mmacy 7aeac9ef18 ifnet: Replace if_addr_lock rwlock with epoch + mutex
Run on LLNW canaries and tested by pho@

gallatin:
Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5
based ConnectX 4-LX NIC, I see an almost 12% improvement in received
packet rate, and a larger improvement in bytes delivered all the way
to userspace.

When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1,
I see, using nstat -I mce0 1 before the patch:

InMpps OMpps  InGbs  OGbs err TCP Est %CPU syscalls csw     irq GBfree
4.98   0.00   4.42   0.00 4235592     33   83.80 4720653 2149771   1235 247.32
4.73   0.00   4.20   0.00 4025260     33   82.99 4724900 2139833   1204 247.32
4.72   0.00   4.20   0.00 4035252     33   82.14 4719162 2132023   1264 247.32
4.71   0.00   4.21   0.00 4073206     33   83.68 4744973 2123317   1347 247.32
4.72   0.00   4.21   0.00 4061118     33   80.82 4713615 2188091   1490 247.32
4.72   0.00   4.21   0.00 4051675     33   85.29 4727399 2109011   1205 247.32
4.73   0.00   4.21   0.00 4039056     33   84.65 4724735 2102603   1053 247.32

After the patch

InMpps OMpps  InGbs  OGbs err TCP Est %CPU syscalls csw     irq GBfree
5.43   0.00   4.20   0.00 3313143     33   84.96 5434214 1900162   2656 245.51
5.43   0.00   4.20   0.00 3308527     33   85.24 5439695 1809382   2521 245.51
5.42   0.00   4.19   0.00 3316778     33   87.54 5416028 1805835   2256 245.51
5.42   0.00   4.19   0.00 3317673     33   90.44 5426044 1763056   2332 245.51
5.42   0.00   4.19   0.00 3314839     33   88.11 5435732 1792218   2499 245.52
5.44   0.00   4.19   0.00 3293228     33   91.84 5426301 1668597   2121 245.52

Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch

Reviewed by:	gallatin
Sponsored by:	Limelight Networks
Differential Revision:	https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00

1535 lines
37 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013-2014 Qlogic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File: qls_os.c
* Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "qls_os.h"
#include "qls_hw.h"
#include "qls_def.h"
#include "qls_inline.h"
#include "qls_ver.h"
#include "qls_glbl.h"
#include "qls_dbg.h"
#include <sys/smp.h>
/*
* Some PCI Configuration Space Related Defines
*/
#ifndef PCI_VENDOR_QLOGIC
#define PCI_VENDOR_QLOGIC 0x1077
#endif
#ifndef PCI_DEVICE_QLOGIC_8000
#define PCI_DEVICE_QLOGIC_8000 0x8000
#endif
#define PCI_QLOGIC_DEV8000 \
((PCI_DEVICE_QLOGIC_8000 << 16) | PCI_VENDOR_QLOGIC)
/*
* static functions
*/
static int qls_alloc_parent_dma_tag(qla_host_t *ha);
static void qls_free_parent_dma_tag(qla_host_t *ha);
static void qls_flush_xmt_bufs(qla_host_t *ha);
static int qls_alloc_rcv_bufs(qla_host_t *ha);
static void qls_free_rcv_bufs(qla_host_t *ha);
static void qls_init_ifnet(device_t dev, qla_host_t *ha);
static void qls_release(qla_host_t *ha);
static void qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
int error);
static void qls_stop(qla_host_t *ha);
static int qls_send(qla_host_t *ha, struct mbuf **m_headp);
static void qls_tx_done(void *context, int pending);
static int qls_config_lro(qla_host_t *ha);
static void qls_free_lro(qla_host_t *ha);
static void qls_error_recovery(void *context, int pending);
/*
* Hooks to the Operating Systems
*/
static int qls_pci_probe (device_t);
static int qls_pci_attach (device_t);
static int qls_pci_detach (device_t);
static void qls_start(struct ifnet *ifp);
static void qls_init(void *arg);
static int qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static int qls_media_change(struct ifnet *ifp);
static void qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
static device_method_t qla_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, qls_pci_probe),
DEVMETHOD(device_attach, qls_pci_attach),
