1fadd5062f
MFC after: 2 weeks
468 lines
12 KiB
C
468 lines
12 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (C) 2012-2016 Intel Corporation
|
|
* All rights reserved.
|
|
* Copyright (C) 2018 Alexander Motin <mav@FreeBSD.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <machine/atomic.h>
|
|
|
|
#include <geom/geom.h>
|
|
#include <geom/geom_disk.h>
|
|
|
|
#include <dev/nvme/nvme.h>
|
|
|
|
#define NVD_STR "nvd"
|
|
|
|
struct nvd_disk;
|
|
struct nvd_controller;
|
|
|
|
static disk_ioctl_t nvd_ioctl;
|
|
static disk_strategy_t nvd_strategy;
|
|
static dumper_t nvd_dump;
|
|
|
|
static void nvd_done(void *arg, const struct nvme_completion *cpl);
|
|
static void nvd_gone(struct nvd_disk *ndisk);
|
|
|
|
static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr);
|
|
|
|
static void *nvd_new_controller(struct nvme_controller *ctrlr);
|
|
static void nvd_controller_fail(void *ctrlr);
|
|
|
|
static int nvd_load(void);
|
|
static void nvd_unload(void);
|
|
|
|
MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations");
|
|
|
|
struct nvme_consumer *consumer_handle;
|
|
|
|
struct nvd_disk {
|
|
struct nvd_controller *ctrlr;
|
|
|
|
struct bio_queue_head bioq;
|
|
struct task bioqtask;
|
|
struct mtx bioqlock;
|
|
|
|
struct disk *disk;
|
|
struct taskqueue *tq;
|
|
struct nvme_namespace *ns;
|
|
|
|
uint32_t cur_depth;
|
|
#define NVD_ODEPTH (1 << 30)
|
|
uint32_t ordered_in_flight;
|
|
u_int unit;
|
|
|
|
TAILQ_ENTRY(nvd_disk) global_tailq;
|
|
TAILQ_ENTRY(nvd_disk) ctrlr_tailq;
|
|
};
|
|
|
|
struct nvd_controller {
|
|
|
|
TAILQ_ENTRY(nvd_controller) tailq;
|
|
TAILQ_HEAD(, nvd_disk) disk_head;
|
|
};
|
|
|
|
static struct mtx nvd_lock;
|
|
static TAILQ_HEAD(, nvd_controller) ctrlr_head;
|
|
static TAILQ_HEAD(disk_list, nvd_disk) disk_head;
|
|
|
|
static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD, 0, "nvd driver parameters");
|
|
/*
|
|
* The NVMe specification does not define a maximum or optimal delete size, so
|
|
* technically max delete size is min(full size of the namespace, 2^32 - 1
|
|
* LBAs). A single delete for a multi-TB NVMe namespace though may take much
|
|
* longer to complete than the nvme(4) I/O timeout period. So choose a sensible
|
|
* default here that is still suitably large to minimize the number of overall
|
|
* delete operations.
|
|
*/
|
|
static uint64_t nvd_delete_max = (1024 * 1024 * 1024); /* 1GB */
|
|
SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0,
|
|
"nvd maximum BIO_DELETE size in bytes");
|
|
|
|
static int nvd_modevent(module_t mod, int type, void *arg)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
error = nvd_load();
|
|
break;
|
|
case MOD_UNLOAD:
|
|
nvd_unload();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
moduledata_t nvd_mod = {
|
|
NVD_STR,
|
|
(modeventhand_t)nvd_modevent,
|
|
0
|
|
};
|
|
|
|
DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY);
|
|
MODULE_VERSION(nvd, 1);
|
|
MODULE_DEPEND(nvd, nvme, 1, 1, 1);
|
|
|
|
static int
|
|
nvd_load()
|
|
{
|
|
if (!nvme_use_nvd)
|
|
return 0;
|
|
|
|
mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF);
|
|
TAILQ_INIT(&ctrlr_head);
|
|
TAILQ_INIT(&disk_head);
|
|
|
|
consumer_handle = nvme_register_consumer(nvd_new_disk,
|
|
nvd_new_controller, NULL, nvd_controller_fail);
|
|
|
|
return (consumer_handle != NULL ? 0 : -1);
|
|
}
|
|
|
|
static void
|
|
nvd_unload()
|
|
{
|
|
struct nvd_controller *ctrlr;
|
|
struct nvd_disk *ndisk;
|
|
|
|
if (!nvme_use_nvd)
|
|
return;
|
|
|
|
mtx_lock(&nvd_lock);
|
|
while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) {
|
|
TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
|
|
TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
|
|
nvd_gone(ndisk);
|
|
while (!TAILQ_EMPTY(&ctrlr->disk_head))
|
|
msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0);
|
|
free(ctrlr, M_NVD);
|
|
}
|
|
mtx_unlock(&nvd_lock);
|
|
|
|
nvme_unregister_consumer(consumer_handle);
|
|
|
|
mtx_destroy(&nvd_lock);
|
|
}
|
|
|
|
static void
|
|
nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp)
|
|
{
|
|
int err;
|
|
|
|
bp->bio_driver1 = NULL;
|
|
if (__predict_false(bp->bio_flags & BIO_ORDERED))
|
|
atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH);
|
|
else
|
|
atomic_add_int(&ndisk->cur_depth, 1);
|
|
err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done);
|
|
if (err) {
|
|
if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
|
|
atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
|
|
atomic_add_int(&ndisk->ordered_in_flight, -1);
|
|
wakeup(&ndisk->cur_depth);
|
|
} else {
|
|
if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
|
|
__predict_false(ndisk->ordered_in_flight != 0))
|
|
wakeup(&ndisk->cur_depth);
|
|
}
|
|
bp->bio_error = err;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
bp->bio_resid = bp->bio_bcount;
|
|
biodone(bp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvd_strategy(struct bio *bp)
|
|
{
|
|
struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
|
|
|
|
/*
|
|
* bio with BIO_ORDERED flag must be executed after all previous
|
|
* bios in the queue, and before any successive bios.
