
rx_info = &rx_ring->rx_buffer_info[req_id];
|
|
|
|
if (unlikely(rx_info->mbuf == NULL)) {
|
|
device_printf(adapter->pdev, "NULL mbuf in rx_info");
|
|
/*
|
|
* If one of the required mbufs was not allocated yet,
|
|
* we can break there.
|
|
* All earlier used descriptors will be reallocated
|
|
* later and not used mbufs can be reused.
|
|
* The next_to_clean pointer will not be updated in case
|
|
* of an error, so caller should advance it manually
|
|
* in error handling routine to keep it up to date
|
|
* with hw ring.
|
|
*/
|
|
m_freem(mbuf);
|
|
return (NULL);
|
|
}
|
|
|
|
bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
|
|
counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
|
|
ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p\n",
|
|
mbuf);
|
|
}
|
|
|
|
ena_trace(ENA_DBG | ENA_RXPTH,
|
|
"rx mbuf updated. len %d\n", mbuf->m_pkthdr.len);
|
|
|
|
/* Free already appended mbuf, it won't be useful anymore */
|
|
bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
|
|
m_freem(rx_info->mbuf);
|
|
rx_info->mbuf = NULL;
|
|
|
|
rx_ring->free_rx_ids[ntc] = req_id;
|
|
ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
|
|
}
|
|
|
|
*next_to_clean = ntc;
|
|
|
|
return (mbuf);
|
|
}
|
|
|
|
/**
|
|
* ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
|
|
**/
|
|
static inline void
|
|
ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
|
|
struct mbuf *mbuf)
|
|
{
|
|
|
|
/* if IP and error */
|
|
if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
|
|
ena_rx_ctx->l3_csum_err)) {
|
|
/* ipv4 checksum error */
|
|
mbuf->m_pkthdr.csum_flags = 0;
|
|
counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
|
|
ena_trace(ENA_DBG, "RX IPv4 header checksum error\n");
|
|
return;
|
|
}
|
|
|
|
/* if TCP/UDP */
|
|
if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
|
|
(ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
|
|
if (ena_rx_ctx->l4_csum_err) {
|
|
/* TCP/UDP checksum error */
|
|
mbuf->m_pkthdr.csum_flags = 0;
|
|
counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
|
|
ena_trace(ENA_DBG, "RX L4 checksum error\n");
|
|
} else {
|
|
mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
|
|
mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ena_rx_cleanup - handle rx irq
|
|
* @arg: ring for which irq is being handled
|
|
**/
|
|
static int
|
|
ena_rx_cleanup(struct ena_ring *rx_ring)
|
|
{
|
|
struct ena_adapter *adapter;
|
|
struct mbuf *mbuf;
|
|
struct ena_com_rx_ctx ena_rx_ctx;
|
|
struct ena_com_io_cq* io_cq;
|
|
struct ena_com_io_sq* io_sq;
|
|
if_t ifp;
|
|
uint16_t ena_qid;
|
|
uint16_t next_to_clean;
|
|
uint32_t refill_required;
|
|
uint32_t refill_threshold;
|
|
uint32_t do_if_input = 0;
|
|
unsigned int qid;
|
|
int rc, i;
|
|
int budget = RX_BUDGET;
|
|
#ifdef DEV_NETMAP
|
|
int done;
|
|
#endif /* DEV_NETMAP */
|
|
|
|
adapter = rx_ring->que->adapter;
|
|
ifp = adapter->ifp;
|
|
qid = rx_ring->que->id;
|
|
ena_qid = ENA_IO_RXQ_IDX(qid);
|
|
io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
|
|
io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
|
|
next_to_clean = rx_ring->next_to_clean;
|
|
|
|
#ifdef DEV_NETMAP
|
|
if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
|
|
return (0);
|
|
#endif /* DEV_NETMAP */
|
|
|
|
ena_trace(ENA_DBG, "rx: qid %d\n", qid);
|
|
|
|
do {
|
|
ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
|
|
ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
|
|
ena_rx_ctx.descs = 0;
|
|
bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
|
|
io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
|
|
rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
|
|
|
|
if (unlikely(rc != 0))
|
|
goto error;
|
|
|
|
if (unlikely(ena_rx_ctx.descs == 0))
|
|
break;
|
|
|
|
ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
|
|
"descs #: %d l3 proto %d l4 proto %d hash: %x\n",
|
|
rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
|
|
ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
|
|
|
|
/* Receive mbuf from the ring */
|
|
mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
|
|
&ena_rx_ctx, &next_to_clean);
|
|
bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
|
|
io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
|
|
/* Exit if we failed to retrieve a buffer */
|
|
if (unlikely(mbuf == NULL)) {
|
|
for (i = 0; i < ena_rx_ctx.descs; ++i) {
|
|
rx_ring->free_rx_ids[next_to_clean] =
|
|
rx_ring->ena_bufs[i].req_id;
|
|
next_to_clean =
|
|
ENA_RX_RING_IDX_NEXT(next_to_clean,
|
|
rx_ring->ring_size);
|
|
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
|
|
((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
|
|
ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
|
|
}
|
|
|
|
counter_enter();
|
|
counter_u64_add_protected(rx_ring->rx_stats.bytes,
|
|
mbuf->m_pkthdr.len);
|
|
counter_u64_add_protected(adapter->hw_stats.rx_bytes,
|
|
mbuf->m_pkthdr.len);
|
|
counter_exit();
|
|
/*
|
|
* LRO is only for IP/TCP packets and TCP checksum of the packet
|
|
* should be computed by hardware.