DEVMETHOD(device_detach, qls_pci_detach),
{ 0, 0 }
};
static driver_t qla_pci_driver = {
"ql", qla_pci_methods, sizeof (qla_host_t),
};
static devclass_t qla8000_devclass;
DRIVER_MODULE(qla8000, pci, qla_pci_driver, qla8000_devclass, 0, 0);
MODULE_DEPEND(qla8000, pci, 1, 1, 1);
MODULE_DEPEND(qla8000, ether, 1, 1, 1);
MALLOC_DEFINE(M_QLA8000BUF, "qla8000buf", "Buffers for qla8000 driver");
static char dev_str[64];
static char ver_str[64];
/*
* Name: qls_pci_probe
* Function: Validate the PCI device to be a QLA80XX device
*/
static int
qls_pci_probe(device_t dev)
{
switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
case PCI_QLOGIC_DEV8000:
snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
"Qlogic ISP 8000 PCI CNA Adapter-Ethernet Function",
QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
QLA_VERSION_BUILD);
snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
QLA_VERSION_BUILD);
device_set_desc(dev, dev_str);
break;
default:
return (ENXIO);
}
if (bootverbose)
printf("%s: %s\n ", __func__, dev_str);
return (BUS_PROBE_DEFAULT);
}
static int
qls_sysctl_get_drvr_stats(SYSCTL_HANDLER_ARGS)
{
int err = 0, ret;
qla_host_t *ha;
uint32_t i;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
for (i = 0; i < ha->num_tx_rings; i++) {
device_printf(ha->pci_dev,
"%s: tx_ring[%d].tx_frames= %p\n",
__func__, i,
(void *)ha->tx_ring[i].tx_frames);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].tx_tso_frames= %p\n",
__func__, i,
(void *)ha->tx_ring[i].tx_tso_frames);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].tx_vlan_frames= %p\n",
__func__, i,
(void *)ha->tx_ring[i].tx_vlan_frames);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].txr_free= 0x%08x\n",
__func__, i,
ha->tx_ring[i].txr_free);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].txr_next= 0x%08x\n",
__func__, i,
ha->tx_ring[i].txr_next);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].txr_done= 0x%08x\n",
__func__, i,
ha->tx_ring[i].txr_done);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].txr_cons_idx= 0x%08x\n",
__func__, i,
*(ha->tx_ring[i].txr_cons_vaddr));
}
for (i = 0; i < ha->num_rx_rings; i++) {
device_printf(ha->pci_dev,
"%s: rx_ring[%d].rx_int= %p\n",
__func__, i,
(void *)ha->rx_ring[i].rx_int);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].rss_int= %p\n",
__func__, i,
(void *)ha->rx_ring[i].rss_int);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].lbq_next= 0x%08x\n",
__func__, i,
ha->rx_ring[i].lbq_next);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].lbq_free= 0x%08x\n",
__func__, i,
ha->rx_ring[i].lbq_free);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].lbq_in= 0x%08x\n",
__func__, i,
ha->rx_ring[i].lbq_in);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].sbq_next= 0x%08x\n",
__func__, i,
ha->rx_ring[i].sbq_next);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].sbq_free= 0x%08x\n",
__func__, i,
ha->rx_ring[i].sbq_free);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].sbq_in= 0x%08x\n",
__func__, i,
ha->rx_ring[i].sbq_in);
}
device_printf(ha->pci_dev, "%s: err_m_getcl = 0x%08x\n",
__func__, ha->err_m_getcl);
device_printf(ha->pci_dev, "%s: err_m_getjcl = 0x%08x\n",
__func__, ha->err_m_getjcl);
device_printf(ha->pci_dev,
"%s: err_tx_dmamap_create = 0x%08x\n",
__func__, ha->err_tx_dmamap_create);
device_printf(ha->pci_dev,
"%s: err_tx_dmamap_load = 0x%08x\n",
__func__, ha->err_tx_dmamap_load);
device_printf(ha->pci_dev,
"%s: err_tx_defrag = 0x%08x\n",
__func__, ha->err_tx_defrag);
}
return (err);
}
static void
qls_add_sysctls(qla_host_t *ha)
{
device_t dev = ha->pci_dev;
SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "version", CTLFLAG_RD,
ver_str, 0, "Driver Version");