|
|
*/
|
|
if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
|
|
if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 &&
|
|
ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) {
|
|
nvd_bio_submit(ndisk, bp);
|
|
return;
|
|
}
|
|
} else if (__predict_true(ndisk->ordered_in_flight == 0)) {
|
|
nvd_bio_submit(ndisk, bp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* There are ordered bios in flight, so we need to submit
|
|
* bios through the task queue to enforce ordering.
|
|
*/
|
|
mtx_lock(&ndisk->bioqlock);
|
|
bioq_insert_tail(&ndisk->bioq, bp);
|
|
mtx_unlock(&ndisk->bioqlock);
|
|
taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask);
|
|
}
|
|
|
|
static void
|
|
nvd_gone(struct nvd_disk *ndisk)
|
|
{
|
|
struct bio *bp;
|
|
|
|
printf(NVD_STR"%u: detached\n", ndisk->unit);
|
|
mtx_lock(&ndisk->bioqlock);
|
|
disk_gone(ndisk->disk);
|
|
while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) {
|
|
if (__predict_false(bp->bio_flags & BIO_ORDERED))
|
|
atomic_add_int(&ndisk->ordered_in_flight, -1);
|
|
bp->bio_error = ENXIO;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
bp->bio_resid = bp->bio_bcount;
|
|
biodone(bp);
|
|
}
|
|
mtx_unlock(&ndisk->bioqlock);
|
|
}
|
|
|
|
static void
|
|
nvd_gonecb(struct disk *dp)
|
|
{
|
|
struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1;
|
|
|
|
disk_destroy(ndisk->disk);
|
|
mtx_lock(&nvd_lock);
|
|
TAILQ_REMOVE(&disk_head, ndisk, global_tailq);
|
|
TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq);
|
|
if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head))
|
|
wakeup(&ndisk->ctrlr->disk_head);
|
|
mtx_unlock(&nvd_lock);
|
|
taskqueue_free(ndisk->tq);
|
|
mtx_destroy(&ndisk->bioqlock);
|
|
free(ndisk, M_NVD);
|
|
}
|
|
|
|
static int
|
|
nvd_ioctl(struct disk *ndisk, u_long cmd, void *data, int fflag,
|
|
struct thread *td)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (cmd) {
|
|
default:
|
|
ret = EIO;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
nvd_dump(void *arg, void *virt, vm_offset_t phys, off_t offset, size_t len)
|
|
{
|
|
struct disk *dp = arg;
|
|
struct nvd_disk *ndisk = dp->d_drv1;
|
|
|
|
return (nvme_ns_dump(ndisk->ns, virt, offset, len));
|
|
}
|
|
|
|
static void
|
|
nvd_done(void *arg, const struct nvme_completion *cpl)
|
|
{
|
|
struct bio *bp = (struct bio *)arg;
|
|
struct nvd_disk *ndisk = bp->bio_disk->d_drv1;
|
|
|
|
if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
|
|
atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
|
|
atomic_add_int(&ndisk->ordered_in_flight, -1);
|
|
wakeup(&ndisk->cur_depth);
|
|
} else {
|
|
if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
|
|
__predict_false(ndisk->ordered_in_flight != 0))
|
|
wakeup(&ndisk->cur_depth);
|
|
}
|
|
|
|
biodone(bp);
|
|
}
|
|
|
|
static void
|
|
nvd_bioq_process(void *arg, int pending)
|
|
{
|
|
struct nvd_disk *ndisk = arg;
|
|
struct bio *bp;
|
|
|
|
for (;;) {
|
|
mtx_lock(&ndisk->bioqlock);
|
|
bp = bioq_takefirst(&ndisk->bioq);
|
|
mtx_unlock(&ndisk->bioqlock);
|
|
if (bp == NULL)
|
|
break;
|
|
|
|
if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
|
|
/*
|
|
* bio with BIO_ORDERED flag set must be executed
|
|
* after all previous bios.