|
|
*/
|
|
do_if_input = 1;
|
|
if (((ifp->if_capenable & IFCAP_LRO) != 0) &&
|
|
((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
|
|
(ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
|
|
/*
|
|
* Send to the stack if:
|
|
* - LRO not enabled, or
|
|
* - no LRO resources, or
|
|
* - lro enqueue fails
|
|
*/
|
|
if ((rx_ring->lro.lro_cnt != 0) &&
|
|
(tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
|
|
do_if_input = 0;
|
|
}
|
|
if (do_if_input != 0) {
|
|
ena_trace(ENA_DBG | ENA_RXPTH,
|
|
"calling if_input() with mbuf %p\n", mbuf);
|
|
(*ifp->if_input)(ifp, mbuf);
|
|
}
|
|
|
|
counter_enter();
|
|
counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
|
|
counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
|
|
counter_exit();
|
|
} while (--budget);
|
|
|
|
rx_ring->next_to_clean = next_to_clean;
|
|
|
|
refill_required = ena_com_free_q_entries(io_sq);
|
|
refill_threshold = min_t(int,
|
|
rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
|
|
ENA_RX_REFILL_THRESH_PACKET);
|
|
|
|
if (refill_required > refill_threshold) {
|
|
ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
|
|
ena_refill_rx_bufs(rx_ring, refill_required);
|
|
}
|
|
|
|
tcp_lro_flush_all(&rx_ring->lro);
|
|
|
|
return (RX_BUDGET - budget);
|
|
|
|
error:
|
|
counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1);
|
|
|
|
/* Too many desc from the device. Trigger reset */
|
|
ena_trigger_reset(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf)
|
|
{
|
|
struct ena_com_tx_meta *ena_meta;
|
|
struct ether_vlan_header *eh;
|
|
struct mbuf *mbuf_next;
|
|
u32 mss;
|
|
bool offload;
|
|
uint16_t etype;
|
|
int ehdrlen;
|
|
struct ip *ip;
|
|
int iphlen;
|
|
struct tcphdr *th;
|
|
int offset;
|
|
|
|
offload = false;
|
|
ena_meta = &ena_tx_ctx->ena_meta;
|
|
mss = mbuf->m_pkthdr.tso_segsz;
|
|
|
|
if (mss != 0)
|
|
offload = true;
|
|
|
|
if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
|
|
offload = true;
|
|
|
|
if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
|
|
offload = true;
|
|
|
|
if (!offload) {
|
|
ena_tx_ctx->meta_valid = 0;
|
|
return;
|
|
}
|
|
|
|
/* Determine where frame payload starts. */
|
|
eh = mtod(mbuf, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
etype = ntohs(eh->evl_proto);
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
} else {
|
|
etype = ntohs(eh->evl_encap_proto);
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
}
|
|
|
|
mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
|
|
ip = (struct ip *)(mtodo(mbuf_next, offset));
|
|
iphlen = ip->ip_hl << 2;
|
|
|
|
mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
|
|
th = (struct tcphdr *)(mtodo(mbuf_next, offset));
|
|
|
|
if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
|
|
ena_tx_ctx->l3_csum_enable = 1;
|
|
}
|
|
if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
ena_tx_ctx->tso_enable = 1;
|
|
ena_meta->l4_hdr_len = (th->th_off);
|
|
}
|
|
|
|
switch (etype) {
|
|
case ETHERTYPE_IP:
|
|
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
|
|
if ((ip->ip_off & htons(IP_DF)) != 0)
|
|
ena_tx_ctx->df = 1;
|
|
break;
|
|
case ETHERTYPE_IPV6:
|
|
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (ip->ip_p == IPPROTO_TCP) {
|
|
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
|
|
if ((mbuf->m_pkthdr.csum_flags &
|
|
(CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
|
|
ena_tx_ctx->l4_csum_enable = 1;
|
|
else
|
|
ena_tx_ctx->l4_csum_enable = 0;
|
|
} else if (ip->ip_p == IPPROTO_UDP) {
|