qls_dbg_level = 0;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "debug", CTLFLAG_RW,
&qls_dbg_level, qls_dbg_level, "Debug Level");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "drvr_stats", CTLTYPE_INT | CTLFLAG_RW,
(void *)ha, 0,
qls_sysctl_get_drvr_stats, "I", "Driver Maintained Statistics");
return;
}
static void
qls_watchdog(void *arg)
{
qla_host_t *ha = arg;
struct ifnet *ifp;
ifp = ha->ifp;
if (ha->flags.qla_watchdog_exit) {
ha->qla_watchdog_exited = 1;
return;
}
ha->qla_watchdog_exited = 0;
if (!ha->flags.qla_watchdog_pause) {
if (ha->qla_initiate_recovery) {
ha->qla_watchdog_paused = 1;
ha->qla_initiate_recovery = 0;
ha->err_inject = 0;
taskqueue_enqueue(ha->err_tq, &ha->err_task);
} else if ((ifp->if_snd.ifq_head != NULL) && QL_RUNNING(ifp)) {
taskqueue_enqueue(ha->tx_tq, &ha->tx_task);
}
ha->qla_watchdog_paused = 0;
} else {
ha->qla_watchdog_paused = 1;
}
ha->watchdog_ticks = ha->watchdog_ticks++ % 1000;
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qls_watchdog, ha);
return;
}
/*
* Name: qls_pci_attach
* Function: attaches the device to the operating system
*/
static int
qls_pci_attach(device_t dev)
{
qla_host_t *ha = NULL;
int i;
QL_DPRINT2((dev, "%s: enter\n", __func__));
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
memset(ha, 0, sizeof (qla_host_t));
if (pci_get_device(dev) != PCI_DEVICE_QLOGIC_8000) {
device_printf(dev, "device is not QLE8000\n");
return (ENXIO);
}
ha->pci_func = pci_get_function(dev);
ha->pci_dev = dev;
pci_enable_busmaster(dev);
ha->reg_rid = PCIR_BAR(1);
ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
RF_ACTIVE);
if (ha->pci_reg == NULL) {
device_printf(dev, "unable to map any ports\n");
goto qls_pci_attach_err;
}
ha->reg_rid1 = PCIR_BAR(3);
ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ha->reg_rid1, RF_ACTIVE);
if (ha->pci_reg1 == NULL) {
device_printf(dev, "unable to map any ports\n");
goto qls_pci_attach_err;
}
mtx_init(&ha->hw_lock, "qla80xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
mtx_init(&ha->tx_lock, "qla80xx_tx_lock", MTX_NETWORK_LOCK, MTX_DEF);
qls_add_sysctls(ha);
qls_hw_add_sysctls(ha);
ha->flags.lock_init = 1;
ha->msix_count = pci_msix_count(dev);
if (ha->msix_count < qls_get_msix_count(ha)) {
device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
ha->msix_count);
goto qls_pci_attach_err;
}
ha->msix_count = qls_get_msix_count(ha);
device_printf(dev, "\n%s: ha %p pci_func 0x%x msix_count 0x%x"
" pci_reg %p pci_reg1 %p\n", __func__, ha,
ha->pci_func, ha->msix_count, ha->pci_reg, ha->pci_reg1);
if (pci_alloc_msix(dev, &ha->msix_count)) {
device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
ha->msix_count);
ha->msix_count = 0;
goto qls_pci_attach_err;
}
for (i = 0; i < ha->num_rx_rings; i++) {
ha->irq_vec[i].cq_idx = i;
ha->irq_vec[i].ha = ha;
ha->irq_vec[i].irq_rid = 1 + i;
ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ha->irq_vec[i].irq_rid,
(RF_ACTIVE | RF_SHAREABLE));
if (ha->irq_vec[i].irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto qls_pci_attach_err;
}
if (bus_setup_intr(dev, ha->irq_vec[i].irq,
(INTR_TYPE_NET | INTR_MPSAFE), NULL, qls_isr,
&ha->irq_vec[i], &ha->irq_vec[i].handle)) {
device_printf(dev,
"could not setup interrupt\n");
goto qls_pci_attach_err;
}
}
qls_rd_nic_params(ha);
/* allocate parent dma tag */
if (qls_alloc_parent_dma_tag(ha)) {
device_printf(dev, "%s: qls_alloc_parent_dma_tag failed\n",
__func__);
goto qls_pci_attach_err;
}
/* alloc all dma buffers */
if (qls_alloc_dma(ha)) {
device_printf(dev, "%s: qls_alloc_dma failed\n", __func__);
goto qls_pci_attach_err;
}
/* create the o.s ethernet interface */
qls_init_ifnet(dev, ha);
ha->flags.qla_watchdog_active = 1;
ha->flags.qla_watchdog_pause = 1;
TASK_INIT(&ha->tx_task, 0, qls_tx_done, ha);
