freebsd-skq/sys/dev/cxgbe/tom/t4_cpl_io.c
lwhsu 7f19ffe6f9 Fix gcc build for cxgbe(4)
Reviewed by:	jhb
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D20879
2019-07-08 19:59:15 +00:00

2319 lines
59 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012, 2015 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ratelimit.h"
#ifdef TCP_OFFLOAD
#include <sys/param.h>
#include <sys/aio.h>
#include <sys/file.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sglist.h>
#include <sys/taskqueue.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#define TCPSTATES
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_var.h>
#include <netinet/toecore.h>
#include <security/mac/mac_framework.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include "common/common.h"
#include "common/t4_msg.h"
#include "common/t4_regs.h"
#include "common/t4_tcb.h"
#include "tom/t4_tom_l2t.h"
#include "tom/t4_tom.h"
static void t4_aiotx_cancel(struct kaiocb *job);
static void t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep);
void
send_flowc_wr(struct toepcb *toep, struct flowc_tx_params *ftxp)
{
struct wrqe *wr;
struct fw_flowc_wr *flowc;
unsigned int nparams, flowclen, paramidx;
struct vi_info *vi = toep->vi;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
unsigned int pfvf = sc->pf << S_FW_VIID_PFN;
struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
KASSERT(!(toep->flags & TPF_FLOWC_WR_SENT),
("%s: flowc for tid %u sent already", __func__, toep->tid));
if (ftxp != NULL)
nparams = 8;
else
nparams = 6;
if (toep->ulp_mode == ULP_MODE_TLS)
nparams++;
if (toep->tls.fcplenmax != 0)
nparams++;
if (toep->tc_idx != -1) {
MPASS(toep->tc_idx >= 0 &&
toep->tc_idx < sc->chip_params->nsched_cls);
nparams++;
}
flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval);
wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
flowc = wrtod(wr);
memset(flowc, 0, wr->wr_len);
flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
V_FW_FLOWC_WR_NPARAMS(nparams));
flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) |
V_FW_WR_FLOWID(toep->tid));
#define FLOWC_PARAM(__m, __v) \
do { \
flowc->mnemval[paramidx].mnemonic = FW_FLOWC_MNEM_##__m; \
flowc->mnemval[paramidx].val = htobe32(__v); \
paramidx++; \
} while (0)
paramidx = 0;
FLOWC_PARAM(PFNVFN, pfvf);
FLOWC_PARAM(CH, pi->tx_chan);
FLOWC_PARAM(PORT, pi->tx_chan);
FLOWC_PARAM(IQID, toep->ofld_rxq->iq.abs_id);
if (ftxp) {
uint32_t sndbuf = min(ftxp->snd_space, sc->tt.sndbuf);
FLOWC_PARAM(SNDNXT, ftxp->snd_nxt);
FLOWC_PARAM(RCVNXT, ftxp->rcv_nxt);
FLOWC_PARAM(SNDBUF, sndbuf);
FLOWC_PARAM(MSS, ftxp->mss);
CTR6(KTR_CXGBE,
"%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x",
__func__, toep->tid, ftxp->mss, sndbuf, ftxp->snd_nxt,
ftxp->rcv_nxt);
} else {
FLOWC_PARAM(SNDBUF, 512);
FLOWC_PARAM(MSS, 512);
CTR2(KTR_CXGBE, "%s: tid %u", __func__, toep->tid);
}
if (toep->ulp_mode == ULP_MODE_TLS)
FLOWC_PARAM(ULP_MODE, toep->ulp_mode);
if (toep->tls.fcplenmax != 0)
FLOWC_PARAM(TXDATAPLEN_MAX, toep->tls.fcplenmax);
if (toep->tc_idx != -1)
FLOWC_PARAM(SCHEDCLASS, toep->tc_idx);
#undef FLOWC_PARAM
KASSERT(paramidx == nparams, ("nparams mismatch"));
txsd->tx_credits = howmany(flowclen, 16);
txsd->plen = 0;
KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0,
("%s: not enough credits (%d)", __func__, toep->tx_credits));
toep->tx_credits -= txsd->tx_credits;
if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
toep->txsd_pidx = 0;
toep->txsd_avail--;
toep->flags |= TPF_FLOWC_WR_SENT;
t4_wrq_tx(sc, wr);
}
#ifdef RATELIMIT
/*
* Input is Bytes/second (so_max_pacing_rate), chip counts in Kilobits/second.
*/
static int
update_tx_rate_limit(struct adapter *sc, struct toepcb *toep, u_int Bps)
{
int tc_idx, rc;
const u_int kbps = (u_int) (uint64_t)Bps * 8ULL / 1000;
const int port_id = toep->vi->pi->port_id;
CTR3(KTR_CXGBE, "%s: tid %u, rate %uKbps", __func__, toep->tid, kbps);
if (kbps == 0) {
/* unbind */
tc_idx = -1;
} else {
rc = t4_reserve_cl_rl_kbps(sc, port_id, kbps, &tc_idx);
if (rc != 0)
return (rc);
MPASS(tc_idx >= 0 && tc_idx < sc->chip_params->nsched_cls);
}
if (toep->tc_idx != tc_idx) {
struct wrqe *wr;
struct fw_flowc_wr *flowc;
int nparams = 1, flowclen, flowclen16;
struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
flowclen = sizeof(*flowc) + nparams * sizeof(struct
fw_flowc_mnemval);
flowclen16 = howmany(flowclen, 16);
if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0 ||
(wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq)) == NULL) {
if (tc_idx >= 0)
t4_release_cl_rl(sc, port_id, tc_idx);
return (ENOMEM);
}
flowc = wrtod(wr);
memset(flowc, 0, wr->wr_len);
flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
V_FW_FLOWC_WR_NPARAMS(nparams));
flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) |
V_FW_WR_FLOWID(toep->tid));
flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
if (tc_idx == -1)
flowc->mnemval[0].val = htobe32(0xff);
else
flowc->mnemval[0].val = htobe32(tc_idx);
txsd->tx_credits = flowclen16;
txsd->plen = 0;
toep->tx_credits -= txsd->tx_credits;
if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
toep->txsd_pidx = 0;
toep->txsd_avail--;
t4_wrq_tx(sc, wr);
}
if (toep->tc_idx >= 0)
t4_release_cl_rl(sc, port_id, toep->tc_idx);
toep->tc_idx = tc_idx;
return (0);
}
#endif
void
send_reset(struct adapter *sc, struct toepcb *toep, uint32_t snd_nxt)
{
struct wrqe *wr;
struct cpl_abort_req *req;
int tid = toep->tid;
struct inpcb *inp = toep->inp;
struct tcpcb *tp = intotcpcb(inp); /* don't use if INP_DROPPED */
INP_WLOCK_ASSERT(inp);
CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x%s",
__func__, toep->tid,
inp->inp_flags & INP_DROPPED ? "inp dropped" :
tcpstates[tp->t_state],
toep->flags, inp->inp_flags,
toep->flags & TPF_ABORT_SHUTDOWN ?
" (abort already in progress)" : "");
if (toep->flags & TPF_ABORT_SHUTDOWN)
return; /* abort already in progress */
toep->flags |= TPF_ABORT_SHUTDOWN;
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc_wr not sent for tid %d.", __func__, tid));
wr = alloc_wrqe(sizeof(*req), toep->ofld_txq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
req = wrtod(wr);
INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, tid);
if (inp->inp_flags & INP_DROPPED)
req->rsvd0 = htobe32(snd_nxt);
else
req->rsvd0 = htobe32(tp->snd_nxt);
req->rsvd1 = !(toep->flags & TPF_TX_DATA_SENT);
req->cmd = CPL_ABORT_SEND_RST;
/*
* XXX: What's the correct way to tell that the inp hasn't been detached
* from its socket? Should I even be flushing the snd buffer here?
*/
if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) {
struct socket *so = inp->inp_socket;
if (so != NULL) /* because I'm not sure. See comment above */
sbflush(&so->so_snd);
}
t4_l2t_send(sc, wr, toep->l2te);
}
/*
* Called when a connection is established to translate the TCP options
* reported by HW to FreeBSD's native format.
