freebsd-skq/sys/kern/subr_unit.c
mjg b46ad9fa56 Implement unr64
Important users of unr like tmpfs or pipes can get away with just
ever-increasing counters, making the overhead of managing the state
for 32 bit counters a pessimization.

Change it to an atomic variable. This can be further sped up by making
the counts variable "allocate" ranges and store them per-cpu.

Reviewed by:	kib
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D18054
2018-11-20 14:58:41 +00:00

1095 lines
23 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2004 Poul-Henning Kamp
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*
*
* Unit number allocation functions.
*
* These functions implement a mixed run-length/bitmap management of unit
* number spaces in a very memory efficient manner.
*
* Allocation policy is always lowest free number first.
*
* A return value of -1 signals that no more unit numbers are available.
*
* There is no cost associated with the range of unitnumbers, so unless
* the resource really is finite, specify INT_MAX to new_unrhdr() and
* forget about checking the return value.
*
* If a mutex is not provided when the unit number space is created, a
* default global mutex is used. The advantage to passing a mutex in, is
* that the alloc_unrl() function can be called with the mutex already
* held (it will not be released by alloc_unrl()).
*
* The allocation function alloc_unr{l}() never sleeps (but it may block on
* the mutex of course).
*
* Freeing a unit number may require allocating memory, and can therefore
* sleep so the free_unr() function does not come in a pre-locked variant.
*
* A userland test program is included.
*
* Memory usage is a very complex function of the exact allocation
* pattern, but always very compact:
* * For the very typical case where a single unbroken run of unit
* numbers are allocated 44 bytes are used on i386.
* * For a unit number space of 1000 units and the random pattern
* in the usermode test program included, the worst case usage
* was 252 bytes on i386 for 500 allocated and 500 free units.
* * For a unit number space of 10000 units and the random pattern
* in the usermode test program included, the worst case usage
* was 798 bytes on i386 for 5000 allocated and 5000 free units.
* * The worst case is where every other unit number is allocated and
* the rest are free. In that case 44 + N/4 bytes are used where
* N is the number of the highest unit allocated.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/_unrhdr.h>
#ifdef _KERNEL
#include <sys/bitstring.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
/*
* In theory it would be smarter to allocate the individual blocks
* with the zone allocator, but at this time the expectation is that
* there will typically not even be enough allocations to fill a single
* page, so we stick with malloc for now.
*/
static MALLOC_DEFINE(M_UNIT, "Unitno", "Unit number allocation");
#define Malloc(foo) malloc(foo, M_UNIT, M_WAITOK | M_ZERO)
#define Free(foo) free(foo, M_UNIT)
static struct mtx unitmtx;
MTX_SYSINIT(unit, &unitmtx, "unit# allocation", MTX_DEF);
#ifdef UNR64_LOCKED
uint64_t
alloc_unr64(struct unrhdr64 *unr64)
{
uint64_t item;
mtx_lock(&unitmtx);
item = unr64->counter++;
mtx_unlock(&unitmtx);
return (item);
}
#endif
#else /* ...USERLAND */
#include <bitstring.h>
#include <err.h>
#include <errno.h>
#include <getopt.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define KASSERT(cond, arg) \
do { \
if (!(cond)) { \
printf arg; \
abort(); \
} \
} while (0)
static int no_alloc;
#define Malloc(foo) _Malloc(foo, __LINE__)
static void *
_Malloc(size_t foo, int line)
{
KASSERT(no_alloc == 0, ("malloc in wrong place() line %d", line));
return (calloc(foo, 1));
}
#define Free(foo) free(foo)
struct unrhdr;
struct mtx {
int state;
} unitmtx;
static void
mtx_lock(struct mtx *mp)
{
KASSERT(mp->state == 0, ("mutex already locked"));
mp->state = 1;
}
static void
mtx_unlock(struct mtx *mp)
{
KASSERT(mp->state == 1, ("mutex not locked"));
mp->state = 0;
}
#define MA_OWNED 9
static void
mtx_assert(struct mtx *mp, int flag)
{
if (flag == MA_OWNED) {
KASSERT(mp->state == 1, ("mtx_assert(MA_OWNED) not true"));
}
}
#define CTASSERT(foo)
#define WITNESS_WARN(flags, lock, fmt, ...) (void)0
#endif /* USERLAND */
/*
* This is our basic building block.