ha->tx_tq = taskqueue_create_fast("qla_txq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->tx_tq);
taskqueue_start_threads(&ha->tx_tq, 1, PI_NET, "%s txq",
device_get_nameunit(ha->pci_dev));
callout_init(&ha->tx_callout, 1);
ha->flags.qla_callout_init = 1;
/* create ioctl device interface */
if (qls_make_cdev(ha)) {
device_printf(dev, "%s: qls_make_cdev failed\n", __func__);
goto qls_pci_attach_err;
}
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qls_watchdog, ha);
TASK_INIT(&ha->err_task, 0, qls_error_recovery, ha);
ha->err_tq = taskqueue_create_fast("qla_errq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->err_tq);
taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
device_get_nameunit(ha->pci_dev));
QL_DPRINT2((dev, "%s: exit 0\n", __func__));
return (0);
qls_pci_attach_err:
qls_release(ha);
QL_DPRINT2((dev, "%s: exit ENXIO\n", __func__));
return (ENXIO);
}
/*
* Name: qls_pci_detach
* Function: Unhooks the device from the operating system
*/
static int
qls_pci_detach(device_t dev)
{
qla_host_t *ha = NULL;
struct ifnet *ifp;
QL_DPRINT2((dev, "%s: enter\n", __func__));
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
ifp = ha->ifp;
(void)QLA_LOCK(ha, __func__, 0);
qls_stop(ha);
QLA_UNLOCK(ha, __func__);
qls_release(ha);
QL_DPRINT2((dev, "%s: exit\n", __func__));
return (0);
}
/*
* Name: qls_release
* Function: Releases the resources allocated for the device
*/
static void
qls_release(qla_host_t *ha)
{
device_t dev;
int i;
dev = ha->pci_dev;
if (ha->err_tq) {
taskqueue_drain(ha->err_tq, &ha->err_task);
taskqueue_free(ha->err_tq);
}
if (ha->tx_tq) {
taskqueue_drain(ha->tx_tq, &ha->tx_task);
taskqueue_free(ha->tx_tq);
}
qls_del_cdev(ha);
if (ha->flags.qla_watchdog_active) {
ha->flags.qla_watchdog_exit = 1;
while (ha->qla_watchdog_exited == 0)
qls_mdelay(__func__, 1);
}
if (ha->flags.qla_callout_init)
callout_stop(&ha->tx_callout);
if (ha->ifp != NULL)
ether_ifdetach(ha->ifp);
qls_free_dma(ha);
qls_free_parent_dma_tag(ha);
for (i = 0; i < ha->num_rx_rings; i++) {
if (ha->irq_vec[i].handle) {
(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
ha->irq_vec[i].handle);
}
if (ha->irq_vec[i].irq) {
(void)bus_release_resource(dev, SYS_RES_IRQ,
ha->irq_vec[i].irq_rid,
ha->irq_vec[i].irq);
}
}
if (ha->msix_count)
pci_release_msi(dev);
if (ha->flags.lock_init) {
mtx_destroy(&ha->tx_lock);
mtx_destroy(&ha->hw_lock);
}
if (ha->pci_reg)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
ha->pci_reg);
if (ha->pci_reg1)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
ha->pci_reg1);
}
/*
* DMA Related Functions
*/
static void
qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
*((bus_addr_t *)arg) = 0;
if (error) {
printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
return;
}
*((bus_addr_t *)arg) = segs[0].ds_addr;
return;
}
int
qls_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
int ret = 0;
device_t dev;
bus_addr_t b_addr;
dev = ha->pci_dev;
QL_DPRINT2((dev, "%s: enter\n", __func__));
ret = bus_dma_tag_create(
ha->parent_tag,/* parent */
dma_buf->alignment,
((bus_size_t)(1ULL << 32)),/* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dma_buf->size, /* maxsize */
1, /* nsegments */
dma_buf->size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&dma_buf->dma_tag);
if (ret) {
device_printf(dev, "%s: could not create dma tag\n", __func__);
goto qls_alloc_dmabuf_exit;
}
ret = bus_dmamem_alloc(dma_buf->dma_tag,
(void **)&dma_buf->dma_b,
(BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
&dma_buf->dma_map);
if (ret) {
bus_dma_tag_destroy(dma_buf->dma_tag);
device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
goto qls_alloc_dmabuf_exit;
}
ret = bus_dmamap_load(dma_buf->dma_tag,
dma_buf->dma_map,
dma_buf->dma_b,
dma_buf->size,
qls_dmamap_callback,