*/
static void
assign_rxopt(struct tcpcb *tp, uint16_t opt)
{
struct toepcb *toep = tp->t_toe;
struct inpcb *inp = tp->t_inpcb;
struct adapter *sc = td_adapter(toep->td);
INP_LOCK_ASSERT(inp);
toep->tcp_opt = opt;
toep->mtu_idx = G_TCPOPT_MSS(opt);
tp->t_maxseg = sc->params.mtus[toep->mtu_idx];
if (inp->inp_inc.inc_flags & INC_ISIPV6)
tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
else
tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr);
toep->emss = tp->t_maxseg;
if (G_TCPOPT_TSTAMP(opt)) {
tp->t_flags |= TF_RCVD_TSTMP; /* timestamps ok */
tp->ts_recent = 0; /* hmmm */
tp->ts_recent_age = tcp_ts_getticks();
toep->emss -= TCPOLEN_TSTAMP_APPA;
}
CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u",
__func__, toep->tid, toep->mtu_idx,
sc->params.mtus[G_TCPOPT_MSS(opt)], tp->t_maxseg, toep->emss);
if (G_TCPOPT_SACK(opt))
tp->t_flags |= TF_SACK_PERMIT; /* should already be set */
else
tp->t_flags &= ~TF_SACK_PERMIT; /* sack disallowed by peer */
if (G_TCPOPT_WSCALE_OK(opt))
tp->t_flags |= TF_RCVD_SCALE;
/* Doing window scaling? */
if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
(TF_RCVD_SCALE | TF_REQ_SCALE)) {
tp->rcv_scale = tp->request_r_scale;
tp->snd_scale = G_TCPOPT_SND_WSCALE(opt);
}
}
/*
* Completes some final bits of initialization for just established connections
* and changes their state to TCPS_ESTABLISHED.
*
* The ISNs are from the exchange of SYNs.
*/
void
make_established(struct toepcb *toep, uint32_t iss, uint32_t irs, uint16_t opt)
{
struct inpcb *inp = toep->inp;
struct socket *so = inp->inp_socket;
struct tcpcb *tp = intotcpcb(inp);
long bufsize;
uint16_t tcpopt = be16toh(opt);
struct flowc_tx_params ftxp;
INP_WLOCK_ASSERT(inp);
KASSERT(tp->t_state == TCPS_SYN_SENT ||
tp->t_state == TCPS_SYN_RECEIVED,
("%s: TCP state %s", __func__, tcpstates[tp->t_state]));
CTR6(KTR_CXGBE, "%s: tid %d, so %p, inp %p, tp %p, toep %p",
__func__, toep->tid, so, inp, tp, toep);
tcp_state_change(tp, TCPS_ESTABLISHED);
tp->t_starttime = ticks;
TCPSTAT_INC(tcps_connects);
tp->irs = irs;
tcp_rcvseqinit(tp);
tp->rcv_wnd = (u_int)toep->opt0_rcv_bufsize << 10;
tp->rcv_adv += tp->rcv_wnd;
tp->last_ack_sent = tp->rcv_nxt;
tp->iss = iss;
tcp_sendseqinit(tp);
tp->snd_una = iss + 1;
tp->snd_nxt = iss + 1;
tp->snd_max = iss + 1;
assign_rxopt(tp, tcpopt);
SOCKBUF_LOCK(&so->so_snd);
if (so->so_snd.sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf)
bufsize = V_tcp_autosndbuf_max;
else
bufsize = sbspace(&so->so_snd);
SOCKBUF_UNLOCK(&so->so_snd);
ftxp.snd_nxt = tp->snd_nxt;
ftxp.rcv_nxt = tp->rcv_nxt;
ftxp.snd_space = bufsize;
ftxp.mss = toep->emss;
send_flowc_wr(toep, &ftxp);
soisconnected(so);
}
int
send_rx_credits(struct adapter *sc, struct toepcb *toep, int credits)
{
struct wrqe *wr;
struct cpl_rx_data_ack *req;
uint32_t dack = F_RX_DACK_CHANGE | V_RX_DACK_MODE(1);
KASSERT(credits >= 0, ("%s: %d credits", __func__, credits));
wr = alloc_wrqe(sizeof(*req), toep->ctrlq);
if (wr == NULL)
return (0);
req = wrtod(wr);
INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid);
req->credit_dack = htobe32(dack | V_RX_CREDITS(credits));
t4_wrq_tx(sc, wr);
return (credits);
}
void
send_rx_modulate(struct adapter *sc, struct toepcb *toep)
{
struct wrqe *wr;
struct cpl_rx_data_ack *req;
wr = alloc_wrqe(sizeof(*req), toep->ctrlq);
if (wr == NULL)
return;
req = wrtod(wr);
INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid);
req->credit_dack = htobe32(F_RX_MODULATE_RX);
t4_wrq_tx(sc, wr);
}
void
t4_rcvd_locked(struct toedev *tod, struct tcpcb *tp)
{
struct adapter *sc = tod->tod_softc;
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
struct sockbuf *sb = &so->so_rcv;
struct toepcb *toep = tp->t_toe;
int rx_credits;
INP_WLOCK_ASSERT(inp);
SOCKBUF_LOCK_ASSERT(sb);
rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0;
if (toep->ulp_mode == ULP_MODE_TLS) {
if (toep->tls.rcv_over >= rx_credits) {
toep->tls.rcv_over -= rx_credits;
rx_credits = 0;
} else {
rx_credits -= toep->tls.rcv_over;
toep->tls.rcv_over = 0;
}
}
if (rx_credits > 0 &&
(tp->rcv_wnd <= 32 * 1024 || rx_credits >= 64 * 1024 ||
(rx_credits >= 16 * 1024 && tp->rcv_wnd <= 128 * 1024) ||
sbused(sb) + tp->rcv_wnd < sb->sb_lowat)) {
rx_credits = send_rx_credits(sc, toep, rx_credits);
tp->rcv_wnd += rx_credits;
tp->rcv_adv += rx_credits;
} else if (toep->flags & TPF_FORCE_CREDITS)
send_rx_modulate(sc, toep);
}
void
t4_rcvd(struct toedev *tod, struct tcpcb *tp)
{
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
struct sockbuf *sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
t4_rcvd_locked(tod, tp);
SOCKBUF_UNLOCK(sb);
}
/*
* Close a connection by sending a CPL_CLOSE_CON_REQ message.
*/
int
t4_close_conn(struct adapter *sc, struct toepcb *toep)
{
struct wrqe *wr;
struct cpl_close_con_req *req;
unsigned int tid = toep->tid;
CTR3(KTR_CXGBE, "%s: tid %u%s", __func__, toep->tid,
toep->flags & TPF_FIN_SENT ? ", IGNORED" : "");
if (toep->flags & TPF_FIN_SENT)
return (0);
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc_wr not sent for tid %u.", __func__, tid));
wr = alloc_wrqe(sizeof(*req), toep->ofld_txq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
req = wrtod(wr);
req->wr.wr_hi = htonl(V_FW_WR_OP(FW_TP_WR) |
V_FW_WR_IMMDLEN(sizeof(*req) - sizeof(req->wr)));
req->wr.wr_mid = htonl(V_FW_WR_LEN16(howmany(sizeof(*req), 16)) |
V_FW_WR_FLOWID(tid));
req->wr.wr_lo = cpu_to_be64(0);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid));
req->rsvd = 0;
toep->flags |= TPF_FIN_SENT;
toep->flags &= ~TPF_SEND_FIN;
t4_l2t_send(sc, wr, toep->l2te);
return (0);
}
#define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16)
#define MIN_OFLD_TX_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16))
/* Maximum amount of immediate data we could stuff in a WR */
static inline int
max_imm_payload(int tx_credits)
{
const int n = 2; /* Use only up to 2 desc for imm. data WR */
KASSERT(tx_credits >= 0 &&
tx_credits <= MAX_OFLD_TX_CREDITS,
("%s: %d credits", __func__, tx_credits));
if (tx_credits < MIN_OFLD_TX_CREDITS)
return (0);
if (tx_credits >= (n * EQ_ESIZE) / 16)
return ((n * EQ_ESIZE) - sizeof(struct fw_ofld_tx_data_wr));
else
return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_wr));
}
/* Maximum number of SGL entries we could stuff in a WR */
static inline int
max_dsgl_nsegs(int tx_credits)
{
int nseg = 1; /* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */
int sge_pair_credits = tx_credits - MIN_OFLD_TX_CREDITS;
KASSERT(tx_credits >= 0 &&
tx_credits <= MAX_OFLD_TX_CREDITS,
("%s: %d credits", __func__, tx_credits));
if (tx_credits < MIN_OFLD_TX_CREDITS)
return (0);
nseg += 2 * (sge_pair_credits * 16 / 24);
if ((sge_pair_credits * 16) % 24 == 16)
nseg++;
return (nseg);
}
static inline void
write_tx_wr(void *dst, struct toepcb *toep, unsigned int immdlen,
unsigned int plen, uint8_t credits, int shove, int ulp_submode, int txalign)
{
struct fw_ofld_tx_data_wr *txwr = dst;
txwr->op_to_immdlen = htobe32(V_WR_OP(FW_OFLD_TX_DATA_WR) |
V_FW_WR_IMMDLEN(immdlen));
txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) |
V_FW_WR_LEN16(credits));
txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(toep->ulp_mode) |
V_TX_ULP_SUBMODE(ulp_submode) | V_TX_URG(0) | V_TX_SHOVE(shove));
txwr->plen = htobe32(plen);
if (txalign > 0) {
struct tcpcb *tp = intotcpcb(toep->inp);
if (plen < 2 * toep->emss)
txwr->lsodisable_to_flags |=
htobe32(F_FW_OFLD_TX_DATA_WR_LSODISABLE);
else
txwr->lsodisable_to_flags |=
htobe32(F_FW_OFLD_TX_DATA_WR_ALIGNPLD |
(tp->t_flags & TF_NODELAY ? 0 :
F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE));
}
}
/*
* Generate a DSGL from a starting mbuf. The total number of segments and the
* maximum segments in any one mbuf are provided.