*
* It can be used in three different ways depending on the value of the ptr
* element:
* If ptr is NULL, it represents a run of free items.
* If ptr points to the unrhdr it represents a run of allocated items.
* Otherwise it points to a bitstring of allocated items.
*
* For runs the len field is the length of the run.
* For bitmaps the len field represents the number of allocated items.
*
* The bitmap is the same size as struct unr to optimize memory management.
*/
struct unr {
TAILQ_ENTRY(unr) list;
u_int len;
void *ptr;
};
struct unrb {
bitstr_t map[sizeof(struct unr) / sizeof(bitstr_t)];
};
CTASSERT((sizeof(struct unr) % sizeof(bitstr_t)) == 0);
/* Number of bits we can store in the bitmap */
#define NBITS (8 * sizeof(((struct unrb*)NULL)->map))
/* Is the unrb empty in at least the first len bits? */
static inline bool
ub_empty(struct unrb *ub, int len) {
int first_set;
bit_ffs(ub->map, len, &first_set);
return (first_set == -1);
}
/* Is the unrb full? That is, is the number of set elements equal to len? */
static inline bool
ub_full(struct unrb *ub, int len)
{
int first_clear;
bit_ffc(ub->map, len, &first_clear);
return (first_clear == -1);
}
#if defined(DIAGNOSTIC) || !defined(_KERNEL)
/*
* Consistency check function.
*
* Checks the internal consistency as well as we can.
*
* Called at all boundaries of this API.
*/
static void
check_unrhdr(struct unrhdr *uh, int line)
{
struct unr *up;
struct unrb *ub;
int w;
u_int y, z;
y = uh->first;
z = 0;
TAILQ_FOREACH(up, &uh->head, list) {
z++;
if (up->ptr != uh && up->ptr != NULL) {
ub = up->ptr;
KASSERT (up->len <= NBITS,
("UNR inconsistency: len %u max %zd (line %d)\n",
up->len, NBITS, line));
z++;
w = 0;
bit_count(ub->map, 0, up->len, &w);
y += w;
} else if (up->ptr != NULL)
y += up->len;
}
KASSERT (y == uh->busy,
("UNR inconsistency: items %u found %u (line %d)\n",
uh->busy, y, line));
KASSERT (z == uh->alloc,
("UNR inconsistency: chunks %u found %u (line %d)\n",
uh->alloc, z, line));
}
#else
static __inline void
check_unrhdr(struct unrhdr *uh __unused, int line __unused)
{
}
#endif
/*
* Userland memory management. Just use calloc and keep track of how
* many elements we have allocated for check_unrhdr().
*/
static __inline void *
new_unr(struct unrhdr *uh, void **p1, void **p2)
{
void *p;
uh->alloc++;
KASSERT(*p1 != NULL || *p2 != NULL, ("Out of cached memory"));
if (*p1 != NULL) {
p = *p1;
*p1 = NULL;
return (p);
} else {
p = *p2;
*p2 = NULL;
return (p);
}
}
static __inline void
delete_unr(struct unrhdr *uh, void *ptr)
{
struct unr *up;
uh->alloc--;
up = ptr;
TAILQ_INSERT_TAIL(&uh->ppfree, up, list);
}
void
clean_unrhdrl(struct unrhdr *uh)
{
struct unr *up;
mtx_assert(uh->mtx, MA_OWNED);
while ((up = TAILQ_FIRST(&uh->ppfree)) != NULL) {
TAILQ_REMOVE(&uh->ppfree, up, list);
mtx_unlock(uh->mtx);
Free(up);
mtx_lock(uh->mtx);
}
}
void
clean_unrhdr(struct unrhdr *uh)
{
mtx_lock(uh->mtx);
clean_unrhdrl(uh);
mtx_unlock(uh->mtx);
}
void
init_unrhdr(struct unrhdr *uh, int low, int high, struct mtx *mutex)
{
KASSERT(low >= 0 && low <= high,
("UNR: use error: new_unrhdr(%d, %d)", low, high));
if (mutex != NULL)
uh->mtx = mutex;
else
uh->mtx = &unitmtx;
TAILQ_INIT(&uh->head);
TAILQ_INIT(&uh->ppfree);
uh->low = low;
uh->high = high;
uh->first = 0;
uh->last = 1 + (high - low);
check_unrhdr(uh, __LINE__);
}
/*
* Allocate a new unrheader set.