&b_addr, BUS_DMA_NOWAIT);
if (ret || !b_addr) {
bus_dma_tag_destroy(dma_buf->dma_tag);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
dma_buf->dma_map);
ret = -1;
goto qls_alloc_dmabuf_exit;
}
dma_buf->dma_addr = b_addr;
qls_alloc_dmabuf_exit:
QL_DPRINT2((dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
__func__, ret, (void *)dma_buf->dma_tag,
(void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
dma_buf->size));
return ret;
}
void
qls_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
bus_dma_tag_destroy(dma_buf->dma_tag);
}
static int
qls_alloc_parent_dma_tag(qla_host_t *ha)
{
int ret;
device_t dev;
dev = ha->pci_dev;
/*
* Allocate parent DMA Tag
*/
ret = bus_dma_tag_create(
bus_get_dma_tag(dev), /* parent */
1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ha->parent_tag);
if (ret) {
device_printf(dev, "%s: could not create parent dma tag\n",
__func__);
return (-1);
}
ha->flags.parent_tag = 1;
return (0);
}
static void
qls_free_parent_dma_tag(qla_host_t *ha)
{
if (ha->flags.parent_tag) {
bus_dma_tag_destroy(ha->parent_tag);
ha->flags.parent_tag = 0;
}
}
/*
* Name: qls_init_ifnet
* Function: Creates the Network Device Interface and Registers it with the O.S
*/
static void
qls_init_ifnet(device_t dev, qla_host_t *ha)
{
struct ifnet *ifp;
QL_DPRINT2((dev, "%s: enter\n", __func__));
ifp = ha->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_baudrate = IF_Gbps(10);
ifp->if_init = qls_init;
ifp->if_softc = ha;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = qls_ioctl;
ifp->if_start = qls_start;
IFQ_SET_MAXLEN(&ifp->if_snd, qls_get_ifq_snd_maxlen(ha));
ifp->if_snd.ifq_drv_maxlen = qls_get_ifq_snd_maxlen(ha);
IFQ_SET_READY(&ifp->if_snd);
ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
if (ha->max_frame_size <= MCLBYTES) {
ha->msize = MCLBYTES;
} else if (ha->max_frame_size <= MJUMPAGESIZE) {
ha->msize = MJUMPAGESIZE;
} else
ha->msize = MJUM9BYTES;
ether_ifattach(ifp, qls_get_mac_addr(ha));
ifp->if_capabilities = IFCAP_JUMBO_MTU;
ifp->if_capabilities |= IFCAP_HWCSUM;
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capabilities |= IFCAP_TSO4;
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
ifp->if_capabilities |= IFCAP_LINKSTATE;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifmedia_init(&ha->media, IFM_IMASK, qls_media_change, qls_media_status);
ifmedia_add(&ha->media, (IFM_ETHER | qls_get_optics(ha) | IFM_FDX), 0,
NULL);
ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
QL_DPRINT2((dev, "%s: exit\n", __func__));
return;
}
static void
qls_init_locked(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
qls_stop(ha);
qls_flush_xmt_bufs(ha);
if (qls_alloc_rcv_bufs(ha) != 0)
return;
if (qls_config_lro(ha))
return;
bcopy(IF_LLADDR(ha->ifp), ha->mac_addr, ETHER_ADDR_LEN);
ifp->if_hwassist = CSUM_IP;
ifp->if_hwassist |= CSUM_TCP;
ifp->if_hwassist |= CSUM_UDP;
ifp->if_hwassist |= CSUM_TSO;
if (qls_init_hw_if(ha) == 0) {
ifp = ha->ifp;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ha->flags.qla_watchdog_pause = 0;
}
return;
}
static void
qls_init(void *arg)
{
qla_host_t *ha;
ha = (qla_host_t *)arg;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
(void)QLA_LOCK(ha, __func__, 0);
qls_init_locked(ha);
QLA_UNLOCK(ha, __func__);
QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
}
static void
qls_set_multi(qla_host_t *ha, uint32_t add_multi)
{
uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
struct ifmultiaddr *ifma;
int mcnt = 0;
struct ifnet *ifp = ha->ifp;
if_maddr_rlock(ifp);
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
break;
bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
&mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
mcnt++;
}
if_maddr_runlock(ifp);
if (QLA_LOCK(ha, __func__, 1) == 0) {