*/
static void
write_tx_sgl(void *dst, struct mbuf *start, struct mbuf *stop, int nsegs, int n)
{
struct mbuf *m;
struct ulptx_sgl *usgl = dst;
int i, j, rc;
struct sglist sg;
struct sglist_seg segs[n];
KASSERT(nsegs > 0, ("%s: nsegs 0", __func__));
sglist_init(&sg, n, segs);
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nsegs));
i = -1;
for (m = start; m != stop; m = m->m_next) {
if (m->m_flags & M_NOMAP)
rc = sglist_append_mb_ext_pgs(&sg, m);
else
rc = sglist_append(&sg, mtod(m, void *), m->m_len);
if (__predict_false(rc != 0))
panic("%s: sglist_append %d", __func__, rc);
for (j = 0; j < sg.sg_nseg; i++, j++) {
if (i < 0) {
usgl->len0 = htobe32(segs[j].ss_len);
usgl->addr0 = htobe64(segs[j].ss_paddr);
} else {
usgl->sge[i / 2].len[i & 1] =
htobe32(segs[j].ss_len);
usgl->sge[i / 2].addr[i & 1] =
htobe64(segs[j].ss_paddr);
}
#ifdef INVARIANTS
nsegs--;
#endif
}
sglist_reset(&sg);
}
if (i & 1)
usgl->sge[i / 2].len[1] = htobe32(0);
KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, stop %p",
__func__, nsegs, start, stop));
}
/*
* Max number of SGL entries an offload tx work request can have. This is 41
* (1 + 40) for a full 512B work request.
* fw_ofld_tx_data_wr(16B) + ulptx_sgl(16B, 1) + ulptx_sge_pair(480B, 40)
*/
#define OFLD_SGL_LEN (41)
/*
* Send data and/or a FIN to the peer.
*
* The socket's so_snd buffer consists of a stream of data starting with sb_mb
* and linked together with m_next. sb_sndptr, if set, is the last mbuf that
* was transmitted.
*
* drop indicates the number of bytes that should be dropped from the head of
* the send buffer. It is an optimization that lets do_fw4_ack avoid creating
* contention on the send buffer lock (before this change it used to do
* sowwakeup and then t4_push_frames right after that when recovering from tx
* stalls). When drop is set this function MUST drop the bytes and wake up any
* writers.
*/
void
t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop)
{
struct mbuf *sndptr, *m, *sb_sndptr;
struct fw_ofld_tx_data_wr *txwr;
struct wrqe *wr;
u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
struct inpcb *inp = toep->inp;
struct tcpcb *tp = intotcpcb(inp);
struct socket *so = inp->inp_socket;
struct sockbuf *sb = &so->so_snd;
int tx_credits, shove, compl, sowwakeup;
struct ofld_tx_sdesc *txsd;
bool nomap_mbuf_seen;
INP_WLOCK_ASSERT(inp);
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
KASSERT(toep->ulp_mode == ULP_MODE_NONE ||
toep->ulp_mode == ULP_MODE_TCPDDP ||
toep->ulp_mode == ULP_MODE_TLS ||
toep->ulp_mode == ULP_MODE_RDMA,
("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep));
#ifdef VERBOSE_TRACES
CTR5(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d",
__func__, toep->tid, toep->flags, tp->t_flags, drop);
#endif
if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
return;
#ifdef RATELIMIT
if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) &&
(update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) {
inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
}
#endif
/*
* This function doesn't resume by itself. Someone else must clear the
* flag and call this function.
*/
if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
KASSERT(drop == 0,
("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
return;
}
txsd = &toep->txsd[toep->txsd_pidx];
do {
tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
max_imm = max_imm_payload(tx_credits);
max_nsegs = max_dsgl_nsegs(tx_credits);
SOCKBUF_LOCK(sb);
sowwakeup = drop;
if (drop) {
sbdrop_locked(sb, drop);
drop = 0;
}
sb_sndptr = sb->sb_sndptr;
sndptr = sb_sndptr ? sb_sndptr->m_next : sb->sb_mb;
plen = 0;
nsegs = 0;
max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
nomap_mbuf_seen = false;
for (m = sndptr; m != NULL; m = m->m_next) {
int n;
if (m->m_flags & M_NOMAP)
n = sglist_count_mb_ext_pgs(m);
else
n = sglist_count(mtod(m, void *), m->m_len);
nsegs += n;
plen += m->m_len;
/* This mbuf sent us _over_ the nsegs limit, back out */
if (plen > max_imm && nsegs > max_nsegs) {
nsegs -= n;
plen -= m->m_len;
if (plen == 0) {
/* Too few credits */
toep->flags |= TPF_TX_SUSPENDED;
if (sowwakeup) {
if (!TAILQ_EMPTY(
&toep->aiotx_jobq))
t4_aiotx_queue_toep(so,
toep);
sowwakeup_locked(so);
} else
SOCKBUF_UNLOCK(sb);
SOCKBUF_UNLOCK_ASSERT(sb);
return;
}
break;
}
if (m->m_flags & M_NOMAP)
nomap_mbuf_seen = true;
if (max_nsegs_1mbuf < n)
max_nsegs_1mbuf = n;
sb_sndptr = m; /* new sb->sb_sndptr if all goes well */
/* This mbuf put us right at the max_nsegs limit */
if (plen > max_imm && nsegs == max_nsegs) {
m = m->m_next;
break;
}
}
if (sbused(sb) > sb->sb_hiwat * 5 / 8 &&
toep->plen_nocompl + plen >= sb->sb_hiwat / 4)
compl = 1;
else
compl = 0;
if (sb->sb_flags & SB_AUTOSIZE &&
V_tcp_do_autosndbuf &&
sb->sb_hiwat < V_tcp_autosndbuf_max &&
sbused(sb) >= sb->sb_hiwat * 7 / 8) {
int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc,
V_tcp_autosndbuf_max);
if (!sbreserve_locked(sb, newsize, so, NULL))
sb->sb_flags &= ~SB_AUTOSIZE;
else
sowwakeup = 1; /* room available */
}
if (sowwakeup) {
if (!TAILQ_EMPTY(&toep->aiotx_jobq))
t4_aiotx_queue_toep(so, toep);
sowwakeup_locked(so);
} else
SOCKBUF_UNLOCK(sb);
SOCKBUF_UNLOCK_ASSERT(sb);
/* nothing to send */
if (plen == 0) {
KASSERT(m == NULL,
("%s: nothing to send, but m != NULL", __func__));
break;
}
if (__predict_false(toep->flags & TPF_FIN_SENT))
panic("%s: excess tx.", __func__);
shove = m == NULL && !(tp->t_flags & TF_MORETOCOME);
if (plen <= max_imm && !nomap_mbuf_seen) {
/* Immediate data tx */
wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16),
toep->ofld_txq);
if (wr == NULL) {
/* XXX: how will we recover from this? */
toep->flags |= TPF_TX_SUSPENDED;
return;
}
txwr = wrtod(wr);
credits = howmany(wr->wr_len, 16);
write_tx_wr(txwr, toep, plen, plen, credits, shove, 0,
sc->tt.tx_align);
m_copydata(sndptr, 0, plen, (void *)(txwr + 1));
nsegs = 0;
} else {
int wr_len;
/* DSGL tx */
wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) +
((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq);
if (wr == NULL) {
/* XXX: how will we recover from this? */
toep->flags |= TPF_TX_SUSPENDED;
return;
}
txwr = wrtod(wr);
credits = howmany(wr_len, 16);
write_tx_wr(txwr, toep, 0, plen, credits, shove, 0,
sc->tt.tx_align);
write_tx_sgl(txwr + 1, sndptr, m, nsegs,
max_nsegs_1mbuf);
if (wr_len & 0xf) {
uint64_t *pad = (uint64_t *)
((uintptr_t)txwr + wr_len);
*pad = 0;
}
}
KASSERT(toep->tx_credits >= credits,
("%s: not enough credits", __func__));
toep->tx_credits -= credits;
toep->tx_nocompl += credits;
toep->plen_nocompl += plen;
if (toep->tx_credits <= toep->tx_total * 3 / 8 &&
toep->tx_nocompl >= toep->tx_total / 4)
compl = 1;
if (compl || toep->ulp_mode == ULP_MODE_RDMA) {
txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL);
toep->tx_nocompl = 0;
toep->plen_nocompl = 0;
}
tp->snd_nxt += plen;
tp->snd_max += plen;
SOCKBUF_LOCK(sb);