*
* Highest and lowest valid values given as parameters.
*/
struct unrhdr *
new_unrhdr(int low, int high, struct mtx *mutex)
{
struct unrhdr *uh;
uh = Malloc(sizeof *uh);
init_unrhdr(uh, low, high, mutex);
return (uh);
}
void
delete_unrhdr(struct unrhdr *uh)
{
check_unrhdr(uh, __LINE__);
KASSERT(uh->busy == 0, ("unrhdr has %u allocations", uh->busy));
KASSERT(uh->alloc == 0, ("UNR memory leak in delete_unrhdr"));
KASSERT(TAILQ_FIRST(&uh->ppfree) == NULL,
("unrhdr has postponed item for free"));
Free(uh);
}
void
clear_unrhdr(struct unrhdr *uh)
{
struct unr *up, *uq;
KASSERT(TAILQ_EMPTY(&uh->ppfree),
("unrhdr has postponed item for free"));
TAILQ_FOREACH_SAFE(up, &uh->head, list, uq) {
if (up->ptr != uh) {
Free(up->ptr);
}
Free(up);
}
uh->busy = 0;
uh->alloc = 0;
init_unrhdr(uh, uh->low, uh->high, uh->mtx);
check_unrhdr(uh, __LINE__);
}
static __inline int
is_bitmap(struct unrhdr *uh, struct unr *up)
{
return (up->ptr != uh && up->ptr != NULL);
}
/*
* Look for sequence of items which can be combined into a bitmap, if
* multiple are present, take the one which saves most memory.
*
* Return (1) if a sequence was found to indicate that another call
* might be able to do more. Return (0) if we found no suitable sequence.
*
* NB: called from alloc_unr(), no new memory allocation allowed.
*/
static int
optimize_unr(struct unrhdr *uh)
{
struct unr *up, *uf, *us;
struct unrb *ub, *ubf;
u_int a, l, ba;
/*
* Look for the run of items (if any) which when collapsed into
* a bitmap would save most memory.
*/
us = NULL;
ba = 0;
TAILQ_FOREACH(uf, &uh->head, list) {
if (uf->len >= NBITS)
continue;
a = 1;
if (is_bitmap(uh, uf))
a++;
l = uf->len;
up = uf;
while (1) {
up = TAILQ_NEXT(up, list);
if (up == NULL)
break;
if ((up->len + l) > NBITS)
break;
a++;
if (is_bitmap(uh, up))
a++;
l += up->len;
}
if (a > ba) {
ba = a;
us = uf;
}
}
if (ba < 3)
return (0);
/*
* If the first element is not a bitmap, make it one.