qls_hw_set_multi(ha, mta, mcnt, add_multi);
QLA_UNLOCK(ha, __func__);
}
return;
}
static int
qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
int ret = 0;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
switch (cmd) {
case SIOCSIFADDR:
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
__func__, cmd));
if (ifa->ifa_addr->sa_family == AF_INET) {
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
(void)QLA_LOCK(ha, __func__, 0);
qls_init_locked(ha);
QLA_UNLOCK(ha, __func__);
}
QL_DPRINT4((ha->pci_dev,
"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
__func__, cmd,
ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
arp_ifinit(ifp, ifa);
} else {
ether_ioctl(ifp, cmd, data);
}
break;
case SIOCSIFMTU:
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
__func__, cmd));
if (ifr->ifr_mtu > QLA_MAX_MTU) {
ret = EINVAL;
} else {
(void) QLA_LOCK(ha, __func__, 0);
ifp->if_mtu = ifr->ifr_mtu;
ha->max_frame_size =
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
QLA_UNLOCK(ha, __func__);
if (ret)
ret = EINVAL;
}
break;
case SIOCSIFFLAGS:
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
__func__, cmd));
(void)QLA_LOCK(ha, __func__, 0);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
if ((ifp->if_flags ^ ha->if_flags) &
IFF_PROMISC) {
ret = qls_set_promisc(ha);
} else if ((ifp->if_flags ^ ha->if_flags) &
IFF_ALLMULTI) {
ret = qls_set_allmulti(ha);
}
} else {
ha->max_frame_size = ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN;
qls_init_locked(ha);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
qls_stop(ha);
ha->if_flags = ifp->if_flags;
}
QLA_UNLOCK(ha, __func__);
break;
case SIOCADDMULTI:
QL_DPRINT4((ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
qls_set_multi(ha, 1);
}
break;
case SIOCDELMULTI:
QL_DPRINT4((ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
qls_set_multi(ha, 0);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
QL_DPRINT4((ha->pci_dev,
"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
__func__, cmd));
ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
break;
case SIOCSIFCAP:
{
int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
__func__, cmd));
if (mask & IFCAP_HWCSUM)
ifp->if_capenable ^= IFCAP_HWCSUM;
if (mask & IFCAP_TSO4)
ifp->if_capenable ^= IFCAP_TSO4;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
qls_init(ha);
VLAN_CAPABILITIES(ifp);
break;
}
default:
QL_DPRINT4((ha->pci_dev, "%s: default (0x%lx)\n",
__func__, cmd));
ret = ether_ioctl(ifp, cmd, data);
break;
}
return (ret);
}
static int
qls_media_change(struct ifnet *ifp)
{
qla_host_t *ha;
struct ifmedia *ifm;
int ret = 0;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
ifm = &ha->media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
ret = EINVAL;
QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static void
qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
qls_update_link_state(ha);
if (ha->link_up) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= (IFM_FDX | qls_get_optics(ha));
}
QL_DPRINT2((ha->pci_dev, "%s: exit (%s)\n", __func__,\
(ha->link_up ? "link_up" : "link_down")));
return;
}
static void
qls_start(struct ifnet *ifp)
{
int i, ret = 0;
struct mbuf *m_head;
qla_host_t *ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
if (!mtx_trylock(&ha->tx_lock)) {
QL_DPRINT8((ha->pci_dev,
"%s: mtx_trylock(&ha->tx_lock) failed\n", __func__));
return;
}
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) ==
IFF_DRV_RUNNING) {
for (i = 0; i < ha->num_tx_rings; i++) {
ret |= qls_hw_tx_done(ha, i);
}
if (ret == 0)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) {
QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
QLA_TX_UNLOCK(ha);
return;
}
if (!ha->link_up) {
qls_update_link_state(ha);