|
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
|
|
if ((mbuf->m_pkthdr.csum_flags &
|
|
(CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
|
|
ena_tx_ctx->l4_csum_enable = 1;
|
|
else
|
|
ena_tx_ctx->l4_csum_enable = 0;
|
|
} else {
|
|
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
|
|
ena_tx_ctx->l4_csum_enable = 0;
|
|
}
|
|
|
|
ena_meta->mss = mss;
|
|
ena_meta->l3_hdr_len = iphlen;
|
|
ena_meta->l3_hdr_offset = ehdrlen;
|
|
ena_tx_ctx->meta_valid = 1;
|
|
}
|
|
|
|
static int
|
|
ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
|
|
{
|
|
struct ena_adapter *adapter;
|
|
struct mbuf *collapsed_mbuf;
|
|
int num_frags;
|
|
|
|
adapter = tx_ring->adapter;
|
|
num_frags = ena_mbuf_count(*mbuf);
|
|
|
|
/* One segment must be reserved for configuration descriptor. */
|
|
if (num_frags < adapter->max_tx_sgl_size)
|
|
return (0);
|
|
counter_u64_add(tx_ring->tx_stats.collapse, 1);
|
|
|
|
collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
|
|
adapter->max_tx_sgl_size - 1);
|
|
if (unlikely(collapsed_mbuf == NULL)) {
|
|
counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* If mbuf was collapsed succesfully, original mbuf is released. */
|
|
*mbuf = collapsed_mbuf;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
|
|
struct mbuf *mbuf, void **push_hdr, u16 *header_len)
|
|
{
|
|
struct ena_adapter *adapter = tx_ring->adapter;
|
|
struct ena_com_buf *ena_buf;
|
|
bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
|
|
size_t iseg = 0;
|
|
uint32_t mbuf_head_len, frag_len;
|
|
uint16_t push_len = 0;
|
|
uint16_t delta = 0;
|
|
int rc, nsegs;
|
|
|
|
mbuf_head_len = mbuf->m_len;
|
|
tx_info->mbuf = mbuf;
|
|
ena_buf = tx_info->bufs;
|
|
|
|
/*
|
|
* For easier maintaining of the DMA map, map the whole mbuf even if
|
|
* the LLQ is used. The descriptors will be filled using the segments.
|
|
*/
|
|
rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf,
|
|
segs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (unlikely((rc != 0) || (nsegs == 0))) {
|
|
ena_trace(ENA_WARNING,
|
|
"dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
|
|
goto dma_error;
|
|
}
|
|
|
|
|
|
if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
|
|
/*
|
|
* When the device is LLQ mode, the driver will copy
|
|
* the header into the device memory space.
|
|
* the ena_com layer assumes the header is in a linear
|
|
* memory space.
|
|
* This assumption might be wrong since part of the header
|
|
* can be in the fragmented buffers.
|
|
* First check if header fits in the mbuf. If not, copy it to
|
|
* separate buffer that will be holding linearized data.
|
|
*/
|
|
push_len = min_t(uint32_t, mbuf->m_pkthdr.len,
|
|
tx_ring->tx_max_header_size);
|
|
*header_len = push_len;
|
|
/* If header is in linear space, just point into mbuf's data. */
|
|
if (likely(push_len <= mbuf_head_len)) {
|
|
*push_hdr = mbuf->m_data;
|
|
/*
|
|
* Otherwise, copy whole portion of header from multiple mbufs
|
|
* to intermediate buffer.
|
|
*/
|
|
} else {
|
|
m_copydata(mbuf, 0, push_len,
|
|
tx_ring->push_buf_intermediate_buf);
|
|
*push_hdr = tx_ring->push_buf_intermediate_buf;
|
|
|
|
counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
|
|
delta = push_len - mbuf_head_len;
|
|
}
|
|
|
|
ena_trace(ENA_DBG | ENA_TXPTH,
|
|
"mbuf: %p header_buf->vaddr: %p push_len: %d\n",
|
|
mbuf, *push_hdr, push_len);
|
|
|
|
/*
|
|
* If header was in linear memory space, map for the dma rest of the data
|
|
* in the first mbuf of the mbuf chain.