KASSERT(sb_sndptr, ("%s: sb_sndptr is NULL", __func__));
sb->sb_sndptr = sb_sndptr;
SOCKBUF_UNLOCK(sb);
toep->flags |= TPF_TX_DATA_SENT;
if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
toep->flags |= TPF_TX_SUSPENDED;
KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
txsd->plen = plen;
txsd->tx_credits = credits;
txsd++;
if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
toep->txsd_pidx = 0;
txsd = &toep->txsd[0];
}
toep->txsd_avail--;
t4_l2t_send(sc, wr, toep->l2te);
} while (m != NULL);
/* Send a FIN if requested, but only if there's no more data to send */
if (m == NULL && toep->flags & TPF_SEND_FIN)
t4_close_conn(sc, toep);
}
static inline void
rqdrop_locked(struct mbufq *q, int plen)
{
struct mbuf *m;
while (plen > 0) {
m = mbufq_dequeue(q);
/* Too many credits. */
MPASS(m != NULL);
M_ASSERTPKTHDR(m);
/* Partial credits. */
MPASS(plen >= m->m_pkthdr.len);
plen -= m->m_pkthdr.len;
m_freem(m);
}
}
void
t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop)
{
struct mbuf *sndptr, *m;
struct fw_ofld_tx_data_wr *txwr;
struct wrqe *wr;
u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
u_int adjusted_plen, ulp_submode;
struct inpcb *inp = toep->inp;
struct tcpcb *tp = intotcpcb(inp);
int tx_credits, shove;
struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
struct mbufq *pduq = &toep->ulp_pduq;
static const u_int ulp_extra_len[] = {0, 4, 4, 8};
INP_WLOCK_ASSERT(inp);
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
KASSERT(toep->ulp_mode == ULP_MODE_ISCSI,
("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep));
if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
return;
/*
* This function doesn't resume by itself. Someone else must clear the
* flag and call this function.
*/
if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
KASSERT(drop == 0,
("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
return;
}
if (drop)
rqdrop_locked(&toep->ulp_pdu_reclaimq, drop);
while ((sndptr = mbufq_first(pduq)) != NULL) {
M_ASSERTPKTHDR(sndptr);
tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
max_imm = max_imm_payload(tx_credits);
max_nsegs = max_dsgl_nsegs(tx_credits);
plen = 0;
nsegs = 0;
max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
for (m = sndptr; m != NULL; m = m->m_next) {
int n = sglist_count(mtod(m, void *), m->m_len);
nsegs += n;
plen += m->m_len;
/*
* This mbuf would send us _over_ the nsegs limit.
* Suspend tx because the PDU can't be sent out.
*/
if (plen > max_imm && nsegs > max_nsegs) {
toep->flags |= TPF_TX_SUSPENDED;
return;
}
if (max_nsegs_1mbuf < n)
max_nsegs_1mbuf = n;
}
if (__predict_false(toep->flags & TPF_FIN_SENT))
panic("%s: excess tx.", __func__);
/*
* We have a PDU to send. All of it goes out in one WR so 'm'
* is NULL. A PDU's length is always a multiple of 4.
*/
MPASS(m == NULL);
MPASS((plen & 3) == 0);
MPASS(sndptr->m_pkthdr.len == plen);
shove = !(tp->t_flags & TF_MORETOCOME);
ulp_submode = mbuf_ulp_submode(sndptr);
MPASS(ulp_submode < nitems(ulp_extra_len));
/*
* plen doesn't include header and data digests, which are
* generated and inserted in the right places by the TOE, but
* they do occupy TCP sequence space and need to be accounted
* for.
*/
adjusted_plen = plen + ulp_extra_len[ulp_submode];
if (plen <= max_imm) {
/* Immediate data tx */
wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16),
toep->ofld_txq);
if (wr == NULL) {
/* XXX: how will we recover from this? */
toep->flags |= TPF_TX_SUSPENDED;
return;
}
txwr = wrtod(wr);
credits = howmany(wr->wr_len, 16);
write_tx_wr(txwr, toep, plen, adjusted_plen, credits,
shove, ulp_submode, sc->tt.tx_align);
m_copydata(sndptr, 0, plen, (void *)(txwr + 1));
nsegs = 0;
} else {
int wr_len;
/* DSGL tx */
wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) +
((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq);
if (wr == NULL) {
/* XXX: how will we recover from this? */
toep->flags |= TPF_TX_SUSPENDED;
return;
}
txwr = wrtod(wr);
credits = howmany(wr_len, 16);
write_tx_wr(txwr, toep, 0, adjusted_plen, credits,
shove, ulp_submode, sc->tt.tx_align);
write_tx_sgl(txwr + 1, sndptr, m, nsegs,
max_nsegs_1mbuf);
if (wr_len & 0xf) {
uint64_t *pad = (uint64_t *)
((uintptr_t)txwr + wr_len);
*pad = 0;
}
}
KASSERT(toep->tx_credits >= credits,
("%s: not enough credits", __func__));
m = mbufq_dequeue(pduq);
MPASS(m == sndptr);
mbufq_enqueue(&toep->ulp_pdu_reclaimq, m);
toep->tx_credits -= credits;
toep->tx_nocompl += credits;
toep->plen_nocompl += plen;
if (toep->tx_credits <= toep->tx_total * 3 / 8 &&
toep->tx_nocompl >= toep->tx_total / 4) {
txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL);
toep->tx_nocompl = 0;
toep->plen_nocompl = 0;
}
tp->snd_nxt += adjusted_plen;
tp->snd_max += adjusted_plen;
toep->flags |= TPF_TX_DATA_SENT;
if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
toep->flags |= TPF_TX_SUSPENDED;
KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
txsd->plen = plen;
txsd->tx_credits = credits;
txsd++;
if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
toep->txsd_pidx = 0;
txsd = &toep->txsd[0];
}
toep->txsd_avail--;
t4_l2t_send(sc, wr, toep->l2te);
}
/* Send a FIN if requested, but only if there are no more PDUs to send */
if (mbufq_first(pduq) == NULL && toep->flags & TPF_SEND_FIN)
t4_close_conn(sc, toep);
}
int
t4_tod_output(struct toedev *tod, struct tcpcb *tp)
{
struct adapter *sc = tod->tod_softc;
#ifdef INVARIANTS
struct inpcb *inp = tp->t_inpcb;
#endif
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_DROPPED) == 0,
("%s: inp %p dropped.", __func__, inp));
KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
if (toep->ulp_mode == ULP_MODE_ISCSI)
t4_push_pdus(sc, toep, 0);
else if (tls_tx_key(toep))
t4_push_tls_records(sc, toep, 0);
else
t4_push_frames(sc, toep, 0);
return (0);
}
int
t4_send_fin(struct toedev *tod, struct tcpcb *tp)
{
struct adapter *sc = tod->tod_softc;
#ifdef INVARIANTS
struct inpcb *inp = tp->t_inpcb;
#endif
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_DROPPED) == 0,
("%s: inp %p dropped.", __func__, inp));
KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
toep->flags |= TPF_SEND_FIN;
if (tp->t_state >= TCPS_ESTABLISHED) {
if (toep->ulp_mode == ULP_MODE_ISCSI)
t4_push_pdus(sc, toep, 0);
else if (tls_tx_key(toep))
t4_push_tls_records(sc, toep, 0);
else
t4_push_frames(sc, toep, 0);
}
return (0);
}
int
t4_send_rst(struct toedev *tod, struct tcpcb *tp)
{
struct adapter *sc = tod->tod_softc;
#if defined(INVARIANTS)
struct inpcb *inp = tp->t_inpcb;
#endif
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_DROPPED) == 0,
("%s: inp %p dropped.", __func__, inp));
KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
/* hmmmm */
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc for tid %u [%s] not sent already",
__func__, toep->tid, tcpstates[tp->t_state]));
send_reset(sc, toep, 0);
return (0);
}
/*
* Peer has sent us a FIN.