* Trying to do so without allocating more memory complicates things
* a bit
*/
if (!is_bitmap(uh, us)) {
uf = TAILQ_NEXT(us, list);
TAILQ_REMOVE(&uh->head, us, list);
a = us->len;
l = us->ptr == uh ? 1 : 0;
ub = (void *)us;
bit_nclear(ub->map, 0, NBITS - 1);
if (l)
bit_nset(ub->map, 0, a);
if (!is_bitmap(uh, uf)) {
if (uf->ptr == NULL)
bit_nclear(ub->map, a, a + uf->len - 1);
else
bit_nset(ub->map, a, a + uf->len - 1);
uf->ptr = ub;
uf->len += a;
us = uf;
} else {
ubf = uf->ptr;
for (l = 0; l < uf->len; l++, a++) {
if (bit_test(ubf->map, l))
bit_set(ub->map, a);
else
bit_clear(ub->map, a);
}
uf->len = a;
delete_unr(uh, uf->ptr);
uf->ptr = ub;
us = uf;
}
}
ub = us->ptr;
while (1) {
uf = TAILQ_NEXT(us, list);
if (uf == NULL)
return (1);
if (uf->len + us->len > NBITS)
return (1);
if (uf->ptr == NULL) {
bit_nclear(ub->map, us->len, us->len + uf->len - 1);
us->len += uf->len;
TAILQ_REMOVE(&uh->head, uf, list);
delete_unr(uh, uf);
} else if (uf->ptr == uh) {
bit_nset(ub->map, us->len, us->len + uf->len - 1);
us->len += uf->len;
TAILQ_REMOVE(&uh->head, uf, list);
delete_unr(uh, uf);
} else {
ubf = uf->ptr;
for (l = 0; l < uf->len; l++, us->len++) {
if (bit_test(ubf->map, l))
bit_set(ub->map, us->len);
else
bit_clear(ub->map, us->len);
}
TAILQ_REMOVE(&uh->head, uf, list);
delete_unr(uh, ubf);
delete_unr(uh, uf);
}
}
}
/*
* See if a given unr should be collapsed with a neighbor.
*
* NB: called from alloc_unr(), no new memory allocation allowed.
*/
static void
collapse_unr(struct unrhdr *uh, struct unr *up)
{
struct unr *upp;
struct unrb *ub;
/* If bitmap is all set or clear, change it to runlength */
if (is_bitmap(uh, up)) {
ub = up->ptr;
if (ub_full(ub, up->len)) {
delete_unr(uh, up->ptr);
up->ptr = uh;
} else if (ub_empty(ub, up->len)) {
delete_unr(uh, up->ptr);
up->ptr = NULL;
}
}
/* If nothing left in runlength, delete it */
if (up->len == 0) {
upp = TAILQ_PREV(up, unrhd, list);
if (upp == NULL)
upp = TAILQ_NEXT(up, list);
TAILQ_REMOVE(&uh->head, up, list);
delete_unr(uh, up);
up = upp;
}
/* If we have "hot-spot" still, merge with neighbor if possible */
if (up != NULL) {
upp = TAILQ_PREV(up, unrhd, list);
if (upp != NULL && up->ptr == upp->ptr) {
up->len += upp->len;
TAILQ_REMOVE(&uh->head, upp, list);
delete_unr(uh, upp);
}
upp = TAILQ_NEXT(up, list);
if (upp != NULL && up->ptr == upp->ptr) {
up->len += upp->len;
TAILQ_REMOVE(&uh->head, upp, list);
delete_unr(uh, upp);
}
}
/* Merge into ->first if possible */
upp = TAILQ_FIRST(&uh->head);
if (upp != NULL && upp->ptr == uh) {
uh->first += upp->len;
TAILQ_REMOVE(&uh->head, upp, list);
delete_unr(uh, upp);
if (up == upp)
up = NULL;
}
/* Merge into ->last if possible */
upp = TAILQ_LAST(&uh->head, unrhd);
if (upp != NULL && upp->ptr == NULL) {
uh->last += upp->len;
TAILQ_REMOVE(&uh->head, upp, list);
delete_unr(uh, upp);
if (up == upp)
up = NULL;
}
/* Try to make bitmaps */
while (optimize_unr(uh))
continue;
}
/*
* Allocate a free unr.