|
|
*/
|
|
if (mbuf_head_len > push_len) {
|
|
ena_buf->paddr = segs[iseg].ds_addr + push_len;
|
|
ena_buf->len = segs[iseg].ds_len - push_len;
|
|
ena_buf++;
|
|
tx_info->num_of_bufs++;
|
|
}
|
|
/*
|
|
* Advance the seg index as either the 1st mbuf was mapped or is
|
|
* a part of push_hdr.
|
|
*/
|
|
iseg++;
|
|
} else {
|
|
*push_hdr = NULL;
|
|
/*
|
|
* header_len is just a hint for the device. Because FreeBSD is not
|
|
* giving us information about packet header length and it is not
|
|
* guaranteed that all packet headers will be in the 1st mbuf, setting
|
|
* header_len to 0 is making the device ignore this value and resolve
|
|
* header on it's own.
|
|
*/
|
|
*header_len = 0;
|
|
}
|
|
|
|
/*
|
|
* If header is in non linear space (delta > 0), then skip mbufs
|
|
* containing header and map the last one containing both header and the
|
|
* packet data.
|
|
* The first segment is already counted in.
|
|
* If LLQ is not supported, the loop will be skipped.
|
|
*/
|
|
while (delta > 0) {
|
|
frag_len = segs[iseg].ds_len;
|
|
|
|
/*
|
|
* If whole segment contains header just move to the
|
|
* next one and reduce delta.
|
|
*/
|
|
if (unlikely(delta >= frag_len)) {
|
|
delta -= frag_len;
|
|
} else {
|
|
/*
|
|
* Map rest of the packet data that was contained in
|
|
* the mbuf.
|
|
*/
|
|
ena_buf->paddr = segs[iseg].ds_addr + delta;
|
|
ena_buf->len = frag_len - delta;
|
|
ena_buf++;
|
|
tx_info->num_of_bufs++;
|
|
|
|
delta = 0;
|
|
}
|
|
iseg++;
|
|
}
|
|
|
|
if (mbuf == NULL) {
|
|
return (0);
|
|
}
|
|
|
|
/* Map rest of the mbuf */
|
|
while (iseg < nsegs) {
|
|
ena_buf->paddr = segs[iseg].ds_addr;
|
|
ena_buf->len = segs[iseg].ds_len;
|
|
ena_buf++;
|
|
iseg++;
|
|
tx_info->num_of_bufs++;
|
|
}
|
|
|
|
return (0);
|
|
|
|
dma_error:
|
|
counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
|
|
tx_info->mbuf = NULL;
|
|
return (rc);
|
|
}
|
|
|
|
static int
|
|
ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
|
|
{
|
|
struct ena_adapter *adapter;
|
|
struct ena_tx_buffer *tx_info;
|
|
struct ena_com_tx_ctx ena_tx_ctx;
|
|
struct ena_com_dev *ena_dev;
|
|
struct ena_com_io_sq* io_sq;
|
|
void *push_hdr;
|
|
uint16_t next_to_use;
|
|
uint16_t req_id;
|
|
uint16_t ena_qid;
|
|
uint16_t header_len;
|
|
int rc;
|
|
int nb_hw_desc;
|
|
|
|
ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
|
|
adapter = tx_ring->que->adapter;
|
|
ena_dev = adapter->ena_dev;
|
|
io_sq = &ena_dev->io_sq_queues[ena_qid];
|
|
|
|
rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
|
|
if (unlikely(rc != 0)) {
|
|
ena_trace(ENA_WARNING,
|
|
"Failed to collapse mbuf! err: %d\n", rc);
|
|
return (rc);
|
|
}
|
|
|
|
ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
|
|
|
|
next_to_use = tx_ring->next_to_use;
|
|
req_id = tx_ring->free_tx_ids[next_to_use];
|
|
tx_info = &tx_ring->tx_buffer_info[req_id];
|
|
tx_info->num_of_bufs = 0;
|
|
|
|
rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
|
|
if (unlikely(rc != 0)) {
|
|
ena_trace(ENA_WARNING, "Failed to map TX mbuf\n");
|
|
return (rc);
|
|
}
|
|
memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
|
|
ena_tx_ctx.ena_bufs = tx_info->bufs;
|
|
ena_tx_ctx.push_header = push_hdr;
|
|
ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
|
|
ena_tx_ctx.req_id = req_id;
|
|
ena_tx_ctx.header_len = header_len;
|
|
|
|
/* Set flags and meta data */
|
|
ena_tx_csum(&ena_tx_ctx, *mbuf);
|
|
|
|
if (tx_ring->acum_pkts == DB_THRESHOLD ||
|
|
ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
|
|
ena_trace(ENA_DBG | ENA_TXPTH,
|
|
"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
|
|
tx_ring->que->id);
|
|
ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
|
|
counter_u64_add(tx_ring->tx_stats.doorbells, 1);
|
|
tx_ring->acum_pkts = 0;
|
|
}
|
|
|
|