*/
static int
do_peer_close(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_peer_close *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp = toep->inp;
struct tcpcb *tp = NULL;
struct socket *so;
struct epoch_tracker et;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
KASSERT(opcode == CPL_PEER_CLOSE,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
if (__predict_false(toep->flags & TPF_SYNQE)) {
/*
* do_pass_establish must have run before do_peer_close and if
* this is still a synqe instead of a toepcb then the connection
* must be getting aborted.
*/
MPASS(toep->flags & TPF_ABORT_SHUTDOWN);
CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
toep, toep->flags);
return (0);
}
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
CURVNET_SET(toep->vnet);
INP_INFO_RLOCK_ET(&V_tcbinfo, et);
INP_WLOCK(inp);
tp = intotcpcb(inp);
CTR6(KTR_CXGBE,
"%s: tid %u (%s), toep_flags 0x%x, ddp_flags 0x%x, inp %p",
__func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags,
toep->ddp.flags, inp);
if (toep->flags & TPF_ABORT_SHUTDOWN)
goto done;
tp->rcv_nxt++; /* FIN */
so = inp->inp_socket;
socantrcvmore(so);
if (toep->ulp_mode == ULP_MODE_TCPDDP) {
DDP_LOCK(toep);
if (__predict_false(toep->ddp.flags &
(DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)))
handle_ddp_close(toep, tp, cpl->rcv_nxt);
DDP_UNLOCK(toep);
}
if (toep->ulp_mode != ULP_MODE_RDMA) {
KASSERT(tp->rcv_nxt == be32toh(cpl->rcv_nxt),
("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt,
be32toh(cpl->rcv_nxt)));
}
switch (tp->t_state) {
case TCPS_SYN_RECEIVED:
tp->t_starttime = ticks;
/* FALLTHROUGH */
case TCPS_ESTABLISHED:
tcp_state_change(tp, TCPS_CLOSE_WAIT);
break;
case TCPS_FIN_WAIT_1:
tcp_state_change(tp, TCPS_CLOSING);
break;
case TCPS_FIN_WAIT_2:
tcp_twstart(tp);
INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
CURVNET_RESTORE();
INP_WLOCK(inp);
final_cpl_received(toep);
return (0);
default:
log(LOG_ERR, "%s: TID %u received CPL_PEER_CLOSE in state %d\n",
__func__, tid, tp->t_state);
}
done:
INP_WUNLOCK(inp);
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
CURVNET_RESTORE();
return (0);
}
/*
* Peer has ACK'd our FIN.
*/
static int
do_close_con_rpl(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_close_con_rpl *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp = toep->inp;
struct tcpcb *tp = NULL;
struct socket *so = NULL;
struct epoch_tracker et;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
KASSERT(opcode == CPL_CLOSE_CON_RPL,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
CURVNET_SET(toep->vnet);
INP_INFO_RLOCK_ET(&V_tcbinfo, et);
INP_WLOCK(inp);
tp = intotcpcb(inp);
CTR4(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x",
__func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags);
if (toep->flags & TPF_ABORT_SHUTDOWN)
goto done;
so = inp->inp_socket;
tp->snd_una = be32toh(cpl->snd_nxt) - 1; /* exclude FIN */
switch (tp->t_state) {
case TCPS_CLOSING: /* see TCPS_FIN_WAIT_2 in do_peer_close too */
tcp_twstart(tp);
release:
INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
CURVNET_RESTORE();
INP_WLOCK(inp);
final_cpl_received(toep); /* no more CPLs expected */
return (0);
case TCPS_LAST_ACK:
if (tcp_close(tp))
INP_WUNLOCK(inp);
goto release;
case TCPS_FIN_WAIT_1:
if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
soisdisconnected(so);
tcp_state_change(tp, TCPS_FIN_WAIT_2);
break;
default:
log(LOG_ERR,
"%s: TID %u received CPL_CLOSE_CON_RPL in state %s\n",
__func__, tid, tcpstates[tp->t_state]);
}
done:
INP_WUNLOCK(inp);
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
CURVNET_RESTORE();
return (0);
}
void
send_abort_rpl(struct adapter *sc, struct sge_wrq *ofld_txq, int tid,
int rst_status)
{
struct wrqe *wr;
struct cpl_abort_rpl *cpl;
wr = alloc_wrqe(sizeof(*cpl), ofld_txq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
cpl = wrtod(wr);
INIT_TP_WR_MIT_CPL(cpl, CPL_ABORT_RPL, tid);
cpl->cmd = rst_status;
t4_wrq_tx(sc, wr);
}
static int
abort_status_to_errno(struct tcpcb *tp, unsigned int abort_reason)
{
switch (abort_reason) {
case CPL_ERR_BAD_SYN:
case CPL_ERR_CONN_RESET:
return (tp->t_state == TCPS_CLOSE_WAIT ? EPIPE : ECONNRESET);
case CPL_ERR_XMIT_TIMEDOUT:
case CPL_ERR_PERSIST_TIMEDOUT:
case CPL_ERR_FINWAIT2_TIMEDOUT:
case CPL_ERR_KEEPALIVE_TIMEDOUT:
return (ETIMEDOUT);
default:
return (EIO);
}
}
/*
* TCP RST from the peer, timeout, or some other such critical error.
*/
static int
do_abort_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct sge_wrq *ofld_txq = toep->ofld_txq;
struct inpcb *inp;
struct tcpcb *tp;
struct epoch_tracker et;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
KASSERT(opcode == CPL_ABORT_REQ_RSS,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
if (toep->flags & TPF_SYNQE)
return (do_abort_req_synqe(iq, rss, m));
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
if (negative_advice(cpl->status)) {
CTR4(KTR_CXGBE, "%s: negative advice %d for tid %d (0x%x)",
__func__, cpl->status, tid, toep->flags);
return (0); /* Ignore negative advice */
}
inp = toep->inp;
CURVNET_SET(toep->vnet);
INP_INFO_RLOCK_ET(&V_tcbinfo, et); /* for tcp_close */
INP_WLOCK(inp);
tp = intotcpcb(inp);
CTR6(KTR_CXGBE,
"%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x, status %d",
__func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags,
inp->inp_flags, cpl->status);
/*
* If we'd initiated an abort earlier the reply to it is responsible for
* cleaning up resources. Otherwise we tear everything down right here
* right now. We owe the T4 a CPL_ABORT_RPL no matter what.