*/
int
alloc_unrl(struct unrhdr *uh)
{
struct unr *up;
struct unrb *ub;
u_int x;
int y;
mtx_assert(uh->mtx, MA_OWNED);
check_unrhdr(uh, __LINE__);
x = uh->low + uh->first;
up = TAILQ_FIRST(&uh->head);
/*
* If we have an ideal split, just adjust the first+last
*/
if (up == NULL && uh->last > 0) {
uh->first++;
uh->last--;
uh->busy++;
return (x);
}
/*
* We can always allocate from the first list element, so if we have
* nothing on the list, we must have run out of unit numbers.
*/
if (up == NULL)
return (-1);
KASSERT(up->ptr != uh, ("UNR first element is allocated"));
if (up->ptr == NULL) { /* free run */
uh->first++;
up->len--;
} else { /* bitmap */
ub = up->ptr;
bit_ffc(ub->map, up->len, &y);
KASSERT(y != -1, ("UNR corruption: No clear bit in bitmap."));
bit_set(ub->map, y);
x += y;
}
uh->busy++;
collapse_unr(uh, up);
return (x);
}
int
alloc_unr(struct unrhdr *uh)
{
int i;
mtx_lock(uh->mtx);
i = alloc_unrl(uh);
clean_unrhdrl(uh);
mtx_unlock(uh->mtx);
return (i);
}
static int
alloc_unr_specificl(struct unrhdr *uh, u_int item, void **p1, void **p2)
{
struct unr *up, *upn;
struct unrb *ub;
u_int i, last, tl;
mtx_assert(uh->mtx, MA_OWNED);
if (item < uh->low + uh->first || item > uh->high)
return (-1);
up = TAILQ_FIRST(&uh->head);
/* Ideal split. */
if (up == NULL && item - uh->low == uh->first) {
uh->first++;
uh->last--;
uh->busy++;
check_unrhdr(uh, __LINE__);
return (item);
}
i = item - uh->low - uh->first;
if (up == NULL) {
up = new_unr(uh, p1, p2);
up->ptr = NULL;
up->len = i;
TAILQ_INSERT_TAIL(&uh->head, up, list);
up = new_unr(uh, p1, p2);
up->ptr = uh;
up->len = 1;
TAILQ_INSERT_TAIL(&uh->head, up, list);
uh->last = uh->high - uh->low - i;
uh->busy++;
check_unrhdr(uh, __LINE__);
return (item);
} else {
/* Find the item which contains the unit we want to allocate. */
TAILQ_FOREACH(up, &uh->head, list) {
if (up->len > i)
break;
i -= up->len;
}
}
if (up == NULL) {
if (i > 0) {
up = new_unr(uh, p1, p2);
up->ptr = NULL;
up->len = i;
TAILQ_INSERT_TAIL(&uh->head, up, list);
}
up = new_unr(uh, p1, p2);
up->ptr = uh;
up->len = 1;
TAILQ_INSERT_TAIL(&uh->head, up, list);
goto done;
}
if (is_bitmap(uh, up)) {
ub = up->ptr;
if (bit_test(ub->map, i) == 0) {
bit_set(ub->map, i);
goto done;
} else
return (-1);
} else if (up->ptr == uh)
return (-1);
KASSERT(up->ptr == NULL,
("alloc_unr_specificl: up->ptr != NULL (up=%p)", up));
/* Split off the tail end, if any. */
tl = up->len - (1 + i);
if (tl > 0) {
upn = new_unr(uh, p1, p2);
upn->ptr = NULL;
upn->len = tl;
TAILQ_INSERT_AFTER(&uh->head, up, upn, list);
}
/* Split off head end, if any */
if (i > 0) {
upn = new_unr(uh, p1, p2);
upn->len = i;
upn->ptr = NULL;
TAILQ_INSERT_BEFORE(up, upn, list);
}
up->len = 1;
up->ptr = uh;
done:
last = uh->high - uh->low - (item - uh->low);
if (uh->last > last)
uh->last = last;
uh->busy++;
collapse_unr(uh, up);
check_unrhdr(uh, __LINE__);
return (item);
}
int
alloc_unr_specific(struct unrhdr *uh, u_int item)
{
void *p1, *p2;
int i;
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "alloc_unr_specific");
p1 = Malloc(sizeof(struct unr));
p2 = Malloc(sizeof(struct unr));
mtx_lock(uh->mtx);
i = alloc_unr_specificl(uh, item, &p1, &p2);
mtx_unlock(uh->mtx);
if (p1 != NULL)
Free(p1);
if (p2 != NULL)
Free(p2);
return (i);
}
/*
* Free a unr.