if (!ha->link_up) {
QL_DPRINT8((ha->pci_dev, "%s: link down\n", __func__));
QLA_TX_UNLOCK(ha);
return;
}
}
while (ifp->if_snd.ifq_head != NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL) {
QL_DPRINT8((ha->pci_dev, "%s: m_head == NULL\n",
__func__));
break;
}
if (qls_send(ha, &m_head)) {
if (m_head == NULL)
break;
QL_DPRINT8((ha->pci_dev, "%s: PREPEND\n", __func__));
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_PREPEND(&ifp->if_snd, m_head);
break;
}
/* Send a copy of the frame to the BPF listener */
ETHER_BPF_MTAP(ifp, m_head);
}
QLA_TX_UNLOCK(ha);
QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
return;
}
static int
qls_send(qla_host_t *ha, struct mbuf **m_headp)
{
bus_dma_segment_t segs[QLA_MAX_SEGMENTS];
bus_dmamap_t map;
int nsegs;
int ret = -1;
uint32_t tx_idx;
struct mbuf *m_head = *m_headp;
uint32_t txr_idx = 0;
QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
/* check if flowid is set */
if (M_HASHTYPE_GET(m_head) != M_HASHTYPE_NONE)
txr_idx = m_head->m_pkthdr.flowid & (ha->num_tx_rings - 1);
tx_idx = ha->tx_ring[txr_idx].txr_next;
map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
BUS_DMA_NOWAIT);
if (ret == EFBIG) {
struct mbuf *m;
QL_DPRINT8((ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
m_head->m_pkthdr.len));
m = m_defrag(m_head, M_NOWAIT);
if (m == NULL) {
ha->err_tx_defrag++;
m_freem(m_head);
*m_headp = NULL;
device_printf(ha->pci_dev,
"%s: m_defrag() = NULL [%d]\n",
__func__, ret);
return (ENOBUFS);
}
m_head = m;
*m_headp = m_head;
if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
segs, &nsegs, BUS_DMA_NOWAIT))) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
} else if (ret) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
QL_ASSERT(ha, (nsegs != 0), ("qls_send: empty packet"));
bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
if (!(ret = qls_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx))) {
ha->tx_ring[txr_idx].count++;
ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
ha->tx_ring[txr_idx].tx_buf[tx_idx].map = map;
} else {
if (ret == EINVAL) {
if (m_head)
m_freem(m_head);
*m_headp = NULL;
}
}
QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static void
qls_stop(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
device_t dev;
dev = ha->pci_dev;
ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
ha->flags.qla_watchdog_pause = 1;
while (!ha->qla_watchdog_paused)
qls_mdelay(__func__, 1);
qls_del_hw_if(ha);
qls_free_lro(ha);
qls_flush_xmt_bufs(ha);
qls_free_rcv_bufs(ha);
return;
}
/*
* Buffer Management Functions for Transmit and Receive Rings
*/
/*
* Release mbuf after it sent on the wire
*/
static void
qls_flush_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
{
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
if (txb->m_head) {
bus_dmamap_unload(ha->tx_tag, txb->map);
m_freem(txb->m_head);
txb->m_head = NULL;
}
QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
}
static void
qls_flush_xmt_bufs(qla_host_t *ha)
{
int i, j;
for (j = 0; j < ha->num_tx_rings; j++) {
for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
qls_flush_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
}
return;
}
static int
qls_alloc_rcv_mbufs(qla_host_t *ha, int r)
{
int i, j, ret = 0;
qla_rx_buf_t *rxb;
qla_rx_ring_t *rx_ring;
volatile q81_bq_addr_e_t *sbq_e;
rx_ring = &ha->rx_ring[r];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &rx_ring->rx_buf[i];
ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT, &rxb->map);
if (ret) {
device_printf(ha->pci_dev,
"%s: dmamap[%d, %d] failed\n", __func__, r, i);
for (j = 0; j < i; j++) {
rxb = &rx_ring->rx_buf[j];
bus_dmamap_destroy(ha->rx_tag, rxb->map);
}
goto qls_alloc_rcv_mbufs_err;
}
}
rx_ring = &ha->rx_ring[r];