/* Prepare the packet's descriptors and send them to device */
|
|
rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
|
|
if (unlikely(rc != 0)) {
|
|
if (likely(rc == ENA_COM_NO_MEM)) {
|
|
ena_trace(ENA_DBG | ENA_TXPTH,
|
|
"tx ring[%d] if out of space\n", tx_ring->que->id);
|
|
} else {
|
|
device_printf(adapter->pdev,
|
|
"failed to prepare tx bufs\n");
|
|
}
|
|
counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
|
|
goto dma_error;
|
|
}
|
|
|
|
counter_enter();
|
|
counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
|
|
counter_u64_add_protected(tx_ring->tx_stats.bytes,
|
|
(*mbuf)->m_pkthdr.len);
|
|
|
|
counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
|
|
counter_u64_add_protected(adapter->hw_stats.tx_bytes,
|
|
(*mbuf)->m_pkthdr.len);
|
|
counter_exit();
|
|
|
|
tx_info->tx_descs = nb_hw_desc;
|
|
getbinuptime(&tx_info->timestamp);
|
|
tx_info->print_once = true;
|
|
|
|
tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
|
|
tx_ring->ring_size);
|
|
|
|
/* stop the queue when no more space available, the packet can have up
|
|
* to sgl_size + 2. one for the meta descriptor and one for header
|
|
* (if the header is larger than tx_max_header_size).
|
|
*/
|
|
if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
|
|
adapter->max_tx_sgl_size + 2))) {
|
|
ena_trace(ENA_DBG | ENA_TXPTH, "Stop queue %d\n",
|
|
tx_ring->que->id);
|
|
|
|
tx_ring->running = false;
|
|
counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
|
|
|
|
/* There is a rare condition where this function decides to
|
|
* stop the queue but meanwhile tx_cleanup() updates
|
|
* next_to_completion and terminates.
|
|
* The queue will remain stopped forever.
|
|
* To solve this issue this function performs mb(), checks
|
|
* the wakeup condition and wakes up the queue if needed.
|
|
*/
|
|
mb();
|
|
|
|
if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
|
|
ENA_TX_RESUME_THRESH)) {
|
|
tx_ring->running = true;
|
|
counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
|
|
dma_error:
|
|
tx_info->mbuf = NULL;
|
|
bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static void
|
|
ena_start_xmit(struct ena_ring *tx_ring)
|
|
{
|
|
struct mbuf *mbuf;
|
|
struct ena_adapter *adapter = tx_ring->adapter;
|
|
struct ena_com_io_sq* io_sq;
|
|
int ena_qid;
|
|
int ret = 0;
|
|
|
|
if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
|
|
return;
|
|
|
|
if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
|
|
return;
|
|
|
|
ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
|
|
io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
|
|
|
|
while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
|
|
ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
|
|
" header csum flags %#jx\n",
|
|
mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
|
|
|
|
if (unlikely(!tx_ring->running)) {
|
|
drbr_putback(adapter->ifp, tx_ring->br, mbuf);
|
|
break;
|
|
}
|
|
|
|
if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
|
|
if (ret == ENA_COM_NO_MEM) {
|
|
drbr_putback(adapter->ifp, tx_ring->br, mbuf);
|
|
} else if (ret == ENA_COM_NO_SPACE) {
|
|
drbr_putback(adapter->ifp, tx_ring->br, mbuf);
|
|
} else {
|
|
m_freem(mbuf);
|
|
drbr_advance(adapter->ifp, tx_ring->br);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
drbr_advance(adapter->ifp, tx_ring->br);
|
|
|
|
if (unlikely((if_getdrvflags(adapter->ifp) &
|
|
IFF_DRV_RUNNING) == 0))
|
|
return;
|
|
|
|
tx_ring->acum_pkts++;
|
|
|
|
BPF_MTAP(adapter->ifp, mbuf);
|
|
}
|
|
|
|
if (likely(tx_ring->acum_pkts != 0)) {
|
|
/* Trigger the dma engine */
|
|
ena_com_write_sq_doorbell(io_sq);
|
|
counter_u64_add(tx_ring->tx_stats.doorbells, 1);
|
|
tx_ring->acum_pkts = 0;
|
|
}
|
|
|
|
if (unlikely(!tx_ring->running))
|
|
taskqueue_enqueue(tx_ring->que->cleanup_tq,
|
|
&tx_ring->que->cleanup_task);
|
|
}
|