*/
if (toep->flags & TPF_ABORT_SHUTDOWN) {
INP_WUNLOCK(inp);
goto done;
}
toep->flags |= TPF_ABORT_SHUTDOWN;
if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) {
struct socket *so = inp->inp_socket;
if (so != NULL)
so_error_set(so, abort_status_to_errno(tp,
cpl->status));
tp = tcp_close(tp);
if (tp == NULL)
INP_WLOCK(inp); /* re-acquire */
}
final_cpl_received(toep);
done:
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
CURVNET_RESTORE();
send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST);
return (0);
}
/*
* Reply to the CPL_ABORT_REQ (send_reset)
*/
static int
do_abort_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp = toep->inp;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
KASSERT(opcode == CPL_ABORT_RPL_RSS,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
if (toep->flags & TPF_SYNQE)
return (do_abort_rpl_synqe(iq, rss, m));
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
CTR5(KTR_CXGBE, "%s: tid %u, toep %p, inp %p, status %d",
__func__, tid, toep, inp, cpl->status);
KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
("%s: wasn't expecting abort reply", __func__));
INP_WLOCK(inp);
final_cpl_received(toep);
return (0);
}
static int
do_rx_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_rx_data *cpl = mtod(m, const void *);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp = toep->inp;
struct tcpcb *tp;
struct socket *so;
struct sockbuf *sb;
struct epoch_tracker et;
int len, rx_credits;
uint32_t ddp_placed = 0;
if (__predict_false(toep->flags & TPF_SYNQE)) {
/*
* do_pass_establish must have run before do_rx_data and if this
* is still a synqe instead of a toepcb then the connection must
* be getting aborted.
*/
MPASS(toep->flags & TPF_ABORT_SHUTDOWN);
CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
toep, toep->flags);
m_freem(m);
return (0);
}
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
/* strip off CPL header */
m_adj(m, sizeof(*cpl));
len = m->m_pkthdr.len;
INP_WLOCK(inp);
if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) {
CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x",
__func__, tid, len, inp->inp_flags);
INP_WUNLOCK(inp);
m_freem(m);
return (0);
}
tp = intotcpcb(inp);
if (__predict_false(tp->rcv_nxt != be32toh(cpl->seq)))
ddp_placed = be32toh(cpl->seq) - tp->rcv_nxt;
tp->rcv_nxt += len;
if (tp->rcv_wnd < len) {
KASSERT(toep->ulp_mode == ULP_MODE_RDMA,
("%s: negative window size", __func__));
}
tp->rcv_wnd -= len;
tp->t_rcvtime = ticks;
if (toep->ulp_mode == ULP_MODE_TCPDDP)
DDP_LOCK(toep);
so = inp_inpcbtosocket(inp);
sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)",
__func__, tid, len);
m_freem(m);
SOCKBUF_UNLOCK(sb);
if (toep->ulp_mode == ULP_MODE_TCPDDP)
DDP_UNLOCK(toep);
INP_WUNLOCK(inp);
CURVNET_SET(toep->vnet);
INP_INFO_RLOCK_ET(&V_tcbinfo, et);
INP_WLOCK(inp);
tp = tcp_drop(tp, ECONNRESET);
if (tp)
INP_WUNLOCK(inp);
INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
CURVNET_RESTORE();
return (0);
}
/* receive buffer autosize */
MPASS(toep->vnet == so->so_vnet);
CURVNET_SET(toep->vnet);
if (sb->sb_flags & SB_AUTOSIZE &&
V_tcp_do_autorcvbuf &&
sb->sb_hiwat < V_tcp_autorcvbuf_max &&
len > (sbspace(sb) / 8 * 7)) {
unsigned int hiwat = sb->sb_hiwat;
unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
V_tcp_autorcvbuf_max);
if (!sbreserve_locked(sb, newsize, so, NULL))
sb->sb_flags &= ~SB_AUTOSIZE;
}
if (toep->ulp_mode == ULP_MODE_TCPDDP) {
int changed = !(toep->ddp.flags & DDP_ON) ^ cpl->ddp_off;
if (toep->ddp.waiting_count != 0 || toep->ddp.active_count != 0)
CTR3(KTR_CXGBE, "%s: tid %u, non-ddp rx (%d bytes)",
__func__, tid, len);
if (changed) {
if (toep->ddp.flags & DDP_SC_REQ)
toep->ddp.flags ^= DDP_ON | DDP_SC_REQ;
else {
KASSERT(cpl->ddp_off == 1,
("%s: DDP switched on by itself.",
__func__));
/* Fell out of DDP mode */
toep->ddp.flags &= ~DDP_ON;
CTR1(KTR_CXGBE, "%s: fell out of DDP mode",
__func__);
insert_ddp_data(toep, ddp_placed);
}
}
if (toep->ddp.flags & DDP_ON) {
/*
* CPL_RX_DATA with DDP on can only be an indicate.
* Start posting queued AIO requests via DDP. The
* payload that arrived in this indicate is appended
* to the socket buffer as usual.
*/
handle_ddp_indicate(toep);
}
}
sbappendstream_locked(sb, m, 0);
rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0;
if (rx_credits > 0 && sbused(sb) + tp->rcv_wnd < sb->sb_lowat) {
rx_credits = send_rx_credits(sc, toep, rx_credits);
tp->rcv_wnd += rx_credits;
tp->rcv_adv += rx_credits;
}
if (toep->ulp_mode == ULP_MODE_TCPDDP && toep->ddp.waiting_count > 0 &&
sbavail(sb) != 0) {
CTR2(KTR_CXGBE, "%s: tid %u queueing AIO task", __func__,
tid);
ddp_queue_toep(toep);
}
sorwakeup_locked(so);
SOCKBUF_UNLOCK_ASSERT(sb);
if (toep->ulp_mode == ULP_MODE_TCPDDP)
DDP_UNLOCK(toep);
INP_WUNLOCK(inp);
CURVNET_RESTORE();
return (0);
}
static int
do_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp;
struct tcpcb *tp;
struct socket *so;
uint8_t credits = cpl->credits;
struct ofld_tx_sdesc *txsd;
int plen;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_FW4_ACK_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
/*
* Very unusual case: we'd sent a flowc + abort_req for a synq entry and
* now this comes back carrying the credits for the flowc.
*/
if (__predict_false(toep->flags & TPF_SYNQE)) {
KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
("%s: credits for a synq entry %p", __func__, toep));
return (0);
}
inp = toep->inp;
KASSERT(opcode == CPL_FW4_ACK,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
INP_WLOCK(inp);
if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) {
INP_WUNLOCK(inp);
return (0);
}
KASSERT((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0,
("%s: inp_flags 0x%x", __func__, inp->inp_flags));
tp = intotcpcb(inp);
if (cpl->flags & CPL_FW4_ACK_FLAGS_SEQVAL) {
tcp_seq snd_una = be32toh(cpl->snd_una);
#ifdef INVARIANTS
if (__predict_false(SEQ_LT(snd_una, tp->snd_una))) {
log(LOG_ERR,
"%s: unexpected seq# %x for TID %u, snd_una %x\n",
__func__, snd_una, toep->tid, tp->snd_una);
}
#endif
if (tp->snd_una != snd_una) {
tp->snd_una = snd_una;
tp->ts_recent_age = tcp_ts_getticks();
}
}
#ifdef VERBOSE_TRACES
CTR3(KTR_CXGBE, "%s: tid %d credits %u", __func__, tid, credits);
#endif
so = inp->inp_socket;
txsd = &toep->txsd[toep->txsd_cidx];
plen = 0;
while (credits) {
KASSERT(credits >= txsd->tx_credits,
("%s: too many (or partial) credits", __func__));
credits -= txsd->tx_credits;
toep->tx_credits += txsd->tx_credits;
plen += txsd->plen;
if (txsd->iv_buffer) {
free(txsd->iv_buffer, M_CXGBE);
txsd->iv_buffer = NULL;
}
txsd++;
toep->txsd_avail++;
KASSERT(toep->txsd_avail <= toep->txsd_total,
("%s: txsd avail > total", __func__));
if (__predict_false(++toep->txsd_cidx == toep->txsd_total)) {
txsd = &toep->txsd[0];
toep->txsd_cidx = 0;
}
}
if (toep->tx_credits == toep->tx_total) {
toep->tx_nocompl = 0;
toep->plen_nocompl = 0;
}
if (toep->flags & TPF_TX_SUSPENDED &&
toep->tx_credits >= toep->tx_total / 4) {
#ifdef VERBOSE_TRACES
CTR2(KTR_CXGBE, "%s: tid %d calling t4_push_frames", __func__,
tid);
#endif
toep->flags &= ~TPF_TX_SUSPENDED;
CURVNET_SET(toep->vnet);
if (toep->ulp_mode == ULP_MODE_ISCSI)
t4_push_pdus(sc, toep, plen);
else if (tls_tx_key(toep))
t4_push_tls_records(sc, toep, plen);
else
t4_push_frames(sc, toep, plen);
CURVNET_RESTORE();
} else if (plen > 0) {
struct sockbuf *sb = &so->so_snd;
int sbu;
SOCKBUF_LOCK(sb);
sbu = sbused(sb);
if (toep->ulp_mode == ULP_MODE_ISCSI) {
if (__predict_false(sbu > 0)) {
/*
* The data trasmitted before the tid's ULP mode
* changed to ISCSI is still in so_snd.