sbq_e = rx_ring->sbq_vaddr;
rxb = &rx_ring->rx_buf[0];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
if (!(ret = qls_get_mbuf(ha, rxb, NULL))) {
/*
* set the physical address in the
* corresponding descriptor entry in the
* receive ring/queue for the hba
*/
sbq_e->addr_lo = rxb->paddr & 0xFFFFFFFF;
sbq_e->addr_hi = (rxb->paddr >> 32) & 0xFFFFFFFF;
} else {
device_printf(ha->pci_dev,
"%s: qls_get_mbuf [%d, %d] failed\n",
__func__, r, i);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
goto qls_alloc_rcv_mbufs_err;
}
rxb++;
sbq_e++;
}
return 0;
qls_alloc_rcv_mbufs_err:
return (-1);
}
static void
qls_free_rcv_bufs(qla_host_t *ha)
{
int i, r;
qla_rx_buf_t *rxb;
qla_rx_ring_t *rxr;
for (r = 0; r < ha->num_rx_rings; r++) {
rxr = &ha->rx_ring[r];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &rxr->rx_buf[i];
if (rxb->m_head != NULL) {
bus_dmamap_unload(ha->rx_tag, rxb->map);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
m_freem(rxb->m_head);
}
}
bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
}
return;
}
static int
qls_alloc_rcv_bufs(qla_host_t *ha)
{
int r, ret = 0;
qla_rx_ring_t *rxr;
for (r = 0; r < ha->num_rx_rings; r++) {
rxr = &ha->rx_ring[r];
bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
}
for (r = 0; r < ha->num_rx_rings; r++) {
ret = qls_alloc_rcv_mbufs(ha, r);
if (ret)
qls_free_rcv_bufs(ha);
}
return (ret);
}
int
qls_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
{
struct mbuf *mp = nmp;
struct ifnet *ifp;
int ret = 0;
uint32_t offset;
bus_dma_segment_t segs[1];
int nsegs;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
ifp = ha->ifp;
if (mp == NULL) {
mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, ha->msize);
if (mp == NULL) {
if (ha->msize == MCLBYTES)
ha->err_m_getcl++;
else
ha->err_m_getjcl++;
ret = ENOBUFS;
device_printf(ha->pci_dev,
"%s: m_getcl failed\n", __func__);
goto exit_qls_get_mbuf;
}
mp->m_len = mp->m_pkthdr.len = ha->msize;
} else {
mp->m_len = mp->m_pkthdr.len = ha->msize;
mp->m_data = mp->m_ext.ext_buf;
mp->m_next = NULL;
}
/* align the receive buffers to 8 byte boundary */
offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
if (offset) {
offset = 8 - offset;
m_adj(mp, offset);
}
/*
* Using memory from the mbuf cluster pool, invoke the bus_dma
* machinery to arrange the memory mapping.
*/
ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
mp, segs, &nsegs, BUS_DMA_NOWAIT);
rxb->paddr = segs[0].ds_addr;
if (ret || !rxb->paddr || (nsegs != 1)) {
m_freem(mp);
rxb->m_head = NULL;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
__func__, ret, (long long unsigned int)rxb->paddr,
nsegs);
ret = -1;
goto exit_qls_get_mbuf;
}
rxb->m_head = mp;
bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
exit_qls_get_mbuf:
QL_DPRINT2((ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
return (ret);
}
static void
qls_tx_done(void *context, int pending)
{
qla_host_t *ha = context;
struct ifnet *ifp;
ifp = ha->ifp;
if (!ifp)
return;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
return;
}
qls_start(ha->ifp);
return;
}
static int
qls_config_lro(qla_host_t *ha)
{
int i;
struct lro_ctrl *lro;
for (i = 0; i < ha->num_rx_rings; i++) {
lro = &ha->rx_ring[i].lro;
if (tcp_lro_init(lro)) {
device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
__func__);
return (-1);
}
lro->ifp = ha->ifp;
}
ha->flags.lro_init = 1;
QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
return (0);
}
static void
qls_free_lro(qla_host_t *ha)
{
int i;
struct lro_ctrl *lro;
if (!ha->flags.lro_init)
return;
for (i = 0; i < ha->num_rx_rings; i++) {
lro = &ha->rx_ring[i].lro;
tcp_lro_free(lro);
}
ha->flags.lro_init = 0;
}
static void
qls_error_recovery(void *context, int pending)
{
qla_host_t *ha = context;
qls_init(ha);
return;
}