*
* If we can save unrs by using a bitmap, do so.
*/
static void
free_unrl(struct unrhdr *uh, u_int item, void **p1, void **p2)
{
struct unr *up, *upp, *upn;
struct unrb *ub;
u_int pl;
KASSERT(item >= uh->low && item <= uh->high,
("UNR: free_unr(%u) out of range [%u...%u]",
item, uh->low, uh->high));
check_unrhdr(uh, __LINE__);
item -= uh->low;
upp = TAILQ_FIRST(&uh->head);
/*
* Freeing in the ideal split case
*/
if (item + 1 == uh->first && upp == NULL) {
uh->last++;
uh->first--;
uh->busy--;
check_unrhdr(uh, __LINE__);
return;
}
/*
* Freeing in the ->first section. Create a run starting at the
* freed item. The code below will subdivide it.
*/
if (item < uh->first) {
up = new_unr(uh, p1, p2);
up->ptr = uh;
up->len = uh->first - item;
TAILQ_INSERT_HEAD(&uh->head, up, list);
uh->first -= up->len;
}
item -= uh->first;
/* Find the item which contains the unit we want to free */
TAILQ_FOREACH(up, &uh->head, list) {
if (up->len > item)
break;
item -= up->len;
}
/* Handle bitmap items */
if (is_bitmap(uh, up)) {
ub = up->ptr;
KASSERT(bit_test(ub->map, item) != 0,
("UNR: Freeing free item %d (bitmap)\n", item));
bit_clear(ub->map, item);
uh->busy--;
collapse_unr(uh, up);
return;
}
KASSERT(up->ptr == uh, ("UNR Freeing free item %d (run))\n", item));
/* Just this one left, reap it */
if (up->len == 1) {
up->ptr = NULL;
uh->busy--;
collapse_unr(uh, up);
return;
}
/* Check if we can shift the item into the previous 'free' run */
upp = TAILQ_PREV(up, unrhd, list);
if (item == 0 && upp != NULL && upp->ptr == NULL) {
upp->len++;
up->len--;
uh->busy--;
collapse_unr(uh, up);
return;
}
/* Check if we can shift the item to the next 'free' run */
upn = TAILQ_NEXT(up, list);
if (item == up->len - 1 && upn != NULL && upn->ptr == NULL) {
upn->len++;
up->len--;
uh->busy--;
collapse_unr(uh, up);
return;
}
/* Split off the tail end, if any. */
pl = up->len - (1 + item);
if (pl > 0) {
upp = new_unr(uh, p1, p2);
upp->ptr = uh;
upp->len = pl;
TAILQ_INSERT_AFTER(&uh->head, up, upp, list);
}
/* Split off head end, if any */
if (item > 0) {
upp = new_unr(uh, p1, p2);
upp->len = item;
upp->ptr = uh;
TAILQ_INSERT_BEFORE(up, upp, list);
}
up->len = 1;
up->ptr = NULL;
uh->busy--;
collapse_unr(uh, up);
}
void
free_unr(struct unrhdr *uh, u_int item)
{
void *p1, *p2;
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "free_unr");
p1 = Malloc(sizeof(struct unr));
p2 = Malloc(sizeof(struct unr));
mtx_lock(uh->mtx);
free_unrl(uh, item, &p1, &p2);
clean_unrhdrl(uh);
mtx_unlock(uh->mtx);
if (p1 != NULL)
Free(p1);
if (p2 != NULL)
Free(p2);
}
#ifndef _KERNEL /* USERLAND test driver */
/*
* Simple stochastic test driver for the above functions. The code resides
* here so that it can access static functions and structures.