* Incoming credits should account for so_snd
* first.
*/
sbdrop_locked(sb, min(sbu, plen));
plen -= min(sbu, plen);
}
sowwakeup_locked(so); /* unlocks so_snd */
rqdrop_locked(&toep->ulp_pdu_reclaimq, plen);
} else {
#ifdef VERBOSE_TRACES
CTR3(KTR_CXGBE, "%s: tid %d dropped %d bytes", __func__,
tid, plen);
#endif
sbdrop_locked(sb, plen);
if (tls_tx_key(toep)) {
struct tls_ofld_info *tls_ofld = &toep->tls;
MPASS(tls_ofld->sb_off >= plen);
tls_ofld->sb_off -= plen;
}
if (!TAILQ_EMPTY(&toep->aiotx_jobq))
t4_aiotx_queue_toep(so, toep);
sowwakeup_locked(so); /* unlocks so_snd */
}
SOCKBUF_UNLOCK_ASSERT(sb);
}
INP_WUNLOCK(inp);
return (0);
}
void
t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, struct toepcb *toep,
uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie)
{
struct wrqe *wr;
struct cpl_set_tcb_field *req;
struct ofld_tx_sdesc *txsd;
MPASS((cookie & ~M_COOKIE) == 0);
if (reply) {
MPASS(cookie != CPL_COOKIE_RESERVED);
}
wr = alloc_wrqe(sizeof(*req), wrq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
req = wrtod(wr);
INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, toep->tid);
req->reply_ctrl = htobe16(V_QUEUENO(toep->ofld_rxq->iq.abs_id));
if (reply == 0)
req->reply_ctrl |= htobe16(F_NO_REPLY);
req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(cookie));
req->mask = htobe64(mask);
req->val = htobe64(val);
if ((wrq->eq.flags & EQ_TYPEMASK) == EQ_OFLD) {
txsd = &toep->txsd[toep->txsd_pidx];
txsd->tx_credits = howmany(sizeof(*req), 16);
txsd->plen = 0;
KASSERT(toep->tx_credits >= txsd->tx_credits &&
toep->txsd_avail > 0,
("%s: not enough credits (%d)", __func__,
toep->tx_credits));
toep->tx_credits -= txsd->tx_credits;
if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
toep->txsd_pidx = 0;
toep->txsd_avail--;
}
t4_wrq_tx(sc, wr);
}
void
t4_init_cpl_io_handlers(void)
{
t4_register_cpl_handler(CPL_PEER_CLOSE, do_peer_close);
t4_register_cpl_handler(CPL_CLOSE_CON_RPL, do_close_con_rpl);
t4_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req);
t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, do_abort_rpl,
CPL_COOKIE_TOM);
t4_register_cpl_handler(CPL_RX_DATA, do_rx_data);
t4_register_shared_cpl_handler(CPL_FW4_ACK, do_fw4_ack, CPL_COOKIE_TOM);
}
void
t4_uninit_cpl_io_handlers(void)
{
t4_register_cpl_handler(CPL_PEER_CLOSE, NULL);
t4_register_cpl_handler(CPL_CLOSE_CON_RPL, NULL);
t4_register_cpl_handler(CPL_ABORT_REQ_RSS, NULL);
t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, NULL, CPL_COOKIE_TOM);
t4_register_cpl_handler(CPL_RX_DATA, NULL);
t4_register_shared_cpl_handler(CPL_FW4_ACK, NULL, CPL_COOKIE_TOM);
}
/*
* Use the 'backend1' field in AIO jobs to hold an error that should
* be reported when the job is completed, the 'backend3' field to
* store the amount of data sent by the AIO job so far, and the
* 'backend4' field to hold a reference count on the job.
*
* Each unmapped mbuf holds a reference on the job as does the queue
* so long as the job is queued.
*/
#define aio_error backend1
#define aio_sent backend3
#define aio_refs backend4
#define jobtotid(job) \
(((struct toepcb *)(so_sototcpcb((job)->fd_file->f_data)->t_toe))->tid)
static void
aiotx_free_job(struct kaiocb *job)
{
long status;
int error;
if (refcount_release(&job->aio_refs) == 0)
return;
error = (intptr_t)job->aio_error;
status = job->aio_sent;
#ifdef VERBOSE_TRACES
CTR5(KTR_CXGBE, "%s: tid %d completed %p len %ld, error %d", __func__,
jobtotid(job), job, status, error);
#endif
if (error != 0 && status != 0)
error = 0;
if (error == ECANCELED)
aio_cancel(job);
else if (error)
aio_complete(job, -1, error);
else {
job->msgsnd = 1;
aio_complete(job, status, 0);
}
}
static void
aiotx_free_pgs(struct mbuf *m)
{
struct mbuf_ext_pgs *ext_pgs;
struct kaiocb *job;
struct mtx *mtx;
vm_page_t pg;
MBUF_EXT_PGS_ASSERT(m);
ext_pgs = m->m_ext.ext_pgs;
job = m->m_ext.ext_arg1;
#ifdef VERBOSE_TRACES
CTR3(KTR_CXGBE, "%s: completed %d bytes for tid %d", __func__,
m->m_len, jobtotid(job));
#endif
mtx = NULL;
for (int i = 0; i < ext_pgs->npgs; i++) {
pg = PHYS_TO_VM_PAGE(ext_pgs->pa[i]);
vm_page_change_lock(pg, &mtx);
vm_page_unwire(pg, PQ_ACTIVE);
}
if (mtx != NULL)
mtx_unlock(mtx);
aiotx_free_job(job);
}
/*
* Allocate a chain of unmapped mbufs describing the next 'len' bytes
* of an AIO job.
*/
static struct mbuf *
alloc_aiotx_mbuf(struct kaiocb *job, int len)
{
struct vmspace *vm;
vm_page_t pgs[MBUF_PEXT_MAX_PGS];
struct mbuf *m, *top, *last;
struct mbuf_ext_pgs *ext_pgs;
vm_map_t map;
vm_offset_t start;
int i, mlen, npages, pgoff;
KASSERT(job->aio_sent + len <= job->uaiocb.aio_nbytes,
("%s(%p, %d): request to send beyond end of buffer", __func__,
job, len));
/*
* The AIO subsystem will cancel and drain all requests before
* permitting a process to exit or exec, so p_vmspace should
* be stable here.