|
|
*/
|
|
while (ndisk->cur_depth > 0)
|
|
tsleep(&ndisk->cur_depth, 0, "nvdorb", 1);
|
|
} else {
|
|
/*
|
|
* bio with BIO_ORDERED flag set must be completed
|
|
* before proceeding with additional bios.
|
|
*/
|
|
while (ndisk->cur_depth >= NVD_ODEPTH)
|
|
tsleep(&ndisk->cur_depth, 0, "nvdora", 1);
|
|
}
|
|
|
|
nvd_bio_submit(ndisk, bp);
|
|
}
|
|
}
|
|
|
|
static void *
|
|
nvd_new_controller(struct nvme_controller *ctrlr)
|
|
{
|
|
struct nvd_controller *nvd_ctrlr;
|
|
|
|
nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD,
|
|
M_ZERO | M_WAITOK);
|
|
|
|
TAILQ_INIT(&nvd_ctrlr->disk_head);
|
|
mtx_lock(&nvd_lock);
|
|
TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq);
|
|
mtx_unlock(&nvd_lock);
|
|
|
|
return (nvd_ctrlr);
|
|
}
|
|
|
|
static void *
|
|
nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg)
|
|
{
|
|
uint8_t descr[NVME_MODEL_NUMBER_LENGTH+1];
|
|
struct nvd_disk *ndisk, *tnd;
|
|
struct disk *disk;
|
|
struct nvd_controller *ctrlr = ctrlr_arg;
|
|
int unit;
|
|
|
|
ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK);
|
|
ndisk->ctrlr = ctrlr;
|
|
ndisk->ns = ns;
|
|
ndisk->cur_depth = 0;
|
|
ndisk->ordered_in_flight = 0;
|
|
mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF);
|
|
bioq_init(&ndisk->bioq);
|
|
TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk);
|
|
|
|
mtx_lock(&nvd_lock);
|
|
unit = 0;
|
|
TAILQ_FOREACH(tnd, &disk_head, global_tailq) {
|
|
if (tnd->unit > unit)
|
|
break;
|
|
unit = tnd->unit + 1;
|
|
}
|
|
ndisk->unit = unit;
|
|
if (tnd != NULL)
|
|
TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq);
|
|
else
|
|
TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq);
|
|
TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq);
|
|
mtx_unlock(&nvd_lock);
|
|
|
|
ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK,
|
|
taskqueue_thread_enqueue, &ndisk->tq);
|
|
taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq");
|
|
|
|
disk = ndisk->disk = disk_alloc();
|
|
disk->d_strategy = nvd_strategy;
|
|
disk->d_ioctl = nvd_ioctl;
|
|
disk->d_dump = nvd_dump;
|
|
disk->d_gone = nvd_gonecb;
|
|
disk->d_name = NVD_STR;
|
|
disk->d_unit = ndisk->unit;
|
|
disk->d_drv1 = ndisk;
|
|
|
|
disk->d_sectorsize = nvme_ns_get_sector_size(ns);
|
|
disk->d_mediasize = (off_t)nvme_ns_get_size(ns);
|
|
disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns);
|
|
disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns);
|
|
if (disk->d_delmaxsize > nvd_delete_max)
|
|
disk->d_delmaxsize = nvd_delete_max;
|
|
disk->d_stripesize = nvme_ns_get_stripesize(ns);
|
|
disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION;
|
|
if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED)
|
|
disk->d_flags |= DISKFLAG_CANDELETE;
|
|
if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED)
|
|
disk->d_flags |= DISKFLAG_CANFLUSHCACHE;
|
|
|
|
/*
|
|
* d_ident and d_descr are both far bigger than the length of either
|
|
* the serial or model number strings.
|
|
*/
|
|
nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns),
|
|
sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH);
|
|
nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr),
|
|
NVME_MODEL_NUMBER_LENGTH);
|
|
strlcpy(disk->d_descr, descr, sizeof(descr));
|
|
|
|
disk->d_rotation_rate = DISK_RR_NON_ROTATING;
|
|
|
|
disk_create(disk, DISK_VERSION);
|
|
|
|
printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr);
|
|
printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit,
|
|
(uintmax_t)disk->d_mediasize / (1024*1024),
|
|
(uintmax_t)disk->d_mediasize / disk->d_sectorsize,
|
|
disk->d_sectorsize);
|
|
|
|
return (ndisk);
|
|
}
|
|
|
|
static void
|
|
nvd_controller_fail(void *ctrlr_arg)
|
|
{
|
|
struct nvd_controller *ctrlr = ctrlr_arg;
|
|
struct nvd_disk *ndisk;
|
|
|
|
mtx_lock(&nvd_lock);
|
|
TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
|
|
TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
|
|
nvd_gone(ndisk);
|
|
while (!TAILQ_EMPTY(&ctrlr->disk_head))
|
|
msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0);
|
|
mtx_unlock(&nvd_lock);
|
|
free(ctrlr, M_NVD);
|
|
}
|
|
|