*/
static bool verbose;
#define VPRINTF(...) {if (verbose) printf(__VA_ARGS__);}
static void
print_unr(struct unrhdr *uh, struct unr *up)
{
u_int x;
struct unrb *ub;
printf(" %p len = %5u ", up, up->len);
if (up->ptr == NULL)
printf("free\n");
else if (up->ptr == uh)
printf("alloc\n");
else {
ub = up->ptr;
printf("bitmap [");
for (x = 0; x < up->len; x++) {
if (bit_test(ub->map, x))
printf("#");
else
printf(" ");
}
printf("]\n");
}
}
static void
print_unrhdr(struct unrhdr *uh)
{
struct unr *up;
u_int x;
printf(
"%p low = %u high = %u first = %u last = %u busy %u chunks = %u\n",
uh, uh->low, uh->high, uh->first, uh->last, uh->busy, uh->alloc);
x = uh->low + uh->first;
TAILQ_FOREACH(up, &uh->head, list) {
printf(" from = %5u", x);
print_unr(uh, up);
if (up->ptr == NULL || up->ptr == uh)
x += up->len;
else
x += NBITS;
}
}
static void
test_alloc_unr(struct unrhdr *uh, u_int i, char a[])
{
int j;
if (a[i]) {
VPRINTF("F %u\n", i);
free_unr(uh, i);
a[i] = 0;
} else {
no_alloc = 1;
j = alloc_unr(uh);
if (j != -1) {
a[j] = 1;
VPRINTF("A %d\n", j);
}
no_alloc = 0;
}
}
static void
test_alloc_unr_specific(struct unrhdr *uh, u_int i, char a[])
{
int j;
j = alloc_unr_specific(uh, i);
if (j == -1) {
VPRINTF("F %u\n", i);
a[i] = 0;
free_unr(uh, i);
} else {
a[i] = 1;
VPRINTF("A %d\n", j);
}
}
static void
usage(char** argv)
{
printf("%s [-h] [-r REPETITIONS] [-v]\n", argv[0]);
}
int
main(int argc, char **argv)
{
struct unrhdr *uh;
char *a;
long count = 10000; /* Number of unrs to test */
long reps = 1, m;
int ch;
u_int i, j;
verbose = false;
while ((ch = getopt(argc, argv, "hr:v")) != -1) {
switch (ch) {
case 'r':
errno = 0;
reps = strtol(optarg, NULL, 0);
if (errno == ERANGE || errno == EINVAL) {
usage(argv);
exit(2);
}
break;
case 'v':
verbose = true;
break;
case 'h':
default:
usage(argv);
exit(2);
}
}
setbuf(stdout, NULL);
uh = new_unrhdr(0, count - 1, NULL);
print_unrhdr(uh);
a = calloc(count, sizeof(char));
if (a == NULL)
err(1, "calloc failed");
srandomdev();
printf("sizeof(struct unr) %zu\n", sizeof(struct unr));
printf("sizeof(struct unrb) %zu\n", sizeof(struct unrb));
printf("sizeof(struct unrhdr) %zu\n", sizeof(struct unrhdr));
printf("NBITS %lu\n", (unsigned long)NBITS);
for (m = 0; m < count * reps; m++) {
j = random();
i = (j >> 1) % count;
#if 0
if (a[i] && (j & 1))
continue;
#endif
if ((random() & 1) != 0)
test_alloc_unr(uh, i, a);
else
test_alloc_unr_specific(uh, i, a);
if (verbose)
print_unrhdr(uh);
check_unrhdr(uh, __LINE__);
}
for (i = 0; i < (u_int)count; i++) {
if (a[i]) {
if (verbose) {
printf("C %u\n", i);
print_unrhdr(uh);
}
free_unr(uh, i);
}
}
print_unrhdr(uh);
delete_unrhdr(uh);
free(a);
return (0);
}
#endif