*/
vm = job->userproc->p_vmspace;
map = &vm->vm_map;
start = (uintptr_t)job->uaiocb.aio_buf + job->aio_sent;
pgoff = start & PAGE_MASK;
top = NULL;
last = NULL;
while (len > 0) {
mlen = imin(len, MBUF_PEXT_MAX_PGS * PAGE_SIZE - pgoff);
KASSERT(mlen == len || ((start + mlen) & PAGE_MASK) == 0,
("%s: next start (%#jx + %#x) is not page aligned",
__func__, (uintmax_t)start, mlen));
npages = vm_fault_quick_hold_pages(map, start, mlen,
VM_PROT_WRITE, pgs, nitems(pgs));
if (npages < 0)
break;
m = mb_alloc_ext_pgs(M_WAITOK, false, aiotx_free_pgs);
if (m == NULL) {
vm_page_unhold_pages(pgs, npages);
break;
}
ext_pgs = m->m_ext.ext_pgs;
ext_pgs->first_pg_off = pgoff;
ext_pgs->npgs = npages;
if (npages == 1) {
KASSERT(mlen + pgoff <= PAGE_SIZE,
("%s: single page is too large (off %d len %d)",
__func__, pgoff, mlen));
ext_pgs->last_pg_len = mlen;
} else {
ext_pgs->last_pg_len = mlen - (PAGE_SIZE - pgoff) -
(npages - 2) * PAGE_SIZE;
}
for (i = 0; i < npages; i++)
ext_pgs->pa[i] = VM_PAGE_TO_PHYS(pgs[i]);
m->m_len = mlen;
m->m_ext.ext_size = npages * PAGE_SIZE;
m->m_ext.ext_arg1 = job;
refcount_acquire(&job->aio_refs);
#ifdef VERBOSE_TRACES
CTR5(KTR_CXGBE, "%s: tid %d, new mbuf %p for job %p, npages %d",
__func__, jobtotid(job), m, job, npages);
#endif
if (top == NULL)
top = m;
else
last->m_next = m;
last = m;
len -= mlen;
start += mlen;
pgoff = 0;
}
return (top);
}
static void
t4_aiotx_process_job(struct toepcb *toep, struct socket *so, struct kaiocb *job)
{
struct adapter *sc;
struct sockbuf *sb;
struct file *fp;
struct inpcb *inp;
struct tcpcb *tp;
struct mbuf *m;
int error, len;
bool moretocome, sendmore;
sc = td_adapter(toep->td);
sb = &so->so_snd;
SOCKBUF_UNLOCK(sb);
fp = job->fd_file;
m = NULL;
#ifdef MAC
error = mac_socket_check_send(fp->f_cred, so);
if (error != 0)
goto out;
#endif
/* Inline sosend_generic(). */
error = sblock(sb, SBL_WAIT);
MPASS(error == 0);
sendanother:
SOCKBUF_LOCK(sb);
if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
if ((so->so_options & SO_NOSIGPIPE) == 0) {
PROC_LOCK(job->userproc);
kern_psignal(job->userproc, SIGPIPE);
PROC_UNLOCK(job->userproc);
}
error = EPIPE;
goto out;
}
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
goto out;
}
if ((so->so_state & SS_ISCONNECTED) == 0) {
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
error = ENOTCONN;
goto out;
}
if (sbspace(sb) < sb->sb_lowat) {
MPASS(job->aio_sent == 0 || !(so->so_state & SS_NBIO));
/*
* Don't block if there is too little room in the socket
* buffer. Instead, requeue the request.
*/
if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
error = ECANCELED;
goto out;
}
TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
goto out;
}
/*
* Write as much data as the socket permits, but no more than a
* a single sndbuf at a time.
*/
len = sbspace(sb);
if (len > job->uaiocb.aio_nbytes - job->aio_sent) {
len = job->uaiocb.aio_nbytes - job->aio_sent;
moretocome = false;
} else
moretocome = true;
if (len > sc->tt.sndbuf) {
len = sc->tt.sndbuf;
sendmore = true;
} else
sendmore = false;
if (!TAILQ_EMPTY(&toep->aiotx_jobq))
moretocome = true;
SOCKBUF_UNLOCK(sb);
MPASS(len != 0);
m = alloc_aiotx_mbuf(job, len);
if (m == NULL) {
sbunlock(sb);
error = EFAULT;
goto out;
}
/* Inlined tcp_usr_send(). */
inp = toep->inp;
INP_WLOCK(inp);
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
INP_WUNLOCK(inp);
sbunlock(sb);
error = ECONNRESET;
goto out;
}
job->aio_sent += m_length(m, NULL);
sbappendstream(sb, m, 0);
m = NULL;
if (!(inp->inp_flags & INP_DROPPED)) {
tp = intotcpcb(inp);
if (moretocome)
tp->t_flags |= TF_MORETOCOME;
error = tp->t_fb->tfb_tcp_output(tp);
if (moretocome)
tp->t_flags &= ~TF_MORETOCOME;
}
INP_WUNLOCK(inp);
if (sendmore)
goto sendanother;
sbunlock(sb);
if (error)
goto out;
/*
* If this is a blocking socket and the request has not been
* fully completed, requeue it until the socket is ready
* again.
*/
if (job->aio_sent < job->uaiocb.aio_nbytes &&
!(so->so_state & SS_NBIO)) {
SOCKBUF_LOCK(sb);
if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
SOCKBUF_UNLOCK(sb);
error = ECANCELED;
goto out;
}
TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
return;
}
/*
* If the request will not be requeued, drop the queue's
* reference to the job. Any mbufs in flight should still
* hold a reference, but this drops the reference that the
* queue owns while it is waiting to queue mbufs to the
* socket.
*/
aiotx_free_job(job);
out:
if (error) {
job->aio_error = (void *)(intptr_t)error;
aiotx_free_job(job);
}
if (m != NULL)
m_free(m);
SOCKBUF_LOCK(sb);
}
static void
t4_aiotx_task(void *context, int pending)
{
struct toepcb *toep = context;
struct socket *so;
struct kaiocb *job;
so = toep->aiotx_so;
CURVNET_SET(toep->vnet);
SOCKBUF_LOCK(&so->so_snd);
while (!TAILQ_EMPTY(&toep->aiotx_jobq) && sowriteable(so)) {
job = TAILQ_FIRST(&toep->aiotx_jobq);
TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
if (!aio_clear_cancel_function(job))
continue;
t4_aiotx_process_job(toep, so, job);
}
toep->aiotx_so = NULL;
SOCKBUF_UNLOCK(&so->so_snd);
CURVNET_RESTORE();
free_toepcb(toep);
SOCK_LOCK(so);
sorele(so);
}
static void
t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep)
{
SOCKBUF_LOCK_ASSERT(&toep->inp->inp_socket->so_snd);
#ifdef VERBOSE_TRACES
CTR3(KTR_CXGBE, "%s: queueing aiotx task for tid %d, active = %s",
__func__, toep->tid, toep->aiotx_so != NULL ? "true" : "false");
#endif
if (toep->aiotx_so != NULL)
return;
soref(so);
toep->aiotx_so = so;
hold_toepcb(toep);
soaio_enqueue(&toep->aiotx_task);
}
static void
t4_aiotx_cancel(struct kaiocb *job)
{
struct socket *so;
struct sockbuf *sb;
struct tcpcb *tp;
struct toepcb *toep;
so = job->fd_file->f_data;
tp = so_sototcpcb(so);
toep = tp->t_toe;
MPASS(job->uaiocb.aio_lio_opcode == LIO_WRITE);
sb = &so->so_snd;
SOCKBUF_LOCK(sb);
if (!aio_cancel_cleared(job))
TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
SOCKBUF_UNLOCK(sb);
job->aio_error = (void *)(intptr_t)ECANCELED;
aiotx_free_job(job);
}
int
t4_aio_queue_aiotx(struct socket *so, struct kaiocb *job)
{
struct tcpcb *tp = so_sototcpcb(so);
struct toepcb *toep = tp->t_toe;
struct adapter *sc = td_adapter(toep->td);
/* This only handles writes. */
if (job->uaiocb.aio_lio_opcode != LIO_WRITE)
return (EOPNOTSUPP);
if (!sc->tt.tx_zcopy)
return (EOPNOTSUPP);
if (tls_tx_key(toep))
return (EOPNOTSUPP);
SOCKBUF_LOCK(&so->so_snd);
#ifdef VERBOSE_TRACES
CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
#endif
if (!aio_set_cancel_function(job, t4_aiotx_cancel))
panic("new job was cancelled");
refcount_init(&job->aio_refs, 1);
TAILQ_INSERT_TAIL(&toep->aiotx_jobq, job, list);
if (sowriteable(so))
t4_aiotx_queue_toep(so, toep);
SOCKBUF_UNLOCK(&so->so_snd);
return (0);
}
void
aiotx_init_toep(struct toepcb *toep)
{
TAILQ_INIT(&toep->aiotx_jobq);
TASK_INIT(&toep->aiotx_task, 0, t4_aiotx_task, toep);
}
#endif